Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli
Abstract
:1. Introduction
2. Rationale for Application of CAP to Cooked and/or Cured Meat Products
3. Materials and Methods
3.1. Characterisation of the Samples and Exposure to CAP
3.2. Measurement of Water Activity and pH
3.3. Colour Measurement
3.4. Preparation of the Inoculum and the Samples
3.5. Statistical Analysis
4. Results
4.1. Water Activity and pH of Samples
4.2. Changes in Colour
4.3. Changes in Bacterial Load
5. Discussion
5.1. Effect on Contaminant Bacteria
5.2. Effect on the Food Matrix
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camargo, A.C.; Woodward, J.J.; Call, D.; Nero, L.A. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario. Foodborne Pathog. Dis. 2017, 14, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Schoder, D. Chapter 425. Listeria: Listeriosis. In The Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 561–566. [Google Scholar]
- Schoder, D.; Guldimann, C.; Märtlbauer, E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022, 11, 3472. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Schlech, W.; Lavigne, M.; Bortolussi, R.; Allen, A.; Haldane, V.; Wort, J.; Hightower, A.; Johnson, S.; King, S.; Nicholls, E. Epidemic Listeriosis—Evidence for Transmission by Food. N. Engl. J. Med. 1983, 308, 203–206. [Google Scholar] [CrossRef]
- Kerry, J.P.; Kerry, J.F. Processed Meats: Improving Safety, Nutrition and Quality; Woodhead Publishing Series in Food Science, Technology and Nutrition 1st Edition; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Kurpas, M.; Wieczorek, K.; Osek, J. Ready-to-eat Meat Products as a Source of Listeria monocytogenes. J. Vet. Res. 2018, 62, 49–55. [Google Scholar] [CrossRef]
- Nesbakken, T.; Kapperud, G.; Caugant, D.A. Pathways of Listeria monocytogenes contamination in the meat processing industry. Int. J. Food Microbiol. 1996, 31, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Samelis, J.; Metaxopoulos, J. Incidence and principal sources of Listeria spp. and Listeria monocytogenes contamination in processed meats and a meat processing plant. Food Microbiol. 1999, 16, 465–477. [Google Scholar] [CrossRef]
- Vitas, A.I.; Aguado, V.; Garcia-Jalon, I. Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int. J. Food Micro. 2004, 90, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Goulet, V.; Rocourt, J.; Rebiere, I.; Jacquet, C.; Moyse, C.; Dehaumont, P.; Salvat, G.; Veit, P. Listeriosis Outbreak Associated with the Consumption of Rillettes in France in 1993. J. Infect. Dis. 1998, 177, 155–160. [Google Scholar] [CrossRef]
- Farber, J.M.; Zwietering, M.; Wiedmann, M.; Schaffner, D.; Hedberg, C.W.; Harrison, M.A.; Hartnett, E.; Chapman, B.; Donnelly, C.W.; Goodburn, K.E.; et al. Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control 2021, 123, 150–170. [Google Scholar] [CrossRef]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes Persistence in Food-Associated Environments: Epidemiology, Strain Characteristics, and Implications for Public Health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, e05134. [Google Scholar]
- EFSA; ECDC. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, 6971. [Google Scholar] [CrossRef]
- Rapid Alert System for Food and Feed (RASFF). Notification 2022.6589 Listeria Monocytogenes in Fishcakes. Available online: https://webgate.ec.europa.eu/rasff-window/screen/notification/579466 (accessed on 30 November 2022).
- Agency for Health for Humans, Animals & Plants (AGES). Pathogen Listeria. Available online: https://www.ages.at/mensch/krankheit/krankheitserreger-von-a-bis-z/listerien (accessed on 26 November 2022).
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. OJ 2005, L338, 1–26. [Google Scholar]
- Traditional Foods in Austria (Meat). Available online: https://info.bml.gv.at/themen/lebensmittel/trad-lebensmittel/Fleisch.html (accessed on 30 November 2022).
- Codex Alimentarius Austriacus. Available online: https://www.lebensmittelbuch.at/ (accessed on 27 November 2022).
- Agricultural Market Analysis (AMA). Available online: https://www.ama.at/marktinformationen/vieh-und-fleisch/konsumverhalten (accessed on 28 November 2022).
- Paulsen, P.; Csadek, I.; Bauer, A.; Bak, K.H.; Weidinger, P.; Schwaiger, K.; Nowotny, N.; Walsh, J.; Martines, E.; Smulders, F.J.M. Treatment of Fresh Meat, Fish and Products Thereof with Cold Atmospheric Plasma to Inactivate Microbial Pathogens and Extend Shelf Life. Foods 2022, 11, 3865. [Google Scholar] [CrossRef]
- Shimizu, T.; Sakiyama, Y.; Graves, D.; Zimmerman, J.; Morfill, G. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J. Phys. 2012, 14, 103028. [Google Scholar] [CrossRef]
- Zimmermann, J. Cold Atmospheric Plasma in Medicine—From Basic Research to Application, Max Planck Institute of Pathology, Technical University Munich, Habilitation Treatise. 2013. Available online: http://mediatum.ub.tum.de/?id=1219297 (accessed on 2 September 2022).
- Rød, S.K.; Hansen, F.; Leipold, F.; Knøchel, S. Cold atmospheric pressure plasma treatment of ready-to-eat-meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiol. 2012, 30, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Lis, K.A.; Boulaaba, A.; Binder, S.; Li, Y.; Kehrenberg, C.; Zimmermann, J.L.; Klein, G.; Ahlfeld, B. Inactivation of Salmonella Typhimurium and Listeria Monocytogenes on Ham with Nonthermal Atmospheric Pressure Plasma. PLoS ONE 2018, 13, e0197773. [Google Scholar] [CrossRef]
- Zeraatpisheh, F.; Tabatabaei YazdI, F.; Shahidi, F. Investigation of effect of cold plasma on microbial load and physicochemical properties of ready-to-eat sliced chicken sausage. J. Food Sci. Technol. 2022, 59, 3928–3937. [Google Scholar] [CrossRef]
- Yadav, B.; Spinelli, A.C.; Misra, N.N.; Tsui, Y.Y.; McMullen, L.M.; Roopesh, M.S. Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage. J. Food Sci. 2020, 85, 1203–1212. [Google Scholar] [CrossRef]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.-J.; Choe, W.; Jo, C. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Sci. 2015, 108, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.J.; Choe, W.; Jo, C. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing. Korean J. Food Sci. Anim. Resour. 2015, 35, 703–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Jo, K.; Lim, Y.; Jeon, H.J.; Choe, J.H.; Jo, C.; Jung, S. The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem. 2018, 240, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.I.; Park, J.; Kim, H.-J.; Jung, S.; Park, S.; Lee, H.J.; Choe, W.; Jo, C. An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Process. Polym. 2018, 15, 1700050. [Google Scholar] [CrossRef]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.-S.; Jung, S. Nitrite sources for cured meat products. LWT-Food Sci. Technol. 2020, 129, 109583. [Google Scholar] [CrossRef]
- Guerrero-Legarreta, I. Meat and poultry—Spoilage of Cooked Meat and Meat Products. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 508–513. [Google Scholar]
- Honikel, K.-O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Awaiwanont, N.; Smulders, F.J.M.; Paulsen, P. Growth potential of Listeria monocytogenes in traditional Austrian cooked-cured meat products. Food Control 2017, 50, 150–156. [Google Scholar] [CrossRef]
- Ekici, G.; Dümen, E. Escherichia coli and Food Safety. In The Universe of Escherichia coli; Starčič Erjavec, M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Bauer, A.; Ni, Y.; Bauer, S.; Paulsen, P.; Modic, M.; Walsh, J.L.; Smulders, F.J.M. The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 2017, 128, 77–87. [Google Scholar] [CrossRef]
- CIE (Commission Internationale de L’Éclairage (International Commission on Illumination). Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms; Commission Internationale de l’Eclairage: Paris, France, 1978. [Google Scholar]
- Upton, S. Delta E: The Color Difference. CHROMIX Colornews, 17. Available online: http://www.colorwiki.com/wiki/Delta_E (accessed on 18 February 2005).
- Altmann, B.A.; Gertheiss, J.; Tomasevic, I.; Engelkes, C.; Glaesener, T.; Meyer, J. Differences using computer vision system measurements of raw pork loin. Meat Sci. 2022, 183, 108766. [Google Scholar] [CrossRef]
- Upton, S. Delta E: The Color Difference. Delta E, CHROMIX Colornews, 17. Available online: http://www.chromix.com/ColorNews/ (accessed on 27 November 2022).
- European Commission. Commission Notice on the implementation of food safety management systems covering prerequisite programs (PRPs) and procedures based on the HACCP principles, including the facilitation/flexibility of the implementation in certain food businesses. OJ 2016, C28, 1–32. [Google Scholar]
- European Food Safety Authority (EFSA) (EFSA Panel on Biological Hazards). Scientific opinion on the evaluation of the safety and efficacy of ListexTMP100 for reduction of pathogens on different ready-to-eat (RTE) food products. EFSA J. 2016, 14, 4565. [Google Scholar] [CrossRef]
- Kawacka, I.; Olejnik-Schmidt, A.; Schmidt, M.; Sip, A. Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments. Microorganisms 2020, 8, 1764. [Google Scholar] [CrossRef] [PubMed]
- Houben, J.H.; Eckenhausen, F. Surface pasteurization of vacuum-sealed precooked ready-to-eat meat products. J. Food Prot. 2006, 69, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Gill, V.S.; Thippareddi, H.; Phebus, R.K.; Marsden, J.L.; Herald, T.J.; Nutsch, A.L. Cetylpyridinium chloride treatment of ready-to-eat Polish sausages: Effects on Listeria monocytogenes populations and quality attributes. Foodborne Pathog. Dis. 2005, 2, 233–241. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.J.; Gilmore, B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef]
- Reuter, S.; Winter, J.; Iseni, S.; Schmidt-Bleker, A.; Dünnbier, M.; Masur, K.; Wende, K.; Weltmann, K.-D. The Influence of Feed Gas Humidity versus Ambient Humidity on Atmospheric Pressure Plasma Jet-Effluent Chemistry and Skin Cell Viability. IEEE Trans. Plasma Sci. 2015, 43, 3185–3192. [Google Scholar] [CrossRef]
- Trevisani, M.; Cavoli, C.; Ragni, L.; Cecchini, M.; Berardinelli, A. Effect of non-thermal atmospheric plasma on viability and histamine-producing activity of psychrotrophic bacteria in mackerel fillets. Front. Microbiol. 2021, 12, 653597. [Google Scholar] [CrossRef]
- Donnelly, C.W. Detection and Isolation of Listeria monocytogenes from Food Samples: Implications of Sublethal Injury. J. AOAC Int. 2002, 85, 495–500. [Google Scholar] [CrossRef]
- Arvaniti, M.; Tsakanikas, P.; Papadopoulou, V.; Giannakopoulou, A.; Skandamis, P. Listeria monocytogenes Sublethal Injury and Viable-but-Nonculturable State Induced by Acidic Conditions and Disinfectants. Microbiol. Spectr. 2021, 9, e01377-21. [Google Scholar] [CrossRef]
- Arvaniti, M.; Tsakanikas, P.; Paramithiotis, S.; Papadopoulou, V.; Balomenos, A.; Giannakopoulou, A.; Skandamis, P. Deciphering the induction of Listeria monocytogenes into sublethal injury using fluorescence microscopy and RT-qPCR. Int. J. Food Microbiol. 2022, 385, 109983. [Google Scholar] [CrossRef]
- Siderakou, D.; Zilelidou, E.; Poimenidou, S.; Tsipra, I.; Ouranou, E.; Papadimitriou, K.; Skandamis, P. Assessing the survival and sublethal injury kinetics of Listeria monocytogenes under different food processing-related stresses. Int. J. Food Microbiol. 2021, 346, 109159. [Google Scholar] [CrossRef]
- Koutsoumanis, K.P.; Kendall, P.A.; Sofos, J.N. Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7514–7516. [Google Scholar] [CrossRef] [Green Version]
- Roh, S.; Oh, Y.; Le, S.; Kann, J.; Min, S. Inactivation of Escherichia coli O157, H7, Salmonella, Listeria monocytogenes and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT Food Sci. Technol. 2020, 127, 109429. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, L 327, 1–22.
- Bak, K.H.; Csadek, I.; Paulsen, P.; Smulders, F.J.M. Application of atmospheric pressure cold plasma (ACP) on meat and meat products. Part 2. Effects on the sensory quality with special focus on meat colour and lipid oxidation. Fleischwirtschaft 2021, 101, 100–105. [Google Scholar]
- Jadhay, H.B.; Annapure, U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids—A review. Future Foods 2021, 4, 100095. [Google Scholar] [CrossRef]
Comment | ||
---|---|---|
CAP device | SBD-type, 9 kHz frequency | Device described in Bauer et al. [38] |
CAP settings | low power | Power input 20.7 W Output voltage 8.16 kV Power density 0.48 W/cm2 |
high power | Power input 29.9 W Output voltage 9.44 kV Power density 0.67 W/cm2 | |
Exposure time | 2 or 5 min | for cooked cured ham and cooked cured sausage |
3 or 5 min | for veal pie and calf liver pâté | |
Distance sample to electrode | 15 mm | for all samples |
Characteristics | |||
---|---|---|---|
Product | Code | pH (n = 5) | Water Activity (aw) (n = 5) |
Sliced cooked cured ham | Ham ‘A *’ Ham ‘B *’ | 6.28 ± 0.03 6.32 ± 0.02 | 0.96 ± 0.01 0.96 ± 0.01 |
Sliced cooked cured sausage | Sausage ‘A *’ Sausage ‘B *’ | 6.27 a ** ± 0.02 6.33 b ± 0.02 | 0.95 ± 0.01 0.96 ± 0.01 |
Sliced cooked meats | Veal pie Calf liver pâté | 5.95 a ± 0.01 5.48 b ± 0.04 | 0.92 c ± 0.01 0.94 d ± 0.01 |
Brand | Power | Time (min) | Prior to or after Treatment | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|
A | low | 2 | P | 72.8 ± 0.9 | 4.0 a ± 0.4 | 8.3 ± 0.8 | |
a | 74.2 ± 1.9 | 2.4 b ± 0.8 | 8.4 ± 0.5 | 2.11 | |||
high | 2 | P | 71.9 ± 2.8 | 4.7 ± 1.0 | 8.9 ± 0.5 | ||
a | 70.2 ± 1.0 | 4.4 ± 0.7 | 8.8 ± 0.4 | 1.75 | |||
no (control) | 2 | P | 72.0 ± 1.1 | 4.2 ± 0.5 | 8.5 ± 0.9 | ||
a | 71.6 ± 1.4 | 4.1 ± 0.6 | 8.6 ± 0.8 | 0.42 | |||
low | 5 | P | 71.0 ± 3.3 | 5.3 a ± 1.3 | 7.3 c ± 0.3 | ||
a | 70.8 ± 2.4 | 4.2 b ± 1.1 | 8.5 d ± 0.2 | 1.61 | |||
high | 5 | P | 71.3 ± 2.4 | 4.7 a ± 0.8 | 8.7 c ± 1.1 | ||
a | 71.5 ± 2.6 | 3.9 b ± 0.8 | 9.9 d ± 1.3 | 1.39 | |||
no (control) | 5 | P | 72.0 ± 1.1 | 4.2 ± 0.5 | 8.5 ± 0.9 | ||
a | 71.3 ± 1.5 | 4.0 ± 0.8 | 8.36 ± 0.7 | 0.74 | |||
B | low | 2 | P | 68.2 ± 2.3 | 8.0 ± 1.0 | 8.6 ± 0.3 | |
a | 67.5 ± 2.8 | 7.0 ± 1.3 | 8.6 ± 1.0 | 1.21 | |||
high | 2 | P | 68.6 ± 2.1 | 6.8 a ± 1.0 | 8.5 ± 1.0 | ||
a | 69.4 ± 2.0 | 5.9 b ± 0.9 | 8.9 ± 1.0 | 1.18 | |||
no (control) | 2 | P | 71.0 ± 1.6 | 7.3 ± 1.3 | 7.1 ± 0.5 | ||
a | 71.1 ± 1,9 | 6.9 ± 0.9 | 7.3 ± 0.3 | 0.46 | |||
low | 5 | P | 70.3 ± 3.5 | 7.0 ± 1.5 | 7.0 c ± 0.3 | ||
a | 70.2 ± 3.4 | 6.2 ± 1.3 | 8.1 d ± 0.6 | 1.35 | |||
high | 5 | P | 71.0 ± 2.8 | 7.3 a ± 1.2 | 7.5 c ± 0.6 | ||
a | 71.5 ± 2.0 | 6.0 b ± 0.9 | 8.8 d ± 0.3 | 1.85 | |||
no (control) | 5 | P | 71.0 ± 1.6 | 7.3 ± 1.3 | 7.1 ± 0.5 | ||
a | 71.2 ± 1,5 | 6.7 ± 1.5 | 7.2 ± 0.6 | 0.64 |
Brand | Power | Time (min) | Prior to or after Treatment | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|
A | low | 2 | P | 74.8 ± 0.6 | 6.4 a ± 0.3 | 9.7 c ± 0.5 | |
a | 74.9 ± 1.5 | 5.6 b ± 0.2 | 10.2 d ± 0.5 | 0.89 | |||
high | 2 | P | 74.8 ± 1.0 | 6.5 a ± 0.3 | 9.8 c ± 0.6 | ||
a | 73.5 ± 1.9 | 6.0 b ± 0.2 | 10.7 d ± 0.6 | 1.64 | |||
no (control) | 2 | P | 74.5 ± 0.6 | 6.7 ± 0.5 | 9.0 ± 0.5 | ||
a | 74.1 ± 0.9 | 6.8 ± 0.6 | 9.3 ± 0.4 | 0.51 | |||
low | 5 | P | 74.1 ± 0.7 | 6.5 a ± 0.4 | 9.7 c ± 0.1 | ||
a | 74.3 ± 0.6 | 5.5 b ± 0.3 | 10.3 d ± 0.1 | 1.19 | |||
high | 5 | P | 74.1 ± 1.6 | 7.0 a ± 0.1 | 8.9 c ± 0.2 | ||
a | 73.7 ± 0.8 | 5.3 b ± 0.1 | 10.1 d ± 0.4 | 2.16 | |||
no (control) | 2 | P | 74.5 ± 0.6 | 6.7 ± 0.5 | 9.0 ± 0.5 | ||
a | 73.9 ± 1.0 | 7.0 ± 0.8 | 9.2 ± 0.6 | 0.71 | |||
B | low | 2 | P | 66.2 ± 1.0 | 11.9 a ± 0.7 | 9.6 ± 0.8 | |
a | 65.4 ± 1.1 | 10.8 b ± 0.8 | 9.7 ± 0.6 | 1.33 | |||
high | 2 | P | 66.1 ± 0.8 | 12.4 a ± 0.5 | 9.6 ± 0.6 | ||
a | 65.5 ± 1.3 | 11.8 b ± 0.7 | 9.7 ± 0.8 | 0.89 | |||
no (control) | 5 | P | 64.0 ± 1.2 | 13.2 a ± 0.7 | 8.7 ± 0.4 | ||
a | 64.6 ± 1.2 | 12.9 b ± 0.4 | 9.0 ± 0.5 | 0.73 | |||
low | 5 | P | 64.3 ± 1.0 | 13.3 a ± 0.6 | 8.5 c ± 0.2 | ||
a | 64.8 ± 1.3 | 10.6 b ± 0.2 | 9.1 d ± 0.3 | 2.73 | |||
high | 5 | P | 65.4 ± 1.1 | 13.3 a ± 0.2 | 8.6 c ± 0.4 | ||
a | 65.2 ± 0.5 | 10.7 b ± 0.4 | 9.4 d ± 0.3 | 2.72 | |||
no (control) | 5 | P | 64.0 ± 1.2 | 13.2 ± 0.7 | 8.7 ± 0.4 | ||
a | 63.1 ± 1.7 | 12.7 ± 1.0 | 8.9 ± 0.7 | 0.81 |
Product | Power | Time (min) | Prior to or after Treatment | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|
Veal pie | low | 3 | P | 57.5 ± 0.5 | 12.9 c ± 0.2 | 15.0 ± 0.2 | |
a | 56.8 ± 0.7 | 13.8 d ± 0.2 | 15.3 ± 0.2 | 1.21 | |||
high | 3 | P | 57.9 ± 0.5 | 13.1 c ± 0.2 | 15.2 ± 0.2 | ||
a | 57.5 ± 0.4 | 14.8 d ± 0.2 | 15.5 ± 0.3 | 1.68 | |||
no (control) | 3 | P | 57.9 ± 0.5 | 13.1 ± 0.2 | 15.2 ± 0.3 | ||
a | 57.8 ± 0.5 | 13.6 ± 0.7 | 15.5 ± 0.3 | 0.58 | |||
low | 5 | P | 56.6 ± 0.9 | 13.5 c ± 0.4 | 15.2 ± 0.2 | ||
a | 56.1 ± 0.7 | 14.5 d ± 0.1 | 14.9 ± 0.1 | 1.12 | |||
high | 5 | P | 57.0 ± 0.8 | 13.1 c ± 0.2 | 14.7 ± 0.4 | ||
a | 57.2 ± 0.8 | 13.7 d ± 0.4 | 15.0 ± 0.2 | 0.74 | |||
no (control) | 5 | P | 57.9 ± 0.5 | 13.1 ± 0.2 | 15.2 ± 0.3 | ||
a | 57.7 ± 0.4 | 13.5 ± 0.7 | 15.5 ± 0.3 | 0.52 | |||
Liver pâté | low | 3 | P | 63.9 a ± 1.6 | 12.2 c ± 0.5 | 15.5 ± 0.5 | |
a | 62.9 b ± 1.2 | 12.6 d ± 0.6 | 15.9 ± 0.7 | 1.10 | |||
high | 3 | P | 63.3 a ± 0.6 | 11.9 c ± 0.2 | 15.8 ± 0.3 | ||
a | 62.5 b ± 0.5 | 12.7 d ± 0.5 | 16.4 ± 0.3 | 1.28 | |||
no (control) | 3 | P | 63.9 ± 0.6 | 12.5 ± 0.3 | 15.6 ± 0.4 | ||
a | 63.5 ± 0.7 | 12.6 ± 0.3 | 16.0 ± 0.6 | 0.58 | |||
low | 5 | P | 64.0 a ± 0.7 | 12.1 c ± 0.3 | 15.6 ± 0.4 | ||
a | 63.1 b ± 0.4 | 13.1 d ± 0.3 | 16.1 ± 0.6 | 1,39 | |||
high | 5 | P | 63.0 a ± 1.0 | 12.5 c ± 0.3 | 16.0 ± 0.4 | ||
a | 61.4 b ± 1.1 | 13.6 d ± 0.3 | 16.4 ± 0.5 | 1.96 | |||
no (control) | 5 | P | 63.9 ± 0.6 | 12.5 ± 0.3 | 15.6 ± 0.4 | ||
a | 63.5 ± 0.5 | 12.6 ± 0.4 | 16.1 ± 0.6 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csadek, I.; Vankat, U.; Schrei, J.; Graf, M.; Bauer, S.; Pilz, B.; Schwaiger, K.; Smulders, F.J.M.; Paulsen, P. Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli. Foods 2023, 12, 685. https://doi.org/10.3390/foods12040685
Csadek I, Vankat U, Schrei J, Graf M, Bauer S, Pilz B, Schwaiger K, Smulders FJM, Paulsen P. Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli. Foods. 2023; 12(4):685. https://doi.org/10.3390/foods12040685
Chicago/Turabian StyleCsadek, Isabella, Ute Vankat, Julia Schrei, Michelle Graf, Susanne Bauer, Brigitte Pilz, Karin Schwaiger, Frans J. M. Smulders, and Peter Paulsen. 2023. "Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli" Foods 12, no. 4: 685. https://doi.org/10.3390/foods12040685
APA StyleCsadek, I., Vankat, U., Schrei, J., Graf, M., Bauer, S., Pilz, B., Schwaiger, K., Smulders, F. J. M., & Paulsen, P. (2023). Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli. Foods, 12(4), 685. https://doi.org/10.3390/foods12040685