Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Behavioral Satiety Sequence
2.3. Meal Pattern Analysis
2.4. Sample Collection
2.5. Physicochemical Analysis
2.6. Mean Retention Time Analysis
2.7. Chemical Analysis
2.8. Statistical Analyses
3. Results and Discussion
3.1. FI and Body Weight Change
3.2. Mass and Water Content of the Digesta
3.3. Physical Properties and MRT of the Gastrointestinal Digesta
3.4. Appetite Biomarkers
3.5. Behavioral Satiety Sequence
3.6. Meal Pattern
3.7. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, S.; Zhu, J.; Shah, B.R.; Wend-Soo, Z.A.; Li, J.; Zhan, F.; Li, B. Preparation and characterization of konjac glucomannan (KGM) and deacetylated KGM (Da-KGM) obtained by sonication. J. Sci. Food Agric. 2022, 102, 4333–4344. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wu, C.; Wang, S.; Wei, X.; Li, B.; Li, J. The influence of amylose and amylopectin on water retention capacity and texture properties of frozen-thawed konjac glucomannan gel. Food Hydrocoll. 2021, 113, 106521–106532. [Google Scholar] [CrossRef]
- Ye, S.; Zongo, A.W.S.; Shah, B.R.; Li, J.; Li, B. Konjac glucomannan (KGM), deacetylated KGM (Da-KGM), and degraded KGM derivatives: A special focus on colloidal nutrition. J. Agric. Food Chem. 2021, 69, 12921–12932. [Google Scholar] [CrossRef] [PubMed]
- Marcano, J.; Hernando, I.; Fiszman, S. In vitro measurements of intragastric rheological properties and their relationships with the potential satiating capacity of cheese pies with konjac glucomannan. Food Hydrocoll. 2015, 51, 16–22. [Google Scholar] [CrossRef]
- Li, M.; Feng, G.; Wang, H.; Yang, R.; Xu, Z.; Sun, Y.M. Deacetylated konjac glucomannan is less effective in reducing dietary-induced hyperlipidemia and hepatic steatosis in c57bl/6 mice. J. Agric. Food Chem. 2017, 65, 1556–1565. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, H.; Hou, M.; Nirasawa, S.; Tatsumi, E.; Foster, T.J.; Cheng, Y. Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Res. Int. 2013, 51, 879–885. [Google Scholar] [CrossRef]
- Yang, D.; Yuan, Y.; Wang, L.; Wang, X.; Mu, R.; Pang, J.; Xiao, J.; Zheng, Y. A review on konjac glucomannan gels: Microstructure and application. Int. J. Mol. Sci. 2017, 18, 2250. [Google Scholar] [CrossRef]
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef]
- LongChen, S.; Jing, L.; Bin, L. Research progress of dietary fiber and its satiating capacity. J. Food Saf. Qual. 2018, 9, 372–379. [Google Scholar]
- Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 2000, 33, 233–245. [Google Scholar] [CrossRef]
- Femenia, A.; Selvendran, R.R.; Ring, S.G.; Robertson, J.A. Effects of heat treatment and dehydration on properties of cauliflower fiber. J. Agric. Food Chem. 1999, 47, 728–732. [Google Scholar] [CrossRef]
- Tan, C.; Wei, H.; Zhao, X.; Xu, C.; Zhou, Y.; Peng, J. Soluble fiber with high water-binding capacity, swelling capacity, and fermentability reduces food intake by promoting satiety rather than satiation in rats. Nutrients 2016, 8, 615. [Google Scholar] [CrossRef]
- Hadri, Z.; Chaumontet, C.; Fromentin, G.; Even, P.C.; Darcel, N.; Bouras, A.D.; Tomé, D.; Rasoamanana, R. Long term ingestion of a preload containing fructo-oligosaccharide or guar gum decreases fat mass but not food intake in mice. Physiol. Behav. 2015, 147, 198–204. [Google Scholar] [CrossRef]
- Carvalho, L.T.; Pires, M.A.; Baldin, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Rodrigues, I.; Polizer, Y.J.; de Mello, J.L.M.; Lapa-Guimarães, J.; Trindade, M.A. Partial replacement of meat and fat with hydrated wheat fiber in beef burgers decreases caloric value without reducing the feeling of satiety after consumption. Meat Sci. 2019, 147, 53–59. [Google Scholar] [CrossRef]
- Xia, X.; Wei, H.; Hu, L.; Peng, J. Hydratability and improved fermentability in vitro of guar gum by combination of xanthan gum. Carbohydr. Polym. 2021, 258, 117625. [Google Scholar] [CrossRef]
- Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary fiber and weight regulation. Nutr. Rev. 2009, 59, 129–139. [Google Scholar] [CrossRef]
- Benelam, B. Satiety and the anorexia of ageing. Br. J. Community Nurs. 2009, 14, 332–335. [Google Scholar] [CrossRef]
- Shang, L.; Wang, Y.; Ren, Y.; Ai, T.; Zhou, P.; Hu, L.; Wang, L.; Li, J.; Li, B. In vitro gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation. Food Funct. 2020, 11, 7596–7610. [Google Scholar] [CrossRef]
- Guo, L.; Yokoyama, W.; Chen, M.; Zhong, F. Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite. Food Hydrocoll. 2021, 120, 106894. [Google Scholar] [CrossRef]
- Guo, L.; Goff, H.D.; Chen, M.; Zhong, F. The hydration rate of konjac glucomannan after consumption affects its in vivo glycemic response and appetite sensation and in vitro digestion characteristics. Food Hydrocoll. 2022, 122, 107102. [Google Scholar] [CrossRef]
- Shang, L.; Ai, T.; Li, J.; Li, B. Correlations between sol viscosity of the partially degraded konjac glucomannan and appetite response of rats. Food Hydrocoll. Health 2021, 1, 100026–100032. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, S.; Shang, L.; Zhou, P.; Li, J.; Li, B. An efficient and simple approach for the controlled preparation of partially degraded konjac glucomannan. Food Hydrocoll. 2020, 108, 106017. [Google Scholar] [CrossRef]
- Reeves, P.G. Components of the ain-93 diets as improvements in the ain-76a diet. J. Nutr. 1997, 127, 838S–841S. [Google Scholar] [CrossRef] [PubMed]
- Halford, J.C.G.; Wanninayake, S.C.D.; Blundell, J.E. Behavioral satiety sequence (bss) for the diagnosis of drug action on food intake. Pharmacol. Biochem. Behav. 1998, 61, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Lira, L.A.; Almeida, L.C.A.; Silva, A.A.M.; Cavalcante, T.C.F.; Melo, D.D.C.B.; Souza, J.A.; Campina, R.C.F.; Souza, S.L. Perinatal undernutrition increases meal size and neuronal activation of the nucleus of the solitary tract in response to feeding stimulation in adult rats. Int. J. Dev. Neurosci. 2014, 38, 23–29. [Google Scholar] [CrossRef]
- Synowski, S.J.; Smart, A.B.; Warwick, Z.S. Meal size of high-fat food is reliably greater than high-carbohydrate food across externally-evoked single-meal tests and long-term spontaneous feeding in rat. Appetite 2005, 45, 191–194. [Google Scholar] [CrossRef]
- Zaremba, S.M.M.; Gow, I.F.; Drummond, S.; McCluskey, J.T.; Steinert, R.E. Effects of oat β-glucan consumption at breakfast on ad libitum eating, appetite, glycemia, insulinemia and glp-1 concentrations in healthy subjects. Appetite 2018, 128, 197–204. [Google Scholar] [CrossRef]
- Johansen, H.N.; Bach Knudsen, K.E.; Wood, P.J.; Fulcher, R.G. Physico-chemical properties and the degradation of oat bran polysaccharides in the gut of pigs. J. Sci. Food Agric. 1997, 73, 81–92. [Google Scholar] [CrossRef]
- Serena, A.; Jørgensen, H.; Bach Knudsen, K.E. Digestion of carbohydrates and utilization of energy in sows fed diets with contrasting levels and physicochemical properties of dietary fiber. J. Anim. Sci. 2008, 86, 2208–2216. [Google Scholar] [CrossRef]
- Weurding, R.E.; Veldman, A.; Veen, W.G.; van der Aar, P.J.; Verstegen, M.W.A. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J. Nutr. 2001, 131, 2329–2335. [Google Scholar] [CrossRef]
- Islam, A.; Civitarese, A.E.; Hesslink, R.L.; Gallaher, D.D. Viscous dietary fiber reduces adiposity and plasma leptin and increases muscle expression of fat oxidation genes in rats. Obesity 2012, 20, 349–355. [Google Scholar] [CrossRef]
- Alptekin, İ.M.; Çakiroğlu, F.P.; Örmeci, N. Effects of β-glucan and inulin consumption on postprandial appetite, energy intake and food consumption in healthy females: A randomized controlled trial. Nutr. Health 2022, 28, 433–442. [Google Scholar] [CrossRef]
- Stribiţcaia, E.; Evans, C.E.L.; Gibbons, C.; Blundell, J.; Sarkar, A. Food texture influences on satiety: Systematic review and meta-analysis. Sci. Rep. 2020, 10, 12929. [Google Scholar] [CrossRef]
- Akhlaghi, M. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit. Rev. Food Sci. Nutr. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Tosh, S.M.; Spruill, S.E.; Jenkins, A.L.; Ezatagha, A.; Duss, R.; Johnson, J.; Chu, Y.; Steinert, R.E. Increasing oat beta-glucan viscosity in a breakfast meal slows gastric emptying and reduces glycemic and insulinemic responses but has no effect on appetite, food intake, or plasma ghrelin and pyy responses in healthy humans: A randomized, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2020, 111, 319–328. [Google Scholar]
- Low, D.Y.; Pluschke, A.M.; Gerrits, W.J.J.; Zhang, D.; Shelat, K.J.; Gidley, M.J.; Williams, B.A. Cereal dietary fibres influence retention time of digesta solid and liquid phases along the gastrointestinal tract. Food Hydrocoll. 2020, 104, 105739. [Google Scholar] [CrossRef]
- Brooks, L.; Viardot, A.; Tsakmaki, A.; Stolarczyk, E.; Howard, J.K.; Cani, P.D.; Everard, A.; Sleeth, M.L.; Psichas, A.; Anastasovskaj, J.; et al. Fermentable carbohydrate stimulates ffar2-dependent colonic pyy cell expansion to increase satiety. Mol. Metab. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Cawthon, C.R.; de La Serre, C.B. The critical role of cck in the regulation of food intake and diet-induced obesity. Peptides 2021, 138, 170492. [Google Scholar] [CrossRef]
- Paderin, N.M.; Vityazev, F.V.; Saveliev, N.Y.; Markov, P.A.; Mikhaylov, V.I.; Patova, O.A.; Popov, S.V. Effect of pectin of tansy, tanacetum vulgare l., on feeding behaviour and food intake in mice. J. Funct. Foods 2018, 47, 66–71. [Google Scholar] [CrossRef]
- Rebello, C.J.; Chu, Y.-F.; Johnson, W.D.; Martin, C.K.; Han, H.; Bordenave, N.; Shi, Y.; O’Shea, M.; Greenway, F.L. The role of meal viscosity and oat β-glucan characteristics in human appetite control: A randomized crossover trial. Nutr. J. 2014, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Morell, P.; Fiszman, S. Revisiting the role of protein-induced satiation and satiety. Food Hydrocoll. 2017, 68, 199–210. [Google Scholar] [CrossRef]
- Calkins, K.G. Correlation Coefficients. Available online: https://www.andrews.edu/~calkins/math/edrm611/edrm05.htm (accessed on 7 January 2023).
- Stribițcaia, E.; Blundell, J.; You, K.-M.; Finlayson, G.; Gibbons, C.; Sarkar, A. Viscosity of food influences perceived satiety: A video based online survey. Food Qual. Prefer. 2022, 99, 104565. [Google Scholar] [CrossRef]
- Mosca, A.C.; Torres, A.P.; Slob, E.; de Graaf, K.; McEwan, J.A.; Stieger, M. Small food texture modifications can be used to change oral processing behaviour and to control ad libitum food intake. Appetite 2019, 142, 104375. [Google Scholar] [CrossRef]
Ingredient (g) | C | T1 | T2 | T3 | T4 | T5 | kCal |
---|---|---|---|---|---|---|---|
Casein | 204.8 | 204.8 | 204.8 | 204.8 | 204.8 | 204.8 | 819.2 |
L-cystine | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 12.4 |
Corn starch | 331.3 | 331.3 | 331.3 | 331.3 | 331.3 | 331.3 | 1325.2 |
Maltodextrin 10 | 135.2 | 135.2 | 135.2 | 135.2 | 135.2 | 135.2 | 540.8 |
Sucrose | 102.4 | 102.4 | 102.4 | 102.4 | 102.4 | 102.4 | 409.6 |
Cellulose | 100 | - | - | - | - | - | - |
DKGM1 | - | 100 | - | - | - | - | - |
DKGM2 | - | - | 100 | - | - | - | - |
DKGM3 | - | - | - | 100 | - | - | - |
DKGM4 | - | - | - | - | 100 | - | - |
DKGM5 | - | - | - | - | - | 100 | - |
Soybean oil | 71.7 | 71.7 | 71.7 | 71.7 | 71.7 | 71.7 | 645.3 |
AIN-93 vitamin mix 1 | 10 | 10 | 10 | 10 | 10 | 10 | 40 |
AIN-93 mineral mix 2 | 35 | 35 | 35 | 35 | 35 | 35 | 0 |
Choline bitartrate | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 0 |
Chromium trioxide | 4 | 4 | 4 | 4 | 4 | 4 | 0 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 3792.5 |
Physical Property | DKGM1 | DKGM2 | DKGM3 | DKGM4 | DKGM5 |
---|---|---|---|---|---|
Molecular weight (kDa) | 157.3 ± 13.46 | 224.7 ± 8.25 | 300.7 ± 11.01 | 455.3 ± 8.20 | 576.8 ± 16.15 |
WHC (g/g) | 10.29 ± 0.05 | 10.32 ± 0.12 | 14.38 ± 0.18 | 15.08 ± 0.06 | 15.52 ± 0.13 |
SC (mL/g) | 8.46 ± 0.00 | 10.39 ± 0.07 | 15.73 ± 0.10 | 17.95 ± 0.39 | 19.67 ± 0.10 |
η50 (Pa·s) | 0.06 ± 0.01 | 0.34 ± 0.06 | 0.81 ± 0.17 | 1.64 ± 0.39 | 2.60 ± 0.66 |
Physical Property | C | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|---|
WHC (g/g) | 1.71 ± 0.03 | 1.69 ± 0.01 | 1.74 ± 0.01 | 1.84 ± 0.08 | 2.04 ± 0.23 | 2.57 ± 0.16 |
SC (mL/g) | 1.04 ± 0.00 | 1.66 ± 0.00 | 3.53 ± 0.01 | 4.80 ± 0.00 | 6.80 ± 0.21 | 6.04 ± 0.02 |
η50 (Pa·s) | 0.09 ± 0.00 | 1.11 ± 0.01 | 2.50 ± 0.02 | 6.72 ± 0.09 | 8.76 ± 0.13 | 10.63 ± 0.07 |
Group | Initial BW (g) | Final BW (g) | Daily FI (g) | Daily BW Gain (g) |
---|---|---|---|---|
C | 424.17 ± 11.14 a | 557.50 ± 25.84 a | 27.50 ± 2.55 a | 5.21 ± 0.37 a |
T1 | 420.00 ± 14.29 a | 535.83 ± 29.05 ab | 25.00 ± 2.18 b | 5.42 ± 0.34 a |
T2 | 420.01 ± 10.50 a | 503.33 ± 26.58 bc | 23.80 ± 2.10 bc | 4.13 ± 0.80 b |
T3 | 426.17 ± 15.96 a | 504.17 ± 30.73 bc | 21.98 ± 0.98 cd | 3.46 ± 0.37 c |
T4 | 427.50 ± 10.12 a | 483.33 ± 37.37 c | 22.24 ± 1.07 cd | 3.33 ± 0.49 c |
T5 | 423.33 ± 8.05 a | 485.00 ± 33.91 c | 21.56 ± 0.40 d | 3.21 ± 0.43 c |
Group | Glucose (mmol/L) | Insulin (mU/L) | GLP-1 (pmol/L) | PYY3–36 (pg/mL) | CCK-8 (pmol/L) | Ghrelin (ng/L) |
---|---|---|---|---|---|---|
C | 9.60 ± 1.40 b | 18.82 ± 0.62 c | 2.06 ± 0.20 c | 16.73 ± 1.03 e | 30.15 ± 2.19 c | 401.57 ± 17.98 a |
T1 | 9.67 ± 0.98 ab | 21.45 ± 2.31 b | 2.05 ± 0.14 c | 17.95 ± 1.63 de | 32.82 ± 1.32 b | 362.07 ± 25.99 ab |
T2 | 9.95 ± 0.89 ab | 21.78 ± 2.24 b | 2.24 ± 0.19 bc | 19.05 ± 1.41 cd | 34.54 ± 2.78 b | 353.65 ± 30.41 b |
T3 | 10.32 ± 0.84 ab | 24.04 ± 1.30 a | 2.39 ± 0.35 ab | 20.24 ± 1.45 bc | 33.20 ± 3.56 b | 343.65 ± 30.41 bc |
T4 | 10.44 ± 0.81 ab | 24.70 ± 3.12 a | 2.48 ± 0.26 a | 20.99 ± 2.23 ab | 34.71 ± 1.79 b | 332.58 ± 31.23 bc |
T5 | 10.72 ± 1.34 a | 25.66 ± 2.27 a | 2.51 ± 0.18 a | 22.69 ± 2.24 a | 37.35 ± 1.44 a | 306.63 ± 21.61 c |
Group | Frequency of Feeding and Non-Feeding Behaviors (% Time) | ||||
---|---|---|---|---|---|
Feeding | Resting | Drinking | Activity | Grooming | |
C | 26.19 ± 2.34 a | 38.26 ± 3.37 c | 8.34 ± 2.79 a | 23.84 ± 2.58 a | 3.37 ± 2.91 a |
T1 | 24.84 ± 2.63 ab | 38.33 ± 2.23 c | 8.84 ± 2.77 a | 23.45 ± 3.16 a | 4.55 ± 2.61 a |
T2 | 24.41 ± 3.40 ab | 39.48 ± 2.54 c | 9.41 ± 2.78 a | 23.09 ± 3.08 a | 5.62 ± 3.17 a |
T3 | 23.52 ± 2.43 ab | 39.65 ± 2.53 bc | 8.31 ± 3.42 a | 23.12 ± 2.06 a | 5.42 ± 3.54 a |
T4 | 23.21 ± 3.25 ab | 41.77 ± 2.39 ab | 7.74 ± 2.94 a | 22.22 ± 2.75 a | 5.04 ± 4.02 a |
T5 | 23.06 ± 3.61 b | 42.43 ± 2.40 a | 8.46 ± 3.02 a | 21.67 ± 4.99 a | 4.38 ± 2.37 a |
Item | C | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|---|
Food intake (g/d) | ||||||
Total | 32.2 ± 1.7 a | 30.5 ± 2.8 ab | 28.9 ± 2.1 ab | 27.9 ± 3.0 b | 23.9 ± 3.8 c | 24.2 ± 3.3 c |
Diurnal | 13.7 ± 1.4 a | 13.9 ± 1.7 a | 12.5 ± 1.88 a | 13.8 ± 1.5 a | 11.8 ± 2.8 a | 13.1 ± 1.7 a |
Nocturnal | 18.4 ± 0.6 a | 16.6 ± 1.2 b | 16.5 ± 1.0 b | 14.1 ± 1.8 c | 12.2 ± 1.3 d | 11.1 ± 1.2 d |
Feeding rate (mg/s) | ||||||
Total | 4.6 ± 0.7 a | 4.0 ± 0.2 a | 4.5 ± 0.6 a | 4.6 ± 0.5 a | 4.4 ± 1.1 a | 4.4 ± 0.5 a |
Diurnal | 4.3 ± 1.7 a | 3.9 ± 0.7 a | 3.8 ± 0.8 a | 4.9 ± 1.8 a | 4.4 ± 1.6 a | 4.9 ± 1.2 a |
Nocturnal | 5.7 ± 0.6 a | 4.2 ± 0.7 a | 5.4 ± 1.3 a | 4.9 ± 1.0 a | 4.7 ± 1.5 a | 4.8 ± 0.8 a |
Meal size (g/meal) | ||||||
Total | 1.5 ± 0.2 a | 1.4 ± 0.2 a | 1.5 ± 0.2 a | 1.6 ± 0.3 a | 1.5 ± 0.3 a | 1.5 ± 0.3 a |
Diurnal | 1.3 ± 0.4 a | 1.3 ± 0.3 a | 1.4 ± 0.3 a | 1.6 ± 0.4 a | 1.5 ± 0.5 a | 1.6 ± 0.4 a |
Nocturnal | 1.8 ± 0.6 a | 1.6 ± 0.4 a | 1.8 ± 0.4 a | 1.7 ± 0.3 a | 1.4 ± 0.4 a | 1.5 ± 0.7 a |
Meal duration (s) | ||||||
Total | 327.7 ± 69.7 a | 350.2 ± 42.5 a | 324.8 ± 28.9 a | 346.4 ± 44.1 a | 345.9 ± 75.5 a | 326.8 ± 39.6 a |
Diurnal | 320.2 ± 93.8 a | 322.9 ± 46.0 a | 351.3 ± 94.9 a | 335.2 ± 108.3 a | 353.0 ± 89.2 a | 337.1 ± 111.4 a |
Nocturnal | 334.2 ± 79.4 a | 369.6 ± 91.4 a | 341.2 ± 92.7 a | 345.6 ± 96.4 a | 335.2 ± 115.2 a | 327.0 ± 95.5 a |
Meal number (meals/d) | ||||||
Total | 21.5 ± 1.0 a | 22.0 ± 1.4 a | 18.8 ± 1.7 b | 17.5 ± 1.4 bc | 17.7 ± 1.4 bc | 16.8 ± 1.5 c |
Diurnal | 11.0 ± 1.8 a | 11.2 ± 1.0 a | 9.0 ± 0.9 b | 8.5 ± 0.8 b | 8.2 ± 1.0 b | 8.3 ± 0.5 b |
Nocturnal | 11.3 ± 1.2 a | 11.5 ± 1.0 a | 9.7 ± 1.2 b | 9.2 ± 1.3 bc | 8.8 ± 0.8 bc | 8.2 ± 0.8 c |
Inter-meal interval (min) | ||||||
Total | 61.4 ± 3.2 c | 59.9 ± 4.0 c | 71.1 ± 6.1 b | 77.0 ± 6.2 ab | 76.1 ± 7.2 ab | 80.7 ± 7.0 a |
Diurnal | 61.2 ± 11.0 b | 59.4 ± 5.8 b | 74.8 ± 8.3 a | 79.2 ± 10.7 a | 83.9 ± 11.2 a | 80.4 ± 5.6 a |
Nocturnal | 32.2 ± 1.7 a | 30.5 ± 2.8 ab | 28.9 ± 2.1 ab | 27.9 ± 3.0 b | 23.9 ± 3.8 c | 24.2 ± 3.3 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Yu, C.; Yang, S.; Deng, L.; Zhang, C.; Xiang, J.; Shang, L. Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats. Foods 2023, 12, 743. https://doi.org/10.3390/foods12040743
Xu C, Yu C, Yang S, Deng L, Zhang C, Xiang J, Shang L. Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats. Foods. 2023; 12(4):743. https://doi.org/10.3390/foods12040743
Chicago/Turabian StyleXu, Chenfeng, Chao Yu, Siqi Yang, Lingli Deng, Chi Zhang, Jiqian Xiang, and Longchen Shang. 2023. "Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats" Foods 12, no. 4: 743. https://doi.org/10.3390/foods12040743
APA StyleXu, C., Yu, C., Yang, S., Deng, L., Zhang, C., Xiang, J., & Shang, L. (2023). Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats. Foods, 12(4), 743. https://doi.org/10.3390/foods12040743