A Review of Storage Temperature Recommendations for Apples and Pears
Abstract
:1. Introduction
2. Development of a Database
3. Effect of Cultivar, CA, and RA on Storage Temperature Recommendations
Chilling-Insensitive Cultivars (Including Clones) | Mean Recommended CA Temperature (°C) | Number of Recommendations |
---|---|---|
Mutsu (Crispin) | 0 | 5 |
Delicious | 0.22 | 17 |
Granny Smith | 0.47 | 14 |
Lady Williams | 0.50 | 2 |
Spartan | 0.58 | 6 |
Gala | 0.61 | 27 |
Golden Delicious | 0.62 | 22 |
Stayman | 0.62 | 2 |
Fuji a | 0.63 | 12 |
Rome (Rome Beauty, Morgenduft) | 0.65 | 5 |
Northern Spy | 0.67 | 5 |
Braeburn a | 0.74 | 15 |
Delblush (Tentation) | 0.75 | 2 |
Jonathan | 0.75 | 4 |
Cripps Red (Sundowner, Joya) | 0.75 | 4 |
Jonagold’ | 0.84 | 16 |
Šampion (Champion) | 0.84 | 5 |
Ligol | 0.92 | 3 |
Gloster | 0.94 | 4 |
Ladina | 1.00 | 2 |
Topaz | 1.00 | 2 |
Chilling-Sensitive Cultivars (Including Clones) | Mean Recommended CA Temperature (°C) | Number of Recommendations |
---|---|---|
Caudle (Cameo) | 1.13 | 2 |
Cortland | 1.16 | 9 |
Ambrosia | 1.20 | 5 |
Civni (Rubens) | 1.22 | 3 |
Elstar a | 1.23 | 12 |
Winesap | 1.25 | 1 |
Pinova (Corail) a | 1.25 | 4 |
Coop 38 (Goldrush) | 1.38 | 2 |
Alwa | 1.50 | 2 |
Scilate (Envy) a | 1.50 | 2 |
Cripps Pink (Pink Lady) a | 1.67 | 12 |
Idared | 1.77 | 10 |
Scifresh (Jazz) a | 1.85 | 4 |
Belchard | 2.00 | 2 |
Empire | 2.12 | 10 |
Arlet | 2.25 | 2 |
McIntosh a | 2.79 | 5 |
Nicoter (Kanzi) a | 2.88 | 5 |
Honeycrisp a | 3.00 | 6 |
Cox’s Orange Pippin | 3.50 | 5 |
Belle de Boskoop | 3.96 | 6 |
Lobo | 4.12 | 2 |
Bramley’s Seedling | 4.38 | 2 |
4. Comparison of Storage Temperatures in RA, CA, and DCA and Effect of 1-MCP
4.1. Temperature in RA vs. CA
- 63% of the recommendations specify the same RA and CA temperature
- 35% of the temperature recommendations are higher in CA than in RA, i.e., higher by a mean of 0.93 °C (range of 0.2 to 3.5 °C)
- 1% of the recommendations are lower in CA, i.e., lower by a mean of −0.40 °C
- 62% of the recommendations specify the same RA and CA temperature
- 38% of the recommendations are higher in CA than RA, i.e., higher by a mean of 0.52 °C (range of 0.1 to 0.7 °C)
4.2. Temperature in DCA vs. CA
4.3. Effect of 1-Methylcyclopropene (1-MCP) on Storage Temperature Recommendations
5. Effects of Growing Season Temperature on Storage Temperature
6. Interaction between Storage Temperature and Humidity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidd, F.; West, C.; Kidd, M.N. Gas Storage of Fruit; Department of Science and Industrial Research: London, UK, 1927; p. 87. [Google Scholar]
- Porritt, S.W. The effect of temperature on postharvest physiology and storage life of pears. Can. J. Plant Sci. 1964, 44, 568–579. [Google Scholar] [CrossRef]
- DeLong, J.M.; Prange, R.K.; Harrison, P.A. The influence of pre-storage delayed cooling on quality and disorder incidence in ‘Honeycrisp’ apple fruit. Postharvest Biol. Technol. 2004, 33, 175–180. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Zhou, Q.; Cheng, S.; Wei, B.; Ji, S. Low temperature conditioning alleviates peel browning by modulating energy and lipid metabolisms of ‘Nanguo’ pears during shelf life after cold storage. Postharvest Biol. Technol. 2017, 131, 10–15. [Google Scholar] [CrossRef]
- Li, D.; Cheng, Y.; Dong, Y.; Shang, Z.; Guan, J. Effects of low temperature conditioning on fruit quality and peel browning spot in ‘Huangguan’ pears during cold storage. Postharvest Biol. Technol. 2017, 131, 68–73. [Google Scholar] [CrossRef]
- Toivonena, P.M.A. Factors affecting internal browning of new apple cultivars during storage. Acta Hortic. 2020, 1275, 1–6. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, K.; Liu, S. Evaluation of 1-methylcyclopropene (1-MCP) and low temperature conditioning (LTC) to control brown of Huangguan pears. Sci. Hortic. 2020, 259, 108738. [Google Scholar] [CrossRef]
- Prange, R.K. Controlled Atmosphere Storage of Apples and Pears; Prange Publications: Wolfville, NS, Canada, 2022. [Google Scholar]
- Knee, M.; Looney, N.E.; Hatfield, S.G.S.; Smith, S.M. Initiation of rapid ethylene synthesis by apple and pear fruits in relation to storage temperature. J. Exp. Bot. 1983, 34, 1207–1212. [Google Scholar] [CrossRef]
- Richardson, D.G.; Gerasopoulos, D. Controlled atmosphere recommendations for pear fruits and storage chilling satisfaction requirements for ripening winter pears. Acta Hortic. 1994, 367, 452–454. [Google Scholar] [CrossRef]
- Lelièvre, J.M.; Tichit, L.; Fillion, L.; Larrigaudière, C.; Vendrell, M.; Pech, J.C. Cold-induced accumulation of 1-aminocyclopropane 1-carboxylate oxidase protein in Granny Smith apples. Postharvest Biol. Technol. 1995, 5, 11–17. [Google Scholar] [CrossRef]
- Lèlievre, J.M.; Latché, A.; Jones, B.; Bouzayen, M.; Pech, J.C. Ethylene and fruit ripening. Physiol. Plant 1997, 101, 727–739. [Google Scholar] [CrossRef]
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M.; Harker, F.R. Temperature and ethylene affect induction of rapid softening in ‘Granny Smith’ and ‘Pacific Rose™’ apple cultivars. Postharvest Biol. Technol. 2002, 25, 257–264. [Google Scholar] [CrossRef]
- Lelièvre, J.M.; Tichit, L.; Dao, P.; Fillion, L.; Nam, Y.W.; Pech, J.C.; Latché, A. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. Plant Mol. Biol. 1997, 33, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Jobling, J.; Pradhan, R.; Morris, S.C.; Wade, N.L. Induction of chill-induced ripening in Fuji apples is a function of both temperature and time. Aust. J. Exp. Agric. 2003, 43, 1255–1259. [Google Scholar] [CrossRef]
- Villalobos-Acuña, M.; Mitcham, E.J. Ripening of European pears: The chilling dilemma. Postharvest Biol. Technol. 2008, 49, 187–200. [Google Scholar] [CrossRef]
- Sugar, D.; Basile, S.R. Low-temperature induction of ripening capacity in ‘Comice’ and ‘Bosc’ pears as influenced by fruit maturity. Postharvest Biol. Technol. 2009, 51, 278–280. [Google Scholar] [CrossRef]
- Sugar, D.; Einhorn, T.C. Conditioning temperature and harvest maturity influence induction of ripening capacity in ‘d’Anjou’ pear fruit. Postharvest Biol. Technol. 2011, 60, 121–124. [Google Scholar] [CrossRef]
- Sugar, D.; Basile, S.R. Induction of ripening capacity in ‘Packham’s Triumph’ and ‘Gebhard Red D’Anjou’ pears by temperature and ethylene conditioning. Postharvest Biol. Technol. 2014, 91, 84–89. [Google Scholar] [CrossRef]
- Sfakiotakis, E.M.; Dilley, D.R. Induction of Ethylene Production in ‘Bosc’ Pears by Postharvest Cold Stress1. HortScience 1974, 9, 336–338. [Google Scholar] [CrossRef]
- Gerasopoulos, D.; Richardson, D.G. Storage temperature and fruit calcium alter the sequence of ripening events of ‘d’Anjou’ pears. HortScience 1999, 34, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Mitalo, O.W.; Tosa, Y.; Tokiwa, S.; Kondo, Y.; Azimi, A.; Hojo, Y.; Matsuura, T.; Mori, I.C.; Nakano, R.; Akagi, T.; et al. ‘Passe Crassane’ pear fruit (Pyrus communis L.) ripening: Revisiting the role of low temperature via integrated physiological and transcriptome analysis. Postharvest Biol. Technol. 2019, 158, 110949. [Google Scholar] [CrossRef]
- Agar, I.T.; Biasi, W.V.; Mitcham, E.J. Temperature and Exposure Time during Ethylene Conditioning Affect Ripening of Bartlett Pears. J. Agric. Food Chem. 2000, 48, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Makkumrai, W.; Sivertsen, H.; Sugar, D.; Ebeler, S.E.; Negre-Zakharov, F.; Mitcham, E.J. Effect of Ethylene and Temperature Conditioning on Sensory Attributes and Chemical Composition of ‘Comice’ Pears. J. Agric. Food Chem. 2014, 62, 4988–5004. [Google Scholar] [CrossRef] [PubMed]
- Makkumrai, W.; Anthon, G.E.; Sivertsen, H.; Ebeler, S.E.; Negre-Zakharov, F.; Barrett, D.M.; Mitcham, E.J. Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of ‘Bartlett’ pears. Postharvest Biol. Technol. 2014, 97, 44–61. [Google Scholar] [CrossRef]
- Maage, F.; Richardson, D.G. Winter pear chilling requirements for autocatalytic ethylene synthesis and ripening: Delaying effects of controlled atmosphere storage. Acta Hortic. 1998, 475, 625–632. [Google Scholar] [CrossRef]
- Kupferman, E. Controlled Atmosphere Storage of Apples and Pears. In Proceedings of the VIII International Controlled Atmosphere Research Conference, Rotterdam, The Netherlands, 10 March 2003; Volume 600, pp. 729–735. [Google Scholar]
- Fidler, J.C.; Wilkinson, B.G.; Edney, K.L. The Biology of Apple and Pear Storage. In Research Review of the Commonwealth Bureaux of Horticulture and Plantation Crops; Commonwealth Agricultural Bureaux Farnham Royal: Slough, England, 1973; Volume 3, p. xiii+235. [Google Scholar]
- Davis, M.B.; Blair, D.S. Cold storage problems with Apples. Sci. Agric. 1936, 17, 105–114. [Google Scholar]
- Prange, R.K.; Wright, A.H.; DeLong, J.M.; Zanella, A. History, current situation and future prospects for dynamic controlled atmosphere (DCA) storage of fruits and vegetables, using chlorophyll fluorescence. Acta Hortic. 2013, 1012, 905–916. [Google Scholar] [CrossRef]
- Kittemann, D.; McCormick, R.; Neuwald, D.A. Effect of high temperature and 1-MCP application or dynamic controlled atmosphere on energy savings during apple storage. Eur. J. Hortic. Sci. 2015, 80, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Neuwald, D.A.; Spuhler, M.; Wunsche, J.; Kittemann, D. New apple storage technologies can reduce energy usage and improve storage life. In Proceedings of the Ecofruit 17th International Conference on Organic Fruit Growing, Hohenheim, Germany, 15–17 February 2016; pp. 184–187. [Google Scholar]
- Köpcke, D. 1-methylcyclopropene (1-MCP) and dynamic controlled atmosphere (DCA) applications under elevated storage temperatures: Effects on fruit quality of ‘Elstar’, ‘Jonagold’ and ‘Gloster’ apple (Malus domestica Borkh.). Eur. J. Hortic. Sci. 2015, 80, 25–32. [Google Scholar] [CrossRef]
- de Oliveira Anese, R.; Brackmann, A.; Wendt, L.M.; Thewes, F.R.; Schultz, E.E.; Ludwig, V.; Berghetti, M.R.P. Interaction of 1-methylcyclopropene, temperature and dynamic controlled atmosphere by respiratory quotient on ‘Galaxy’ apples storage. Food Packag. Shelf Life 2019, 2020, 100246. [Google Scholar] [CrossRef]
- Weber, A.; Thewes, F.R.; Sellwig, M.; Brackmann, A.; Wünsche, J.N.; Kittemann, D.; Neuwald, D.A. Dynamic controlled atmosphere: Impact of elevated storage temperature on anaerobic metabolism and quality of ‘Nicoter’ apples. Food Chem. 2019, 298, 125017. [Google Scholar] [CrossRef]
- Ludwig, V.; Thewes, F.R.; Wendt, L.M.; Berghetti, M.R.P.; Schultz, E.E.; Schmidt, S.F.P.; Brackmann, A. Extremely low-oxygen storage: Aerobic, anaerobic metabolism and overall quality of apples at two temperatures. Bragantia 2020, 79, 458–471. [Google Scholar] [CrossRef]
- Watkins, C.B. Overview of 1-methylcyclopropene trials and uses for edible horticultural crops. HortScience 2008, 43, 86–94. [Google Scholar] [CrossRef]
- Watkins, C.B. Current and future research and uses of 1-MCP in apples. In Proceedings of the 36th Annual Meeting of the Plant Growth Regulation Society of America, Asheville, NC, USA, 2–6 August 2009; pp. 14–26. [Google Scholar]
- Mir, N.A.; Beaudry, R.M. Use of 1-MCP to reduce the requirement for refrigeration in the storage of apple fruit. Acta Hortic. 2001, 553, 577–580. [Google Scholar] [CrossRef]
- Mattheis, J.P. How 1-methylcyclopropene has altered the Washington State apple industry. HortScience 2008, 43, 99–101. [Google Scholar] [CrossRef]
- McCormick, R.; Neuwald, D.A.; Streif, J. Commercial apple CA storage temperature regimes with 1-MCP (SmartFresh™): Benefits and risks. Acta Hortic. 2012, 934, 263–270. [Google Scholar] [CrossRef]
- McCormick, R.; Neuwald, D.A.; Streif, J. A case study: Potential energy savings using 1-MCP with ‘Gala’ apples in commercial CA storage. Acta Hortic. 2010, 877, 323–326. [Google Scholar] [CrossRef]
- Saving Energy and Carbon Footprint with Smartfresh Quality English Gala. Available online: https://www.agrofresh.com/saving-energy-and-carbon-footprint-with-smartfresh-quality-english-gala/ (accessed on 11 December 2022).
- Harz-Pitre, Y. Greater Energy Efficiency and Reduced Carbon Footprint for SmartFresh™ Fruits from South Africa—Quality Remains Consistent. Available online: https://www.agrofresh.com/greater-energy-efficiency-and-reduced-carbon-footprint-for-smartfreshsm-fruits-from-south-africa-quality-remains-consistent/ (accessed on 11 December 2022).
- Zanella, A. Postharvest Physiologist; Laimburg Research Centre: Laimburg, Italy, 2020. [Google Scholar]
- Anonymous. Bewaarcondities Appel en Peer. Available online: https://vcbt.be/bewaarcondities_appel_en_peer/ (accessed on 14 December 2022).
- Vanoli, M.; Grassi, M.; Rizzolo, A. Ripening behavior and physiological disorders of ‘Abate Fetel’ pears treated at harvest with 1-MCP and stored at different temperatures and atmospheres. Postharvest Biol. Technol. 2016, 111, 274–285. [Google Scholar] [CrossRef]
- Wright, A.H.; Delong, J.M.; Arul, J.; Prange, R.K. The trend toward lower oxygen levels during apple (Malus × domestica Borkh) storage—A review. J. Hortic. Sci. Biotechnol. 2015, 90, 1–13. [Google Scholar] [CrossRef]
- Meheriuk, M.; Prange, R.K.; Lidster, P.D.; Porritt, S.W. Postharvest Disorders of Apples and Pears; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1994.
- Johnson, D.S.; Ridout, M.S. Prediction of storage quality of ‘Cox’s Orange Pippin’ apples from nutritional and meteorological data using multiple regression models selected by cross validation. J. Hortic. Sci. Biotechnol. 1998, 73, 622–630. [Google Scholar] [CrossRef]
- James, H.; Jobling, J. The Flesh Browning Disorder of ‘Pink Lady’ Apples. N. Y. Fruit Q. 2008, 16, 23–28. [Google Scholar]
- Jobling, J.; James, H. Managing the Flesh Browning Disorder of Cripps Pink Apples: A Summary of Australian Research Investigating the Causes and Management of the Problem; Applied Horticultural Research: Sydney, Australia, 2008; p. 15. [Google Scholar]
- Rogers, G. Managing the Risk of Flesh Browning for ‘Cripps Pink’ Apples Using a Climate Model; Horticulture Australia Ltd.: Sydney, Australia, 2014; p. 36. [Google Scholar]
- de Wild, H. Water Loss of Horticultural Produce: Measurements in (CA) Storage Rooms. Available online: https://www.linkedin.com/pulse/water-loss-horticultural-produce-measurements-ca-storage-hans-de-wild/ (accessed on 10 March 2021).
- de Wild, H. How to Control Water Loss of Horticultural Produce during Storage. Available online: https://www.linkedin.com/pulse/how-control-water-loss-horticultural-produce-during-storage-de-wild/ (accessed on 23 February 2021).
32 Apple Cultivars with CA Recommendations, as Reported by Kupferman [27] | 84 Additional Apple Cultivars with CA Recommendations |
---|---|
‘Boskoop’, ‘Braeburn’, ’Cortland’, ‘Cox’s Orange Pippin’, ‘Delicious’, ‘Elstar’, ‘Empire’, ‘Fuji’, ‘Gala’, ‘Gloster’, ‘Golden Delicious’, ‘Granny Smith’, ‘Gravenstein’, ‘Idared’, ‘Jonagold’, ‘Jonathan’, ‘Lobo’, ‘Macfree’, ‘McIntosh’, ‘Moira’, ‘Mutsu’, ‘Northern Spy’, ‘Nova Easygro’, ‘Novamac’, ‘Novaspy’, ‘Prima’, ‘Priscilla’, ‘Rome’, ‘Sciros’ (‘Pacific Rose’), ‘Spartan’, ‘Splendour’, ‘Stayman’ | ‘Alwa’, ‘Ambrosia’, ‘Antàres’, ‘Antonovka ohuknovenaya’, ‘Aport’, ‘Aprelskoe’, ‘Ariane’, ‘Arlet’, ‘Belchard’ (‘Chantecler’), ‘Belgica’, ‘Berkutovskoe’, ‘Bogatir’, ‘Bonita’, ‘Bonza’, ‘Bramley’s Seedling’, ‘Caudle’ (‘Cameo’), ‘Chopin’, ‘Choupette’, ‘CIV G198′ (‘Modi’), ‘Civni’ (‘Rubens’), ‘Coobishevskoe’, ‘Coolikovskoe’, ‘Coop 38′ (‘Goldrush’), ‘Corichnoe Novoe’, ‘Cosmic Crisp’, ‘Cripps Pink’ (‘Pink Lady’), ‘Cripps Red’ (‘Sundowner’, ‘Joya’), ‘Delblush’ (‘Tentation’), ‘Discovery’, ‘Egremont Russet’, ‘Firmgold’, ‘Glockenapfel’, ‘Golden Orange’, ‘Golden Russet’, ‘Honeycrisp’, ‘Imrus’, ‘Jonamac’, ‘Karmijn de Sonnaville’ (‘Carmine’), ‘Ladina’, ‘Lady Williams’, ‘La Flamboyante’ (‘Mairac’), Ligol’, ‘Macoun’, ‘Maigold’, ‘Martovskoe’, ‘Meridian’, ‘Milwa’ (‘Diwa’), ‘Nicogreen’ (‘Greenstar’), ‘Nicoter’’ (‘Kanzi’), ‘Noris’, ‘Orlik’, ‘Orlovskoe polosatoe’, ‘Pamyat Michurina’, ‘Pamyat Voinu’, ‘Pazazz’, ‘Pepin Shafrany’, ‘Pinova’ (‘Corail’), ‘Red Pippin’, ‘Reinette grise du Canada’, ‘Renet Chernenco’, ‘Renet Coorsky Zolotai’, ‘Rososhanskoe polosatne’, ‘Rubinette’, ‘Salish’, ‘Šampion’ (‘Champion’), ‘Scifresh’ (‘Jazz’), ‘Scilate’ (‘Envy’), ‘Severni Sinap’, ‘Sinap Beloruski’, ‘Sinap Orlovski’, ‘Skoroplodnoe’, ‘Spigold’, ‘Summerred’, ‘Tambovskoe’, ‘Topaz’, ‘Veteran’, ‘Vishnevonee’, ‘Welsey’, ‘Winesap’, ‘Worcester Pearmain’, ‘Yellow Newtown’, ‘York’, ‘Zhigulevskoe’, ‘Zimnee polosatoe’ |
9 Pear Cultivars with CA Recommendations, as Reported by Kupferman [27] | 29 Additional Pear Cultivars with CA Recommendations |
---|---|
‘Beurré Bosc’ (‘Kaiser Alexander’), ‘Beurré d’Anjou’, ‘Conference’, ‘Doyenné du Comice’ (‘Vereinsdechant’, ‘Sweet Sensation’, ‘Decana del Comizio’), ‘Forelle’, ‘Josephine’ (‘Joséphine de Malines’), ‘Packham’s Triumph’, ‘Rosemarie’, ‘Williams Bon Chretien’ (‘Bartlett’) | 25 European Pear cultivars ‘Abate Fetel’, ‘Alexander Lucas’, ‘Alexandrine Douillard’, ‘Amfora’, ‘Angélys’, ‘Beurré Hardy’, ‘Cold Snap’ (‘Harovin Sundown’), ‘Concorde’, ‘Corella’, ‘Delbuena’, ‘Delmoip’, ‘Dr. Jules Guyot’ (‘Limonera’), ‘Erica’, ‘Flamingo’, ‘Forelle’, ‘Fred’ (‘CH 201′), ‘General Leclerc’, ‘Gute Louise’ (‘Louise Bonne d’Avranches’), ‘Harrow Sweet’, ‘Nojabrska’ (‘Novembra’), ‘Passe Crassane’, ‘Rocha’, ‘Selena’ (‘Elliott’), ‘Spadona’ (‘Blanquilla’), ‘Winter Nelis’ (‘Bonne de Maline’) |
4 Asian Pear Cultivars ‘Chojuro’, ‘Hosui’, ‘Nijisseiki’, ‘Ya Li’ |
CA Temperature (°C) | Country | Year |
---|---|---|
−0.5 | South Africa | 2018 |
0 | Poland | 2016 |
Chile | 2020 | |
0.5 | Australia | 2000 |
0–1.0 | Canada | 2012 |
USA (California) | 2000 | |
0.5–1.0 | Argentina | 2012 |
France | 2010, 2014 | |
1.0 | USA (Washington) | 2003 |
1.1 + gradual cooling | USA (Pennsylvania) | 2008 |
2.0–2.5 + gradual cooling + delayed CA | Italy | 2018 |
CA Temperature (°C) | Country | Year |
---|---|---|
−0.5 | South Africa | 2003, 2008 |
0.50 | New Zealand | 2003 |
0.50–1.0 | Argentina | 2012 |
France | 2010, 2014 | |
Switzerland | 2018 | |
1.0 | Australia | 2000 |
Belgium | 2017 | |
Poland | 2016 | |
USA (Washington) | 2003 | |
1.1 + gradual cooling | USA (Pennsylvania) | 2008 |
1.0–1.5 + delayed CA | Italy | 2018 |
1.5–2.0 + delayed CA | UK | 2017 |
Cultivar (Including Clones) | Mean Recommended CA Temperature (°C) | Number of Recommendations |
---|---|---|
European pears | ||
‘Angélys’ | −1.00 | 1 |
‘Beurré Hardy’ | −1.00 | 1 |
‘Dr. Jules Guyot’ (‘French Bartlett’, ‘Limonera’) | −1.00 | 1 |
‘Selena’ (‘Elliott’) | −1.00 | 1 |
‘Spadona’ (‘Blanquilla’) | −1.00 | 1 |
‘Abaté Fetel’ | −0.62 | 4 |
‘Amfora’ | −0.50 | 1 |
‘Delbuena’ | −0.50 | 1 |
‘Delmoip’ | −0.50 | 1 |
‘Erica’ | −0.50 | 1 |
‘Forelle’ | −0.50 | 2 |
‘Flamingo’ | −0.50 | 1 |
‘Josephine’(‘Joséphine de Malines’) | −0.50 | 3 |
‘Nojabrska’ (‘Novembra’) | −0.50 | 1 |
‘Passe Crassane’ | −0.50 | 1 |
‘Rocha’ | −0.50 | 1 |
‘Rosemarie’ | −0.50 | 2 |
‘Winter Nelis’ (‘Bonne de Maline’) | −0.50 | 1 |
‘Conference’ | −0.49 | 12 |
‘Beurré Bosc’ (‘Kaiser Alexander’) | −0.47 | 8 |
‘Doyenné du Comice’ (‘Vereinsdechant’, ‘Sweet Sensation’, ‘Decana del Comizio’) | −0.44 | 10 |
‘Packham’s Triumph’ | −0.43 | 10 |
‘Beurré d’Anjou’ | −0.38 | 2 |
‘Williams Bon Chretien’ (‘Bartlett’) | −0.36 | 12 |
‘Alexander Lucas’ | −0.25 | 2 |
‘Cold Snap ‘ (‘Harovin Sundown’) | 0 | 1 |
‘General Leclerc’ | 0 | 1 |
‘Concorde’ | 0.12 | 2 |
‘Gute Louise’ (‘Louise Bonne d’Avranches’) | 0.12 | 2 |
‘Fred’ (‘CH 201′) | 0.25 | 1 |
Asian pears | ||
‘Ya Li’ | 0 | 1 |
‘Chojuro’ | 0.50 | 1 |
‘Hosui’ | 0.50 | 1 |
‘Nijisseki’ | 0.50 | 2 |
Cultivar(s) | Condition | Benefit | Reference |
---|---|---|---|
‘Royal Gala’, ‘Cripps Pink’ (‘Pink Lady’) | DCA-CF at 5 °C vs. CA at 3 °C | 35% energy saving during cooling and 15% during storage. | [30] |
‘Cripps Pink’ (‘Pink Lady’) | DCA-CF at 3 °C vs. CA at 3 °C | Reduced flesh browning. | [30] |
‘Golden Delicious’, ‘Jonagold’, ‘Pinova’ | DCA-CF at 3–4 °C vs. ULO at 1 °C | 15–50% energy saving, less weight loss, less storage rot (Pinova), improved taste, no quality loss. | [31,32] |
‘Elstar’, ‘Jonagold’, ‘Gloster’ | DCA-CF (with or without 1-MCP) at 3.5–10 °C vs. ULO at 2 °C | Combination of DCA-CF +1-MCP is more favourable than either alone, especially at higher storage temperatures. Benefits include better firmness, and control of watercore, internal browning, and skin spots. | [33] |
Galaxy Gala | DCA-RQ 1.3 and DCA-RQ 1.5 at higher temperatures (2.0 or 2.5 °C), compared with 1.5 °C | Galaxy Gala can be stored at higher temperatures (2.0 or 2.5 °C), because of lower mealiness, ethylene production, ACC oxidase, and higher flesh firmness, than at 1.5 °C. | [34] |
Nicoter (Kanzi) | DCA-CF or DCA-RQ 1.5 at 3 vs. 1 °C | Both DCA methods at 3 °C produced better quality and fewer disorders, compared with 1 °C. | [35] |
Royal Gala and Galaxy Gala | for both clones: 1.2 kPa O2 and 2 kPa CO2 vs. 0.8 k Pa O2 and 1.6 kPa CO2 for Galaxy only: 0.4 kPa O2 and 1.2 kPa CO2 at 1.0 vs. 1.5 °C | Storage of both Gala clones at extremely low O2 at 1.5 °C provided better quality, compared with 1 °C | [36] |
Type of Flesh Browning | GDD | Incidence of Flesh Browning, % |
---|---|---|
Diffuse | 888 | 95.4 |
888 | 99.4 | |
904 | 75.7 | |
904 | 76.0 | |
930 | 8.1 | |
Radial | 1462 | 57.5 |
1462 | 54.2 | |
1567 | 27.8 | |
1641 | 10.0 | |
1679 | 0 |
District | GDD10 °C (2005 Data) | Type of Flesh Browning | |||
---|---|---|---|---|---|
Radial | Diffuse | CO2 Injury | |||
Tasmania, Australia | 807 | Cool Hot | Y | Y | |
Nelson, New Zealand | 1026 | Y | Y | ||
Hawkes Bay, New Zealand | 1102 | Y | Y | ||
Yarra Valley, Australia | 1162 | Y | Y | Y | |
Manjimup, Australia | 1405 | Y | Y | ||
Batlow, Australia | 1556 | Y | Y | ||
Goulburn Valley, Australia | 1688 | Y | Y | ||
California | 1840 | Y |
Diffuse Flesh Browning | Radial Flesh Browning | |
---|---|---|
Classification | Chilling injury | Senescent breakdown |
Climatic range | <1100 GDD | >1100 GDD 1 |
Maturity | SPI 2 3.5 | SPI 3.5 |
Storage temperature | 3.0 °C 3 | 1 °C 4 or stepwise cooling 5 |
Storage atmosphere | <1% CO2 | <1% CO2 |
Orchard management | Ensure calcium levels are adequate | Best commercial practice 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prange, R.K.; Wright, A.H. A Review of Storage Temperature Recommendations for Apples and Pears. Foods 2023, 12, 466. https://doi.org/10.3390/foods12030466
Prange RK, Wright AH. A Review of Storage Temperature Recommendations for Apples and Pears. Foods. 2023; 12(3):466. https://doi.org/10.3390/foods12030466
Chicago/Turabian StylePrange, Robert K., and A. Harrison Wright. 2023. "A Review of Storage Temperature Recommendations for Apples and Pears" Foods 12, no. 3: 466. https://doi.org/10.3390/foods12030466
APA StylePrange, R. K., & Wright, A. H. (2023). A Review of Storage Temperature Recommendations for Apples and Pears. Foods, 12(3), 466. https://doi.org/10.3390/foods12030466