Effect of the Addition of Selected Herbal Extracts on the Quality Characteristics of Flavored Cream and Butter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Agar Well Diffusion Method of Evaluating Antimicrobial Activity of Herbal Extracts
2.3. Fermentation and Testing of Fermented Cream
2.3.1. Fermentation of Cream and Fermentation Curves of Cream
2.3.2. Counts of Starter Culture Bacteria and Contaminating Microflora during the Fermentation of the Cream and During Storage
2.4. Butter Manufacture and Testing
2.4.1. Butter Manufacture
2.4.2. Microbiological Analysis of the Butter
2.4.3. Physicochemical Analysis of the Butter
2.5. Calculations and Statistical Analysis of the Results
3. Results and Discussion
3.1. Antimicrobial Activity of Herbal Extracts (Zone Inhibition)
3.2. Change in pH Value during Cream Fermentation
3.3. Counts of Starter Culture Bacteria during Cream Fermentation
3.4. Counts of Contaminating Microflora during Cream Fermentation
3.5. Counts of Starter Culture Bacteria during Cream Storage
3.6. Counts of Contaminating Microflora during Cream Storage
3.7. Water Content in the Butter
3.8. Degree of Water Distribution in the Butter
3.9. pH Value of the Butter Plasma
3.10. Determination of Butter Fat Acidity
3.11. Counts of Contaminating Microflora
3.12. Oxidative Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hrebień-Filisińska, A.; Tarnowiecka-Kuca, A.; Bartkowiak, A. Qualitative Study of the Lipid Fraction of the Emulsion and the Obtained Powder; Proj ProBioKap: Szczecin, Poland, 2013; POIG.01.03.01–32–193/09–06. (In Polish) [Google Scholar]
- El-Sayeda, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zaręba, D.; Kozłowska, M.; Ziarno, M. Plant extracts in dairy products. Przem. Spoz. 2010, 64, 32–36. (In Polish) [Google Scholar]
- Magaldi, S.; Mata-Essayag, S.; Hartung de Capriles, C. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramza-Michalowska, A.; Korczak, J.; Regula, J. Use of plant extracts in summer and winter season butter oxidative stability improvement. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 85–88. [Google Scholar] [PubMed]
- Valgas, C.; De Souza, S.M.; Smânia, E.F.A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, B.; Marques, A.; Ramos, C.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.; Saraiva, J.A.; Nunes, M.L. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013, 93, 2707–2714. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ścibisz, I.; Zaręba, D.; Ziarno, M. Antioxidant properties and effect on lactic acid bacterial growth of spice extracts. CyTA J. Food 2015, 13, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, M.; Ścibisz, I.; Przybył, J.; Ziarno, M.; Żbikowska, A.; Majewska, E. Phenolic Contents and Antioxidant Activity of Extracts of Selected Fresh and Dried Herbal Materials. Pol. J. Food Nutr. Sci. 2021, 71, 269–278. [Google Scholar] [CrossRef]
- Ziarno, M.; Kozłowska, M.; Ścibisz, I.; Kowalczyk, M.; Pawelec, S.; Stochmal, A.; Szleszyński, B. The effect of selected herbal extracts on lactic acid bacteria activity. Appl. Sci. 2021, 11, 3898. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ziarno, M.; Rudzinska, M.; Majcher, M.; Małajowicz, J.; Michewicz, K. The Effect of Essential Oils on the Survival of Bifidobacterium in In Vitro Conditions and in Fermented Cream. Appl. Sci. 2022, 12, 1067. [Google Scholar] [CrossRef]
- Dorman, H.J.; Bachmayer, O.; Kosar, M.; Hiltunen, R. Antioxidant properties of aqueous extracts from selected lamiaceae species grown in Turkey. J. Agric. Food Chem. 2004, 52, 762–770. [Google Scholar] [CrossRef]
- Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Mohsenipour, Z.; Hassanshahian, M. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria. Avicenna J. Phytomed. 2015, 5, 309–318. [Google Scholar] [PubMed]
- Semeniuc, C.A.; Pop, C.R.; Rotar, A.M. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J. Food Drug Anal. 2017, 25, 403–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbor, G.A.; Kuate, D.; Oben, J. Medicinal plant s can be good source of antioxidants: Case study in Cameroon. Pak. J. Biol. Sci. 2007, 10, 537–544. [Google Scholar]
- Wójcik-Stopczyńska, B.; Jakowienko, P. Common basil—A natural antioxidant barrier. Panacea Leki Ziołowe 2010, 4, 20–23. (In Polish) [Google Scholar]
- Nowak, K.; Jaworska, M.; Ogonowski, J. Rosemary—A plant rich in biologically active compounds. Chemistry 2013, 67, 133–135. (In Polish) [Google Scholar]
- Kozłowska, M.; Szterk, A.; Zawada, K.; Ząbkowski, T. New opportunities of the application of natural herb and spice extracts in plant oils: Application of electron paramagnetic resonance in examining the oxidative stability. J. Food Sci. 2012, 77, C994–C999. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziębicka, A.; Ziarno, M. Properties of rice-based beverages fermented with lactic acid bacteria and propionibacterium. Molecules 2022, 27, 2558. [Google Scholar] [CrossRef]
- Evers, J.M.; Crawford, R.A.; Kissling, R.C. Determination of moisture, solids-not-fat and fat-by-difference in butter using routine methods according to ISO 8851/IDF 191—An international collaborative study and a meta-analysis. Int. Dairy J. 2003, 13, 55–65. [Google Scholar] [CrossRef]
- Dudkiewicz, A.; Hayes, W.; Onarinde, B. Sensory quality and shelf-life of locally produced British butters compared to large-scale, industrially produced butters. Br. Food J. 2022, 124, 3220–3235. [Google Scholar] [CrossRef]
- Yatsenko, O.; Yushchenko, N.; Kuzmyk, U.; Pasichnyi, V.; Kochubei-Lytvynenko, O.; Frolova, N.; Korablova, O.; Mykoliv, I.; Voitsekhivskyi, V. Research of milk fat oxidation processes during storage of butter pastes. Potravin. Slovak J. Food Sci. 2020, 14, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Ziarno, M.; Rudzińska, M.; Tarnowska, K.; Majewska, E.; Kowalska, D. Chemical Composition of Coriander Essential Oil and Its Effect on Growth of Selected Lactic Acid Bacteria. Żywn 2018, 25, 97–111. (In Polish) [Google Scholar] [CrossRef]
- Piasecka-Jóźwiak, K.; Chabłowska, B.; Olczak, M.; Kliszcz, M.; Szkudzińska-Rzeszowiak, E. Possibility of enrichment probiotics for ruminants plant oils for improving their activity against harmful bacteria. J. Res. Appl. Agric. Eng. 2014, 59, 56–61. [Google Scholar]
- Diniz do Nascimento, L.; Moraes, A.A.B.d.; Costa, K.S.d.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G.d. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Ali, H.I.; Dey, M.; Alzubaidi, A.K.; Alneamah, S.J.A.; Altemimi, A.B.; Pratap-Singh, A. Effect of Rosemary (Rosmarinus officinalis L.) Supplementation on Probiotic Yoghurt: Physicochemical Properties, Microbial Content, and Sensory Attributes. Foods 2021, 10, 2393. [Google Scholar] [CrossRef] [PubMed]
- Saguibo, J.D.; Elegado, F.B. Resistance profile of probiotic lactic acid bacteria against inhibitory effects of selected plant extracts. Phil. Agric. Sci. 2012, 95, 22–32. [Google Scholar]
- Amirdivani, S.; Baba, A.S. Changes in yoghurt fermentation characteristics, and antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. LWT Food Sci. Technol. 2011, 44, 1458–1464. [Google Scholar] [CrossRef] [Green Version]
- Khelif, H.; Ait Saada, D.; Bekada, A.M.; Dehimeche, M. Production and quality assessment of a set-style yogurt fortified with low concentrations of Thymus vulgaris L. phenolic extracts. South Asian J. Exp. Biol. 2018, 8, 222–234. [Google Scholar] [CrossRef]
- Bakrm, S.A.; Salihin, B.A. Effects of inclusion of Allium sativum and Cinnamomum verum in milk on the growth and activity of lactic acid bacteria during yoghurt fermentation. Am.-Eur. J. Agric. Environ. Sci. 2013, 13, 1448–1457. [Google Scholar]
- Abdel-Hamid, M.; Huang, Z.; Suzuki, T.; Enomoto, T.; Hamed, A.M.; Li, L.; Romeih, E. Development of a Multifunction Set Yogurt Using Rubus suavissimus S. Lee (Chinese Sweet Tea) Extract. Chem. Technol. Char. Dairy Prod. 2020, 9, 1163. [Google Scholar] [CrossRef] [PubMed]
- Arslan, D.; Ünver, A.; Özcan, M. Essential oil flavored yoghurt: Physicochemical, microbiological and sensory properties. In Proceedings of the 36th International Symposium on Essential Oils, Budapest, Hungary, 4–7 September 2005; p. 144. [Google Scholar]
- Jaziri, I.; Ben Slama, M.; Mhadhbi, H.; Urdaci, M.C.; Hamdi, M. Effect of green and black teas (Camellia sinensis L.) on the characteristic microflora of yogurt during fermentation and refrigerated storage. Food Chem. 2009, 112, 614–620. [Google Scholar] [CrossRef]
- Behrad, S.; Yusof, M.Y.; Goh, K.L.; Baba, A.S. Manipulation of probiotics fermentation of yogurt by cinnamon and licorice: Effects on yogurt formation and inhibition of Helicobacter pylori growth in vitro. World Acad. Sci. Eng. Technol. 2009, 36, 590–594. [Google Scholar]
- Marhamatizadeh, M.H.; Ehsandoost, E.; Gholami, P.; Davanyan Mohaghegh, M. Effect of olive leaf extract on growth and viabiolity of Lactobacillus acidophilus and Bifidobacterium bifidum for production of probiotic milk and yogurt. Int. J. Farm. Allied Sci. Int. 2013, 2, 572–578. [Google Scholar]
- Michael, M.; Phebus, R.K.; Schmidt, K.A. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt. Food Sci. Nutr. 2015, 3, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Joung, J.Y.; Lee, J.Y.; Ha, Y.S.; Shin, Y.K.; Kim, S.H.; Oh, N.S. Enhanced microbial, functional and sensory properties of herbal yogurt fermented with Korean traditional plant extracts. Kor. J. Food Sci. Anim. Res. 2016, 36, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Mituniewicz-Małek, A.; Ziarno, M.; Dmytrów, I.; Balejko, J. Effect of the addition of Bifidobacterium monocultures on the physical, chemical and sensory characteristics of fermented goat milk. J. Dairy Sci. 2017, 100, 6972–6979. [Google Scholar] [CrossRef] [Green Version]
- Beal, C.; Skokanova, J.; Latrille, E.; Martin, N.; Corrieu, G. Combined Effects of Culture Conditions and Storage Time on Acidification and Viscosity of Stirred Yogurt. J. Dairy Sci. 1999, 82, 673–681. [Google Scholar] [CrossRef]
- Lorca, G.; Font de Valdez, G. The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiology 1999, 39, 144–149. [Google Scholar] [CrossRef]
- van de Guchte, M.; Serror, P.; Chervaux, C.; Smokvina, T.; Ehrlich, S.; Maguin, E. Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek J. Microbiol. 2002, 82, 187–216. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B.; Baba, A.S. Viability of lactic acid bacteria and sensory evaluation in Cinnamomum verum and Allium sativum-bio-yogurts made from camel and cow milk. J. Assoc. Arab Univ. Basic Appl. Sci. 2012, 11, 50–55. [Google Scholar]
- Mituniewicz-Małek, A.; Ziarno, M.; Dmytrów, I.; Tuma, P.; Witczak, A.; Vovk, S. Properties of drinking yogurt from cow’s and goat’s organic milk fermented by traditional yogurt cultures. Infrastruct. Ecol. Rural Areas 2017, 3, 1755–1771. [Google Scholar]
- Adams, M.R.; Moss, M.O. The Microbiology of Food Preservation. In Food Microbiology, 3rd ed.; Adams, M.R., Moss, M.O., Eds.; RSC Publishing: Cambridge, UK, 2007; pp. 63–118. [Google Scholar]
- Neaves, P.; Langridge, E.W. Laboratory control in milk product manufacture. In The Technology of Dairy Products, 2nd ed.; Early, R., Ed.; Blackie Academic & Professional: London, UK, 1998; pp. 368–404. [Google Scholar]
- Budkhar, Y.A.; Bankar, S.B.; Singhal, R.S. Microbiology of Cream and Butter. In Encyclopedia of Food Microbiology; Batt, C., Patel, P., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 2, pp. 728–737. [Google Scholar]
- Codex Alimentarius, Codex Standard for Butter. CXS 279-1971, Formerly CODEX STAN A-1-1971. Adopted in 1971. Revised in 1999. Amended in 2003, 2006, 2010, 2018. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 10 January 2023).
- Czechowska-Liszka, M. Quality study of breakfast margarine of different types. Akad. Ekon. W Krakowie Zesz. Nauk. 2002, 6583, 49–53. (In Polish) [Google Scholar]
- Ziarno, M.; Zaręba, D. Additives in butter production. Forum Mlecz Biz 2020, 1–2, 32–35. (In Polish) [Google Scholar]
- Munro, D.S.; Cant, P.A.E.; MacGibbon, A.K.H.; Illingworth, D.; Kennett, A.; Main, A.J. Concentrated Milkfat Products. In Technology of Dairy Products, 2nd ed.; Early, R., Ed.; Blackie Academic & Professional: London, UK, 1998; pp. 198–224. [Google Scholar]
- Bakirci, I.; Celik, S.; Ozdemir, C. The effect of commercial starter culture and storage temperature on the oxidative stability and diacetyl production in butter. Int. J. Dairy Technol. 2002, 55, 177–181. [Google Scholar] [CrossRef]
- Trawińska, J. Influence of butter storage temperature on its quality characteristic. Med. Wet 1978, 34, 184–186. (In Polish) [Google Scholar]
- Bruhn, J.C. Butter: Some Technology and Chemistry; California: Dairy Research and Information Centre (DRINC): Davis, CA, USA, 1996. [Google Scholar]
- Laubli, M.W.; Bruttel, P.A. Determination of the oxidative stability of fats and oils: Comparison between the Active Oxygen Method (AOCS Col 12–57) and the Rancimat method. J. Am. Oil Chem. Soc. 1986, 63, 792–794. [Google Scholar] [CrossRef]
- Gramza, A.; Wójciak, R.W.; Korczak, J.; Hęś, M.; Wiśniewska, J.; Krejpcio, Z. Influence of the Fe and Cu presence in tea extracts on antioxidant activity. Electron. J. Pol. Agric. Universities. Ser. Food Sci. Technol. 2005, 8, 1–7. [Google Scholar]
- Bubelová, Z.; Černíková, M.; Buňková, L.; Talár, J.; Zajíček, V.; Foltin, P.; Buňka, F. Quality changes of long-life foods during three-month storage at different temperatures. Potravin. Slovak J. Food Sci. 2017, 11, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, M.; Laudy, A.E.; Przybył, J.; Ziarno, M.; Majewska, E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol. Pharm. Drug Res. 2015, 72, 757–767. [Google Scholar]
- Bandoniene, D.; Venskutonis, R.; Gruzdienė, D.; Murkovic, M. Antioxidative activity of sage (Salvia officinalis L.), savory (Satureja hortensis L.) and borage (Borago officinalis L.) extracts in rapeseed oil. Eur. J. Lipid Sci. Technol. 2002, 104, 286–292. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Chan, P.T.; Ma, H.M.; Fung, K.P.; Wang, J. Antioxidative effect of ethanol tea extracts on oxidation of canola oil. J. Am. Oil Chem. Soc. 1996, 73, 375–380. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.W.; Prior, E.; Aeschbach, R. Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsions. J. Sci. Food Agric. 1996, 72, 201–208. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Wang, L.Y.; Chan, P.T.; Zang, Z.; Chung, H.Y.; Liang, C. Antioxidative activity of green tea catechin extract compared with that of rosemary extract. J. Am. Oil Chem. Soc. 1998, 75, 1141–1145. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Pokorny, J.; Korczak, J. Antioxidant activity of rosemary and sage extracts in rapeseed and sunflower oil. Czech J. Food Sci. 1999, 17, 121–126. [Google Scholar]
- Médici Veronezi, C.; Costa, T.; Jorge, N. Basil (Ocimum Basilicum L.) as a Natural Antioxidant. J. Food Proc. Pres. 2014, 38, 255–261. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modyfying the phenols content or profile. J. Sci. Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Najgebauer, L.D.; Grega, T.; Sady, M. The quality and storage stability of butter made from sour cream with addition of dried sage and rosemary. Biot. An. Husb. 2009, 25, 753–761. [Google Scholar]
- Ayar, A.; Özcan, M.; Akgül, A.; Akin, N. Butter Stability as Affected by Extracts of Sage, Rosemary and Oregano. J. Food Lipids 2001, 8, 15–25. [Google Scholar] [CrossRef]
Verbal Definition of Water Distribution in the Butter | The Size (Diameter) and Density of the Spots Present on the Indicator Paper | Class |
---|---|---|
Very bad | Diameter 3–8 mm occurring densely (occupy about 20% of the paper surface) | 0 |
Bad | Diameter 1–3 mm occurring moderately densely (occupy about 10% of the paper surface) | 1 |
Sufficient | Diameter 0.3–1 mm occurring rarely (occupy about 5% of the paper surface) | 2 |
Good | No spots | 3 |
Extract of | In DMSO | In 68% Ethanol Solution | Extract of | In DMSO | In 68% Ethanol Solution |
---|---|---|---|---|---|
The Size of the Inhibition Zone [mm] | The Size of the Inhibition Zone [mm] | ||||
YC-X16 Culture | YO-MIX 207 Culture | ||||
Streptococcus thermophilus | Streptococcus thermophilus | ||||
savory | 0.0 ± 0.1 * | 0.0 ± 0.0 | savory | 0.1 ± 0.0 | 0.0 ± 0.0 |
basil | 0.1 ± 0.0 | 0.1 ± 0.0 | basil | 0.0 ± 0.0 | 0.1 ± 0.0 |
thyme | 0.0 ± 0.1 | 0.0 ± 0.0 | thyme | 0.1 ± 0.0 | 0.1 ± 0.0 |
rosemary | 0.0 ± 0.0 | 0.1 ± 0.0 | rosemary | 0.1 ± 0.0 | 0.1 ± 0.0 |
oregano | 0.0 ± 0.1 | 0.0 ± 0.0 | oregano | 0.1 ± 0.0 | 0.0 ± 0.0 |
Lactobacillus | Lactobacillus | ||||
savory | 0.1 ± 0.0 | 0.0 ± 0.1 | savory | 0.1 ± 0.0 | 0.0 ± 0.0 |
basil | 0.0 ± 0.1 | 0.0 ± 0.1 | basil | 0.0 ± 0.0 | 0.1 ± 0.0 |
thyme | 0.0 ± 0.0 | 0.0 ± 0.0 | thyme | 0.1 ± 0.0 | 0.1 ± 0.0 |
rosemary | 0.1 ± 0.0 | 0.0 ± 0.1 | rosemary | 0.1 ± 0.0 | 0.0 ± 0.1 |
oregano | 0.1 ± 0.0 | 0.0 ± 0.1 | oregano | 0.0 ± 0.1 | 0.1 ± 0.0 |
Lactobacillus acidophilus | |||||
savory | 0.0 ± 0.1 | 0.1 ± 0.0 | |||
basil | 0.0 ± 0.1 | 0.0 ± 0.0 | |||
thyme | 0.0 ± 0.0 | 0.1 ± 0.0 | |||
rosemary | 0.0 ± 0.1 | 0.1 ± 0.0 | |||
oregano | 0.0 ± 0.1 | 0.0 ± 0.1 | |||
Bifidobacterium lactis | |||||
savory | 0.0 ± 0.1 | 0.1 ± 0.0 | |||
basil | 0.1 ± 0.0 | 0.0 ± 0.0 | |||
thyme | 0.0 ± 0.1 | 0.1 ± 0.0 | |||
rosemary | 0.0 ± 0.0 | 0.1 ± 0.0 | |||
oregano | 0.0 ± 0.1 | 0.0 ± 0.1 |
Butter with YC-X16 Culture | |||
Extract | pH Value | ||
Immediately after Preparation | Storage Conditions 21 Days/25 °C | Storage Conditions 21 Days/5 °C | |
savory | 4.6 ± 0.1 a | 4.5 ± 0.2 a | 4.5 ± 0.1 a |
basil | 4.4 ± 0.1 a | 4.5 ± 0.1 a | 4.4 ± 0.2 a |
thyme | 4.5 ± 0.1 a | 4.5 ± 0.4 a | 4.5 ± 0.1 a |
rosemary | 4.7 ± 0.1 a | 4.4 ± 0.1 a | 4.6 ± 0.1 a |
oregano | 4.5 ± 0.1 a | 4.4 ± 0.2 a | 4.5 ± 0.1 a |
control | 4.6 ± 0.1 a | 4.5 ± 0.1 a | 4.5 ± 0.2 a |
Butter with YO-MIX 207 Culture | |||
Extract | pH Value | ||
Immediately after Preparation | Storage Conditions 21 Days/25 °C | Storage Conditions 21 Days/5 °C | |
savory | 4.6 ± 0.1 a | 4.5 ± 0.2 a | 4.5 ± 0.1 a |
basil | 4.4 ± 0.1 a | 4.3 ± 0.2 a | 4.4 ± 0.1 a |
thyme | 4.5 ± 0.1 a | 4.3 ± 0.2 a | 4.5 ± 0.1 a |
rosemary | 4.6 ± 0.1 a | 4.6 ± 0.2 a | 4.6 ± 0.1 a |
oregano | 4.5 ± 0.1 a | 4.4 ± 0.1 a | 4.5 ± 0.2 a |
control | 4.6 ± 0.1 a | 4.6 ± 0.2 a | 4.6 ± 0.1 a |
Milk Fat from Butter with YC-X16 Culture | |||
Extract | Degrees of Acidity | ||
Immediately after Preparation | Storage Conditions 21 Days/25 °C | Storage Conditions 21 Days/5 °C | |
savory | 1.7 ±0.1 a | 1.7 ±0.1 a | 1.6 ±0.1 a |
basil | 1.8 ±0.1 a | 1.9 ±0.1 a | 1.9 ±0.1 a |
thyme | 1.8 ±0.0 a | 1.9 ±0.1 a | 1.9 ±0.1 a |
rosemary | 1.5 ±0.1 a | 1.5 ±0.1 a | 1.5 ±0.1 a |
oregano | 1.8 ±0.1 a | 1.8 ±0.1 a | 1.7 ±0.1 a |
control | 1.7 ±0.1 a | 2.5 ±0.1 b | 1.9 ±0.1 a |
Milk Fat from Butter with YO-MIX 207 Culture | |||
Extract | Degrees of Acidity | ||
Immediately after Preparation | Storage Conditions 21 Days/25 °C | Storage Conditions 21 Days/5 °C | |
savory | 1.6 ±0.1 a | 1.7 ±0.1 a | 1.6 ±0.1 a |
basil | 1.7 ±0.1 a | 1.9 ±0.1 a | 1.8 ±0.1 a |
thyme | 1.6 ±0.1 a | 1.6 ±0.1 a | 1.5 ±0.1 a |
rosemary | 1.8 ±0.1 a | 1.9 ±0.1 a | 1.8 ±0.1 a |
oregano | 1.5 ±0.1 a | 1.6 ±0.1 a | 1.5 ±0.1 a |
control | 1.8 ±0.1 a | 2.4 ±0.1 b | 1.8 ±0.1 a |
Milk Fat from Butter with YC-X16 Culture | |||
Extract | Measurement Duration [h] | ||
Immediately after Preparation | Storage Conditions 21 Days/25 °C | Storage Conditions 21 Days/6 °C | |
savory | 9.01 ± 0.37 a | 10.05 ± 1.28 a | 8.24 ± 0.98 a |
rosemary | 39.99 ± 0.41 c | 37.04 ± 1.44 c | 74.38 ± 1.57 d |
thyme | 15.99 ± 2.21 b | 17.93 ± 1.48 b | 18.93 ± 1.48 b |
basil | 7.82 ± 0.81 a | 8.24 ± 0.38 a | 6.50 ± 0.86 a |
oregano | 10.91 ± 0.10 a | 9.48 ± 0.58 a | 10.41 ± 1.02 a |
control | 9.20 ± 0.31 a | 7.26 ± 1.10 a | 8.02 ± 0.95 a |
Milk Fat from Butter with YO-MIX 207 Culture | |||
Extract | Measurement Duration [h] | ||
Immediately after Preparation | Storage Conditions 21 Days/25 °C | Storage Conditions 21 Days/6 °C | |
savory | 8.95 ± 1.34 a | 10.07 ± 1.30 a | 8.31 ± 0.98 a |
rosemary | 39.50 ± 2.12 c | 36.65 ± 0.78 c | 77.35 ± 1.63 d |
thyme | 17.22 ± 0.92 b | 17.98 ± 1.52 b | 20.25 ± 1.58 b |
basil | 8.55 ± 0.59 a | 8.26 ± 1.05 a | 6.63 ± 0.88 a |
oregano | 10.80 ± 0.35 a | 9.50 ± 0.59 a | 10.79 ± 1.01 a |
control | 9.55 ± 0.74 a | 6.77 ± 0.38 a | 7.06 ± 0.91 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarno, M.; Kozłowska, M.; Ratusz, K.; Hasalliu, R. Effect of the Addition of Selected Herbal Extracts on the Quality Characteristics of Flavored Cream and Butter. Foods 2023, 12, 471. https://doi.org/10.3390/foods12030471
Ziarno M, Kozłowska M, Ratusz K, Hasalliu R. Effect of the Addition of Selected Herbal Extracts on the Quality Characteristics of Flavored Cream and Butter. Foods. 2023; 12(3):471. https://doi.org/10.3390/foods12030471
Chicago/Turabian StyleZiarno, Małgorzata, Mariola Kozłowska, Katarzyna Ratusz, and Rozeta Hasalliu. 2023. "Effect of the Addition of Selected Herbal Extracts on the Quality Characteristics of Flavored Cream and Butter" Foods 12, no. 3: 471. https://doi.org/10.3390/foods12030471
APA StyleZiarno, M., Kozłowska, M., Ratusz, K., & Hasalliu, R. (2023). Effect of the Addition of Selected Herbal Extracts on the Quality Characteristics of Flavored Cream and Butter. Foods, 12(3), 471. https://doi.org/10.3390/foods12030471