Microbial, Physicochemical Profile and Sensory Perception of Dry-Aged Beef Quality: A Preliminary Portuguese Contribution to the Validation of the Dry Aging Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Planification
2.2. Dry-Aged Process Guidelines
2.3. Laboratory Analysis
2.3.1. Sample Collection
2.3.2. Microbiological Analysis
2.3.3. Physicochemical Parameters
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Dry-Aged Process and Meat Microbiological and Physicochemical Status
3.1.1. Microbiological Counts
3.1.2. Color, pH and Water Activity
3.2. Sensory Analysis of Dry-Aged Meat
3.3. Multivariate Analysis and Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oh, H.; Lee, H.J.; Lee, J.; Jo, C.; Yoon, Y. Identification of Microorganisms Associated with the Quality Improvement of Dry-Aged Beef Through Microbiome Analysis and DNA Sequencing, and Evaluation of Their Effects on Beef Quality. J. Food Sci. 2019, 84, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Dashdorj, D.; Tripathi, V.K.; Cho, S.; Kim, Y.; Hwang, I. Dry aging of beef; Review. J. Anim. Sci. Technol. 2016, 58, 20. [Google Scholar] [CrossRef] [PubMed]
- Mikami, N.; Toyotome, T.; Yamashiro, Y.; Sugo, K.; Yoshitomi, K.; Takaya, M.; Han, K.-H.; Fukushima, M.; Shimada, K. Dry-aged beef manufactured in Japan: Microbiota identification and their effects on product characteristics. Food Res. Int. 2021, 140, 110020. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Kim, Y.H.B.; Legako, J.F.; Martini, S.; Lee, J.; Ebner, P.; Zuelly, S.M.S. Dry-aging improves meat quality attributes of grass-fed beef loins. Meat Sci. 2018, 145, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Smaldone, G.; Marrone, R.; Vollano, L.; Peruzy, M.F.; Barone, C.M.A.; Ambrosio, R.L.; Anastasio, A. Microbiological, rheological and physical-chemical characteristics of bovine meat subjected to a prolonged ageing period. Ital. J. Food Saf. 2019, 8, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.-C.; Park, S.; Kim, J.; Yoon, Y.; Lee, H. Identification of microbial flora in dry aged beef to evaluate the rancidity during dry aging. Processes 2021, 9, 2049. [Google Scholar] [CrossRef]
- Ribeiro, F.A.; Lau, S.K.; Furbeck, R.A.; Herrera, N.J.; Henriott, M.L.; Bland, N.A.; Fernando, S.C.; Subbiah, J.; Sullivan, G.A.; Calkins, C.R. Ultimate pH effects on dry-aged beef quality. Meat Sci. 2021, 172, 108365. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; et al. Microbiological safety of aged meat. EFSA J. 2023, 21, e07745. [Google Scholar] [CrossRef]
- Ryu, S.; Park, M.R.; Maburutse, B.E.; Lee, W.J.; Park, D.-J.; Cho, S.; Hwang, I.; Oh, S.; Kim, Y. Diversity and characteristics of the meat microbiological community on dry aged beef. J. Microbiol. Biotechnol. 2018, 28, 105–108. [Google Scholar] [CrossRef]
- Kim, H.; Shin, M.; Ryu, S.; Yun, B.; Oh, S.; Park, D.-J.; Kim, Y. Evaluation of probiotic characteristics of newly isolated lactic acid bacteria from dry-aged hanwoo beef. Korean J. Food Sci. Anim. Resour. 2021, 41, 468–480. [Google Scholar] [CrossRef]
- Gowda, T.K.; De Zutter, L.; Van Royen, G.; Van Damme, I. Exploring the microbiological quality and safety of dry-aged beef: A cross-sectional study of loin surfaces during ripening and dry-aged beef steaks from commercial meat companies in Belgium. Food Microbiol. 2022, 102, 103919. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.M.; Pena, P.d.O.; Pflanzer, S.B.; Nascimento, M.d.S.D. Effect of different dry aging temperatures on Listeria innocua as surrogate for Listeria monocytogenes. Meat Sci. 2019, 157, 107884. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choe, J.; Lee, H.J.; Yoon, Y.; Yoon, S.; Jo, C. Effects of aging and aging method on physicochemical and sensory traits of different beef cuts. Korean J. Food Sci. Anim. Resour. 2019, 39, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.B.; Kemp, R.; Samuelsson, L.M. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci. 2016, 111, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; McGilchrist, P.; Polkinghorne, R.; Huynh, L.; Galletly, J.; Kobayashi, K.; Nishimura, T.; Bonney, S.; Kelman, K.R.; Warner, R.D. Effects of different ageing methods on colour, yield, oxidation and sensory qualities of Australian beef loins consumed in Australia and Japan. Food Res. Int. 2019, 125, 108528. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Nicholson, K.; Nicholson, J.; Harris, K.; Miller, R.; Griffin, D.; Savell, J. Dry versus wet aging of beef: Retail cutting yields and consumer palatability evaluations of steaks from US Choice and US Select short loins. Meat Sci. 2008, 79, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Babol, J.; Wallby, A.; Lundström, K. Meat quality, microbiological status and consumer preference of beef gluteus medius aged in a dry ageing bag or vacuum. Meat Sci. 2013, 95, 229–234. [Google Scholar] [CrossRef]
- Saraiva, C.; Oliveira, I.; Silva, J.A.; Martins, C.; Ventanas, J.; García, C. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef. J. Food Sci. Technol. 2015, 52, 3887–3898. [Google Scholar] [CrossRef]
- Capouya, R.; Mitchell, T.; Clark, D.I.; Clark, D.L.; Bass, P. A Survey of Microbial Communities on Dry-Aged Beef in Commercial Meat Processing Facilities. Meat Muscle Biol. 2020, 5, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Babol, J.; Bredie, W.L.; Nielsen, B.; Tománková, J.; Lundström, K. A comparative study of beef quality after ageing longissimus muscle using a dry ageing bag, traditional dry ageing or vacuum package ageing. Meat Sci. 2014, 97, 433–442. [Google Scholar] [CrossRef]
- Ahnström, M.L.; Seyfert, M.; Hunt, M.C.; Johnson, D.E. Dry aging of beef in a bag highly permeable to water vapour. Meat Sci. 2006, 73, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Bischof, G.; Witte, F.; Sieksmeyer, T.; Januschweski, E.; Terjung, N.; Hertel, C.; Heinz, V.; Juadjur, A.; Gibis, M. Metabolic and microbial analyses of the surface and inner part of wet-aged and dry-aged beef. J. Food Sci. 2023, 88, 4375–4387. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Baek, K.H.; Ko, Y.-J.; Lee, H.J.; Yim, D.-G.; Jo, C. Characteristic Metabolic Changes of the Crust from Dry-Aged Beef Using 2D NMR Spectroscopy. Molecules 2020, 25, 3087. [Google Scholar] [CrossRef] [PubMed]
Trait | Type | 1 d | 14 d | 21 d | 35 d | 60 d | 90 d | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mesophiles | C | 4.940 | ab | 4.310 | b | 4.870 | ab | 5.100 | ab | 6.150 | ab | 6.240 | a | * |
M | 4.600 | a | 3.330 | bc | 2.980 | c | 3.400 | abc | 3.550 | abc | 4.340 | ab | ** | |
P | NS | * | *** | ** | *** | * | ||||||||
Psycrothrophics | C | 4.740 | a | 4.540 | a | 5.300 | a | 4.780 | a | 5.880 | a | 5.720 | a | NS |
M | 4.500 | a | 3.310 | a | 3.250 | a | 3.410 | a | 3.330 | a | 3.550 | a | * | |
p | NS | * | *** | NS | ** | *** | ||||||||
Lactic Acid Bacteria | C | 3.600 | ab | 2.460 | c | 3.190 | bc | 3.500 | ab | 3.690 | ab | 4.740 | a | *** |
M | 3.150 | a | 0.440 | c | 1.050 | bc | 1.260 | bc | 1.680 | b | 1.240 | bc | *** | |
p | NS | *** | *** | *** | *** | *** | ||||||||
Enterobacteriaceae | C | 0.840 | abc | 0.670 | bc | 0.490 | c | 1.320 | ab | 1.360 | ab | 1.710 | a | *** |
M | 0.280 | a | 0.390 | a | 0.380 | a | 0.730 | a | 0.380 | a | 0.150 | a | NS | |
p | * | NS | NS | NS | ** | *** | ||||||||
Pseudomonas spp. | C | 3.800 | ab | 3.410 | b | 4.670 | ab | 4.710 | ab | 5.600 | a | 5.820 | a | ** |
M | 4.290 | a | 2.750 | ab | 2.640 | b | 2.940 | ab | 3.190 | ab | 3.640 | ab | * | |
p | NS | NS | ** | ** | ** | * | ||||||||
Yeasts | C | 3.500 | a | 3.270 | a | 3.620 | a | 3.670 | a | 4.320 | a | 4.160 | a | NS |
M | 3.120 | a | 1.720 | b | 1.260 | b | 1.610 | b | 1.330 | b | 2.020 | ab | * | |
p | NS | ** | *** | *** | *** | ** | ||||||||
Molds | C | 0.830 | b | 1.920 | a | 1.350 | ab | 1.520 | ab | 2.040 | a | 2.320 | a | ** |
M | 0.690 | a | 1.170 | a | 1.510 | a | 0.690 | a | 0.940 | a | 1.020 | a | NS | |
p | NS | * | NS | NS | * | * |
Variable | Type | 1 d | 14 d | 21 d | 35 d | 60 d | 90 d | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | C | ------ | ------ | ------ | ------ | ------ | ------ | |||||||
M | 5.610 | c | 5.770 | bc | 5.800 | ab | 5.850 | ab | 5.740 | ab | 6.010 | a | *** | |
CIE L* | C | 57.520 | a | 46.590 | a | 51.660 | a | 48.660 | a | 52.400 | a | 45.950 | a | NS |
M | 35.110 | a | 36.060 | a | 36.370 | a | 35.410 | a | 34.340 | a | 34.110 | a | NS | |
p | *** | ** | * | * | NS | NS | ||||||||
CIE a* | C | 13.350 | a | 10.720 | ab | 11.520 | a | 8.250 | ab | 6.460 | ab | 3.770 | c | ** |
M | 24.460 | ab | 24.440 | a | 24.380 | ab | 22.740 | ab | 21.820 | b | 16.560 | c | *** | |
p | *** | *** | *** | *** | *** | *** | ||||||||
CIE b * | C | 14.740 | a | 10.460 | bc | 12.650 | ab | 15.540 | ab | 12.920 | ab | 7.480 | c | *** |
M | 14.170 | a | 13.800 | ab | 12.920 | abc | 12.580 | bc | 12.080 | cd | 10.550 | d | *** | |
p | NS | ** | NS | NS | NS | *** |
Sensory Attributes | Type | 1 d | 14 d | 21 d | 35 d | 60 d | 90 d | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Color | Redness | C + M | 5.810 | a | 5.100 | ab | 4.860 | b | 3.770 | bc | 2.920 | c | 2.690 | c | *** |
M | 5.990 | a | 5.620 | ab | 5.420 | bc | 4.690 | cd | 4.480 | d | 4.660 | d | *** | ||
p | NS | ** | ** | NS | NS | ** | |||||||||
Brown | C + M | 0.080 | c | 0.910 | bc | 1.640 | b | 3.710 | a | 4.450 | a | 4.400 | a | *** | |
M | 0.230 | d | 1.050 | cd | 1.760 | bc | 2.330 | ab | 3.060 | a | 3.300 | a | *** | ||
p | NS | NS | NS | * | * | NS | |||||||||
Viscosity | C + M | 0.200 | c | 0.530 | abc | 0.340 | abc | 0.280 | bc | 0.940 | ab | 1.670 | a | ** | |
M | 0.250 | b | 0.670 | b | 0.610 | b | 0.650 | b | 1.260 | a | 1.460 | a | *** | ||
p | NS | NS | NS | ** | NS | NS | |||||||||
Odor | Intensity | C + M | 0.450 | d | 1.180 | c | 1.550 | c | 2.300 | b | 3.340 | a | 4.380 | a | *** |
M | 0.220 | d | 0.910 | c | 1.340 | bc | 0.600 | b | 2.940 | a | 3.250 | a | *** | ||
p | NS | NS | NS | * | NS | * | |||||||||
Sweet | C + M | 0.800 | c | 1.180 | c | 1.260 | c | 1.760 | b | 2.080 | b | 3.580 | a | *** | |
M | 0.840 | c | 0.820 | c | 1.160 | bc | 0.550 | bc | 1.660 | b | 3.120 | a | *** | ||
p | NS | ** | NS | * | NS | NS | |||||||||
Buttery | C + M | 0.610 | c | 1.140 | bc | 1.300 | b | 1.250 | b | 2.870 | a | 2.990 | a | *** | |
M | 0.680 | c | 0.970 | bc | 1.180 | b | 0.390 | b | 1.840 | a | 2.200 | a | *** | ||
p | NS | NS | NS | NS | ** | * | |||||||||
Rancid | C + M | 0.110 | c | 0.570 | b | 0.680 | b | 0.950 | b | 1.360 | b | 3.110 | a | *** | |
M | 0.150 | d | 0.480 | c | 0.620 | bc | 0.410 | c | 1.200 | ab | 2.340 | a | *** | ||
p | NS | NS | NS | NS | NS | * | |||||||||
Freshness | C + M | 6.320 | a | 5.240 | b | 5.270 | b | 4.300 | c | 3.700 | c | 2.580 | d | *** | |
M | 6.380 | a | 5.640 | b | 5.540 | b | 0.360 | c | 4.280 | d | 3.480 | d | *** | ||
p | NS | ** | NS | ** | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.; Oliveira, I.; Soares, K.; Silva, F.; Teixeira, P.; Saraiva, C. Microbial, Physicochemical Profile and Sensory Perception of Dry-Aged Beef Quality: A Preliminary Portuguese Contribution to the Validation of the Dry Aging Process. Foods 2023, 12, 4514. https://doi.org/10.3390/foods12244514
Ribeiro A, Oliveira I, Soares K, Silva F, Teixeira P, Saraiva C. Microbial, Physicochemical Profile and Sensory Perception of Dry-Aged Beef Quality: A Preliminary Portuguese Contribution to the Validation of the Dry Aging Process. Foods. 2023; 12(24):4514. https://doi.org/10.3390/foods12244514
Chicago/Turabian StyleRibeiro, Ana, Irene Oliveira, Kamila Soares, Filipe Silva, Paula Teixeira, and Cristina Saraiva. 2023. "Microbial, Physicochemical Profile and Sensory Perception of Dry-Aged Beef Quality: A Preliminary Portuguese Contribution to the Validation of the Dry Aging Process" Foods 12, no. 24: 4514. https://doi.org/10.3390/foods12244514