Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pasta Preparation
2.3. Chemical Composition of Apple Pomace and Pasta
2.4. Content of Antioxidant in Apple Pomace and Pasta
2.5. Texture Profile Analysis: Determination of Maximum Cutting Force and Energy
2.6. Water Absorption of Pasta
2.7. Statistical Analysis
3. Results and Discussion
3.1. Apple Pomace Characteristics
3.2. Characteristics of Pasta with Different Percentage Content of Apple Pomace
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple Pomace as Food Fortification Ingredient: A Systematic Review and Meta-Analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and Vegetable By-Products’ Flours as Ingredients: A Review on Production Process, Health Benefits and Technological Functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Bebak, A. Biological Activity of Selected Fruit and Vegetable Pomaces. Zywnosc. Nauka. Technol. Jakosc/Food. Sci. Technol. Qual. 2012, 19, 55–65. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Tuszyński, T. Simulation of Phenolic Compounds Transformations and Interactions in an In Vitro Model of the Human Alimentary Tract. Food Sci. Technol. Int. 2009, 15, 235–241. [Google Scholar] [CrossRef]
- Fernández-Martín, F.; Guerra, M.A.; López, E.; Solas, M.T.; Carballo, J.; Jiménez-Colmenero, F. Characteristics of Pressurised Pork Meat Batters as Affected by Addition of Plasma Proteins, Apple Fibre and Potato Starch. J. Sci. Food Agric. 2000, 80, 1230–1236. [Google Scholar] [CrossRef]
- Nuñez de Gonzalez, M.T.; Boleman, R.M.; Miller, R.K.; Keeton, J.T.; Rhee, K.S. Antioxidant Properties of Dried Plum Ingredients in Raw and Precooked Pork Sausage. J. Food Sci. 2008, 73, H63–H71. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Toro, M.E.; Vazquez, F.; Correa-Daneri, M.L.; Gouiric, S.C.; Vallejo, M.D. Bioethanol Production from Grape and Sugar Beet Pomaces by Solid-State Fermentation. Int. J. Hydrog. Energy 2010, 11, 5914–5917. [Google Scholar] [CrossRef]
- Magyar, M.; da Costa Sousa, L.; Jin, M.; Sarks, C.; Balan, V. Conversion of Apple Pomace Waste to Ethanol at Industrial Relevant Conditions. Appl. Microbiol. Biotechnol. 2016, 100, 7349–7358. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Constenla, D.; Ponce, A.G.; Lozano, J.E. Effect of Pomace Drying on Apple Pectin. LWT-Food Sci. Technol. 2002, 35, 216–221. [Google Scholar] [CrossRef]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of Polyphenolic Content and in Vitro Antiradical Characteristics of Apple Pomace. Food Chem. 2008, 2, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of Polyphenols from the By-Products of Plant Food Processing and Application as Valuable Food Ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Rezk, B.M.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A. The Antioxidant Activity of Phloretin: The Disclosure of a New Antioxidant Pharmacophore in Flavonoids. Biochem. Biophys. Res. Commun. 2002, 295, 9–13. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, R.H. Triterpenoids Isolated from Apple Peels Have Potent Antiproliferative Activity and May Be Partially Responsible for Apple’s Anticancer Activity. J. Agric. Food Chem. 2007, 55, 4366–4370. [Google Scholar] [CrossRef] [PubMed]
- Bellion, P.; Digles, J.; Will, F.; Dietrich, H.; Baum, M.; Eisenbrand, G.; Janzowski, C. Polyphenolic Apple Extracts: Effects of Raw Material and Production Method on Antioxidant Effectiveness and Reduction of DNA Damage in Caco-2 Cells. J. Agric. Food Chem. 2010, 58, 6636–6642. [Google Scholar] [CrossRef] [PubMed]
- Wijngaard, H.H.; Brunton, N. The Optimisation of Solid–Liquid Extraction of Antioxidants from Apple Pomace by Response Surface Methodology. J. Food Eng. 2010, 96, 134–140. [Google Scholar] [CrossRef]
- Balasuriya, N.; Rupasinghe, H.P.V. Antihypertensive Properties of Flavonoid-Rich Apple Peel Extract. Food Chem. 2012, 135, 2320–2325. [Google Scholar] [CrossRef]
- Rodríguez-Muela, C.; Rodríguez, H.E.; Arzola, C.; Díaz-Plascencia, D.; Ramírez-Godínez, J.A.; Flores-Mariñelarena, A.; Mancillas-Flores, P.F.; Corral, G. Antioxidant Activity in Plasma and Rumen Papillae Development in Lambs Fed Fermented Apple Pomace. J. Anim. Sci. 2015, 93, 2357–2362. [Google Scholar] [CrossRef]
- Suárez, B.; Álvarez, Á.L.; García, Y.D.; del Barrio, G.; Lobo, A.P.; Parra, F. Phenolic Profiles, Antioxidant Activity and in Vitro Antiviral Properties of Apple Pomace. Food Chem. 2010, 120, 339–342. [Google Scholar] [CrossRef]
- Jung, J.; Cavender, G.; Zhao, Y. Impingement Drying for Preparing Dried Apple Pomace Flour and Its Fortification in Bakery and Meat Products. J. Food Sci. Technol. 2015, 52, 5568–5578. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Santhalakshmy, S.; Mir, M.M. Effect of Apple Pomace on Quality Characteristics of Brown Rice Based Cracker. J. Saudi Soc. Agric. Sci. 2017, 1, 25–32. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of Apple, Orange and Carrot Pomace Powders on Gluten-Free Batter Rheology and Cake Properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Drożdż, W.; Tomaszewska-Ciosk, E.; Zdybel, E.; Boruczkowska, H.; Boruczkowski, T.; Regiec, P. Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Pol. J. Chem. Technol. 2014, 16, 7–11. [Google Scholar] [CrossRef]
- Reis, S.F.; Rai, D.K.; Abu-Ghannam, N. Apple Pomace as a Potential Ingredient for the Development of New Functional Foods. Int. J. Food Sci. Technol. 2014, 49, 1743–1750. [Google Scholar] [CrossRef]
- Sobota, A.; Rzedzicki, Z.; Zarzycki, P.; Wirkijowska, A.; Sykut-Domańska, E. Zmiany zawartości tłuszczu wolnego w czasie procesu produkcji makaronu jajecznego. Żywność Nauka-Technol.-Jakość 2015, 102, 152–164. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; Leon, A.E. Structure and Quality of Pasta Enriched with Functional Ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Xu, J.; Bock, J.E.; Stone, D. Quality and Textural Analysis of Noodles Enriched with Apple Pomace. J. Food Process. Preserv. 2020, 44, e14579. [Google Scholar] [CrossRef]
- Gałkowska, D.; Witczak, T.; Pycia, K. Quality Characteristics of Novel Pasta Enriched with Non-Extruded and Extruded Blackcurrant Pomace. Molecules 2022, 27, 8616. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Lecce, L.; Likyova, D.; Sicari, V.; Pellicanò, T.M.; Poiana, M.; Del Nobile, M.A. Functional Pasta with Tomato By-Product as a Source of Antioxidant Compounds and Dietary Fibre. Czech J. Food Sci. 2017, 35, 48–56. [Google Scholar] [CrossRef]
- Nur Azura, Z.; Radhiah, S.; Wan Zunairah, W.I.; Nurul Shazini, R.; Nur Hanani, Z.A.; Ismail-Fitry, M.R. Physicochemical, Cooking Quality and Sensory Characterization of Yellow Alkaline Noodle: Impact of Mango Peel Powder Level. Food Res. 2019, 4, 70–76. [Google Scholar] [CrossRef]
- Isa, N.S.M.; MohdMaidin, N.; Hazmah, Y.; Madzuki, I.N.; Hamid, M.A. Nutritional Composition of Dried Noodle Incorporated with Mango Peel Powder. Biosci. Res. 2021, 18, 68–80. [Google Scholar]
- Kultys, E.; Moczkowska-Wyrwisz, M. Effect of Using Carrot Pomace and Beetroot-Apple Pomace on Physicochemical and Sensory Properties of Pasta. LWT 2022, 168, 113858. [Google Scholar] [CrossRef]
- Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant Properties of Commercial, Regular- and Whole-Wheat Spaghetti. Food Chem. 2010, 1, 258–264. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International-18th Edition, Revision 3. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-18th-edition-revision-3?product_id=1678986 (accessed on 15 February 2021).
- CCAM. Approved Methods of the American Association of Cereal Chemists; AACC: Washington, DC, USA, 2000; ISBN 978-1-891127-12-0. [Google Scholar]
- Taylor, K.A.C.C. A Colorimetric Method for the Quantitation of Galacturonic Acid. Appl. Biochem. Biotechnol. 1993, 43, 51–54. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- El Hariri, B.; Sallé, G.; Andary, C. Involvement of Flavonoids in the Resistance of Two Poplar Cultivars to Mistletoe (Viscum Album L.). Protoplasma 1991, 162, 20–26. [Google Scholar] [CrossRef]
- Tudorica, C.M.; Kuri, V.; Brennan, C.S. Nutritional and Physicochemical Characteristics of Dietary Fiber Enriched Pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The Effect of Apple Pomace on the Texture, Rheology and Microstructure of Set Type Yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Jin, H.; Kim, H.-S.; Kim, S.-K.; Shin, M.-K.; Kim, J.-H.; Lee, J.-W. Production of Heteropolysaccharide-7 by Beijerinckia Indica from Agro-Industrial Byproducts. Enzym. Microb. Technol. 2002, 6, 822–827. [Google Scholar] [CrossRef]
- Jannati, N.; Hojjatoleslamy, M.; Hosseini, E.; Mozafari, H.R.; Siavoshi, M. Effect of Apple Pomace Powder on Rheological Properties of Dough and Sangak Bread Texture. Carpathian J. Food Sci. Technol. 2018, 10, 77–84. [Google Scholar]
- Ktenioudaki, A.; O’Shea, N.; Gallagher, E. Rheological Properties of Wheat Dough Supplemented with Functional By-Products of Food Processing: Brewer’s Spent Grain and Apple Pomace. J. Food Eng. 2013, 116, 362–368. [Google Scholar] [CrossRef]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable Components of Dried Pomaces of Chokeberry, Black Currant, Strawberry, Apple and Carrot as a Source of Natural Antioxidants and Nutraceuticals in the Animal Diet. Ann. Anim. Sci. 2015, 15, 475–491. [Google Scholar] [CrossRef]
- Leyva-Corral, J.; Quintero-Ramos, A.; Camacho-Dávila, A.; de Jesús Zazueta-Morales, J.; Aguilar-Palazuelos, E.; Ruiz-Gutiérrez, M.G.; Meléndez-Pizarro, C.O.; de Jesús Ruiz-Anchondo, T. Polyphenolic Compound Stability and Antioxidant Capacity of Apple Pomace in an Extruded Cereal. LWT-Food Sci. Technol. 2016, 65, 228–236. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Pobiega, K. The Aspects of Microbial Biomass Use in the Utilization of Selected Waste from the Agro-Food Industry. Open Life Sci. 2020, 15, 787–796. [Google Scholar] [CrossRef]
- Ferretti, G.; Turco, I.; Bacchetti, T. Apple as a Source of Dietary Phytonutrients: Bioavailability and Evidence of Protective Effects against Human Cardiovascular Disease. Food Nutr. Sci. 2014, 5, 1234–1246. [Google Scholar] [CrossRef]
- Persic, M.; Mikulic-Petkovsek, M.; Slatnar, A.; Veberic, R. Chemical Composition of Apple Fruit, Juice and Pomace and the Correlation between Phenolic Content, Enzymatic Activity and Browning. LWT-Food Sci. Technol. 2017, 82, 23–31. [Google Scholar] [CrossRef]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M.C. High-Performance Liquid Chromatography with Diode-Array Detection for the Determination of Phenolic Compounds in Peel and Pulp from Different Apple Varieties. J. Chromatogr. A 1998, 823, 331–337. [Google Scholar] [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of Apple By-Products as Source of New Ingredients: Current Situation and Perspectives. Trends Food Sci. Technol. 2014, 1, 99–114. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V. Effects of Toasting on the Carbohydrate Profile and Antioxidant Properties of Chickpea (Cicer Arietinum L.) Flour Added to Durum Wheat Pasta. Food Chem. 2012, 4, 1140–1148. [Google Scholar] [CrossRef]
- Pilli, T.D.; Derossi, A.; Talja, R.A.; Jouppila, K.; Severini, C. Study of Starch-Lipid Complexes in Model System and Real Food Produced Using Extrusion-Cooking Technology. Innov. Food Sci. Emerg. Technol. 2011, 4, 610–616. [Google Scholar] [CrossRef]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango Peel Powder: A Potential Source of Antioxidant and Dietary Fiber in Macaroni Preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Maillard, M.-N.; Berset, C. Evolution of Antioxidant Activity during Kilning: Role of Insoluble Bound Phenolic Acids of Barley and Malt. J. Agric. Food Chem. 1995, 43, 1789–1793. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT-Food Sci. Technol. 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of High Value-Added Pasta Formulas by Incorporation of Grape Pomace Skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Dexter, J.E.; Matsuo, R.E. Changes in Spaghetti Protein Solubility during Cooking [Durum Wheats and a Hard Red Spring Wheat]. Cereal Chem. 1979, 56, 394–398. [Google Scholar]
- Brennan, C.S.; Kuri, V.; Tudorica, C.M. Inulin-Enriched Pasta: Effects on Textural Properties and Starch Degradation. Food Chem. 2004, 86, 189–193. [Google Scholar] [CrossRef]
- Edwards, N.M.; Biliaderis, C.G.; Dexter, J.E. Textural Characteristics of Wholewheat Pasta and Pasta Containing Non-Starch Polysaccharides. J. Food Sci. 1995, 60, 1321–1324. [Google Scholar] [CrossRef]
- Sozer, N.; Dalgıç, A.C.; Kaya, A. Thermal, Textural and Cooking Properties of Spaghetti Enriched with Resistant Starch. J. Food Eng. 2007, 2, 476–484. [Google Scholar] [CrossRef]
- Lawton, J.W. Effect of Starch Type on the Properties of Starch Containing Films. Carbohydr. Polym. 1996, 29, 203–208. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Jin, D.; Waterhouse, G.I.N. Effect of Adding Elderberry Juice Concentrate on the Quality Attributes, Polyphenol Contents and Antioxidant Activity of Three Fibre-Enriched Pastas. Food Res. Int. 2013, 54, 781–789. [Google Scholar] [CrossRef]
- Sato, M.F.; Vieira, R.G.; Zardo, D.M.; Falcão, L.D.; Nogueira, A.; Wosiacki, G. Apple Pomace from Eleven Cultivars: An Approach to Identify Sources of Bioactive Compounds. Acta Sci. Agron. 2010, 32, 29–35. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Application of FT-IR and Raman Spectroscopy for the Study of Biopolymers in Breads Fortified with Fibre and Polyphenols. Food Res. Int. 2013, 50, 574–585. [Google Scholar] [CrossRef]
- Vetrimani, R.; Sudha, M.L.; Haridas Rao, P. Effect of Extraction Rate of Wheat Flour on the Quality of Vermicelli. Food Res. Int. 2005, 38, 411–416. [Google Scholar] [CrossRef]
Wheat Flour (g) | Apple Pomace (g) | Distilled Water (mL) | Egg Mass (g) | Salt (g) | |
---|---|---|---|---|---|
Control | 500 | 0 | 150 | 56 | 5 |
P 10% | 450 | 50 | 160 | 56 | 5 |
P 20% | 400 | 100 | 170 | 56 | 5 |
P 30% | 350 | 150 | 210 | 56 | 5 |
P 50% | 250 | 250 | 340 | 56 | 5 |
Sample | Total Polyphenols | Flavonoids | Protein | Fat | Reducing Sugars | Ash |
---|---|---|---|---|---|---|
(mg catechin/100 g DM) | (mg rutin/100 g DM) | (g/100 g DM) | ||||
Control | 21.87 ± 0.92 a * | 10.01 ± 1.76 a | 11.44 ± 0.09 e * | 2.25 ± 0.05 e | 0.84 ± 0.03 a | 0.55 ± 0.01 b |
P 10% | 47.79 ± 0.00 b | 19.03 ± 1.46 b | 10.78 ± 0.06 d | 2.05 ± 0.05 d | 1.07 ± 0.01 b | 0.50 ± 0.01 a |
P 20% | 68.03 ± 1.11 c | 38.18 ± 1.95 c | 10.51 ± 0.12 c | 1.92 ± 0.06 c | 1.07 ± 0.01 b | 0.63 ± 0.01 d |
P 30% | 89.06 ± 1.59 d | 53.11 ± 1.29 d | 10.14 ± 0.03 b | 1.73 ± 0.01 b | 1.07 ± 0.01 b | 0.59 ± 0.01 c |
P 50% | 111.28 ± 0.00 e | 87.48 ± 1.46 e | 9.23 ± 0.04 a | 1.39 ± 0.05 a | 1.05 ± 0.01 b | 0.81 ± 0.01 e |
Compound | Control | P 10% | P 20% | P 30% | P 50% |
---|---|---|---|---|---|
Flavonols (mg/100 g DM) | |||||
isorhamnetin-3-O-galactoside | 0.00 ± 0.00 a | 0.06 ± 0.00 b | 0.19 ± 0.00 c | 0.34 ± 0.07 d | 0.51 ± 0.11 e |
isorhamnetin-3-O-glucoside | 0.00 ± 0.00 a | 0.09 ± 0.00 b | 0.27 ± 0.02 c | 0.38 ± 0.00 d | 0.45 ± 0.09 d |
luteolin 6-C-hexoside-O-hexoside | 0.00 ± 0.00 a * | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
luteolin O- hexoside-C-hexoside | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
quercetin-O-rutinoside | 0.00 ± 0.00 a | 0.19 ± 0.00 b | 0.51 ± 0.20 c | 0.73 ± 0.12 d | 1.05 ± 0.10 e |
quercetin-3-O-galactoside | 0.00 ± 0.00 a | 1.91 ± 0.15 b | 5.22 ± 0.13 c | 7.32 ± 0.17 d | 8.97 ± 0.25 e |
quercetin-3-O-glucoside | 0.00 ± 0.00 a | 0.17 ± 0.02 b | 1.24 ± 0.00 c | 2.35 ± 0.09 d | 3.41 ± 0.12 e |
quercetin-3-O-arabinoside | 0.00 ± 0.00 a | 0.58 ± 0.11 b | 1.70 ± 0.00 c | 3.03 ± 0.30 d | 4.19 ± 0.13 e |
quercetin-3-O-xyloside | 0.00 ± 0.00 a | 1.91 ± 0.10 b | 4.26 ± 0.27 c | 5.18 ± 0.23 d | 6.28 ± 0.51 e |
quercetin-3-O-rhamnoside | 0.00 ± 0.00 a | 1.90 ± 0.00 b | 4.80 ± 0.00 c | 5.84 ± 0.57 d | 6.72 ± 0.14 e |
Phenolic acids (mg/100 g DM) | |||||
chlorogenic acid | 0.00 ± 0.00 a | 1.23 ± 0.00 b | 3.48 ± 0.00 c | 4.15 ± 0.09 d | 5.27 ± 0.13 e |
cryptochlorogenic acid | 0.00 ± 0.00 a | 0.08 ± 0.00 b | 0.19 ± 0.00 c | 0.37 ± 0.06 d | 0.61 ± 0.05 e |
p-coumaroylquinic acid | 0.00 ± 0.00 a | 0.10 ± 0.11 a | 0.26 ± 0.05 ab | 0.32 ± 0.01 c | 0.45 ± 0.09 d |
caffeoyl dihydroxyphenyllactaoyl- tartaric acid | 0.00 ± 0.00 a | 0.21 ± 0.02 b | 0.56 ± 0.07 c | 0.64 ± 0.06 c | 0.70 ± 0.10 c |
1-O-p-coumaroylglycerol | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.20 ± 0.08 b | 0.31 ± 0.02 b | 0.40 ± 0.05 c |
p-coumaroylspermidine | 0.00 ± 0.00 a | 0.27 ± 0.02 c | 0.10 ± 0.04 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
di-p-coumaroylspermidine | 0.30 ± 0.00 b | 0.14 ± 0.03 a | 0.10 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Feruloylquinic acid | 0.09 ± 0.00 a | 0.00 ± 0.00 a | 0.21 ± 0.08 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Flavon-3-ol (mg/100 g DM) | |||||
(+) catechin | 0.00 ± 0.00 a | 0.22 ± 0.01 b | 0.20 ± 0.00 b | 0.28 ± 0.03 c | 0.37 ± 0.04 d |
procyanidin B2 | 0.00 ± 0.00 a | 0.21 ± 0.00 b | 0.71 ± 0.17 c | 0.98 ± 0.00 d | 1.16 ± 0.12 e |
(-)epicatechin | 0.00 ± 0.00 a | 0.22 ± 0.01 b | 0.37 ± 0.05 c | 0.53 ± 0.00 d | 0.92 ± 0.00 e |
Dihydrochalcone (mg/100 g DM) | |||||
phloretin-2-O-xylosylglucoside | 0.00 ± 0.00 a | 0.11 ± 0.00 b | 0.29 ± 0.01 c | 0.42 ± 0.04 d | 0.69 ± 0.05 e |
phloretin 2-O-glucoside (phloridzin) | 0.00 ± 0.00 a | 1.74 ± 0.00 b | 4.02 ± 0.23 c | 5.12 ± 0.05 d | 6.10 ± 0.07 e |
Sample | Dietary Fibre g/100 g DM | Hardness (N) | Max Cut Energy (J) | ||
---|---|---|---|---|---|
Insoluble Fraction | Soluble Fraction | Total Fibre | |||
Control * | 1.37 ± 0.01 a * | 2.17 ± 0.05 a | 3.54 ± 0.06 a | 2.08 ± 0.21 c * | 3.03 ± 0.56 c |
P 10% | 6.26 ± 0.08 b | 4.75 ± 0.03 b | 11.01 ± 0.05 b | 2.14 ± 0.17 cd | 2.41 ± 0.38 ab |
P 20% | 10.88 ± 0.10 c | 6.02 ± 0.04 c | 16.90 ± 0.06 c | 2.01 ± 0.24 c | 2.50 ± 0.28 b |
P 30% | 15.97 ± 0.05 d | 8.12 ± 0.08 d | 24.08 ± 0.03 d | 1.60 ± 0.26 b | 2.30 ± 0.54 ab |
P 50% | 24.96 ± 0.07 e | 11.77 ± 0.10 e | 36.73 ± 0.17 e | 1.44 ± 0.15 a | 2.04 ± 0.45 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumul, D.; Kruczek, M.; Ivanišová, E.; Słupski, J.; Kowalski, S. Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds. Foods 2023, 12, 804. https://doi.org/10.3390/foods12040804
Gumul D, Kruczek M, Ivanišová E, Słupski J, Kowalski S. Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds. Foods. 2023; 12(4):804. https://doi.org/10.3390/foods12040804
Chicago/Turabian StyleGumul, Dorota, Marek Kruczek, Eva Ivanišová, Jacek Słupski, and Stanisław Kowalski. 2023. "Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds" Foods 12, no. 4: 804. https://doi.org/10.3390/foods12040804
APA StyleGumul, D., Kruczek, M., Ivanišová, E., Słupski, J., & Kowalski, S. (2023). Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds. Foods, 12(4), 804. https://doi.org/10.3390/foods12040804