Recent Advances on Main Active Ingredients, Pharmacological Activities of Rosa roxbughii and Its Development and Utilization
Abstract
:1. Introduction
2. Traditional Uses
3. Nutrients and Active Ingredients
3.1. Vitamins and Minerals
3.2. Proteins and Amino Acids
3.3. Organic Acids and Vitamin C
3.4. Superoxide Dismutase (SOD)
3.5. Polysaccharides
3.6. Polyphenols and Flavonoids
3.7. Triterpenoids
4. Pharmacological Activities
4.1. Antioxidant Activity
4.1.1. Antioxidant Activities of Vitamin C, Polyphenols, Flavonoids, SOD, and Triterpenoids
4.1.2. Antioxidant Activity of Polysaccharides
4.2. Immunomodulatory Activity
4.3. Glucose and Lipid Metabolism Regulation
4.3.1. Reducing Blood Glucose Effect
4.3.2. Reducing Blood Lipid Effect
4.3.3. Intestinal Flora and Lipid Metabolism Regulating
4.3.4. Anti-Atherosclerosis Activity
4.4. Anti-Tumor Activity
4.5. Anti-Radiation Effect
4.6. Detoxification Effect
4.7. Viscera Protection
4.7.1. Cardioprotection
4.7.2. Gastric Mucosal Protection
4.7.3. Liver Protection
4.7.4. Renal Protection
4.8. Other Effects
5. Development and Utilization
6. Conclusions and Expectation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, X.; Liu, M.; Yan, C. Study on the status of the third generation fruit industry and developing strategy. Guangdong Agric. Sci. 2013, 40, 206–209. [Google Scholar]
- Wang, L.; Lv, M.; An, J.; Fan, X.; Dong, M.; Zhang, S.; Wang, J.; Wang, Y.; Cai, Z.; Fu, Y. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods a review. Food Funct. 2021, 12, 1432–1451. [Google Scholar] [CrossRef]
- Bai, L. Study on Problems and Countermeasures of Rosa roxburghii Tratt industrial development in Guizhou. Econ. Res. Guide 2022, 8, 34–36. [Google Scholar]
- Lv, J.; Liu, T.; Tian, Y. Research progress on main medical effect and application of Cili. Pract. J. Med. Pharm. 2018, 35, 370–372. [Google Scholar]
- Zhang, J.; Zhou, X.; Zhou, Y.; Sun, C.; Zhang, Z. Research progress and prospect of root, flower and leaf quality of Rosa roxburghii for medicine and food in Guizhou province. North. Horticult. 2022, 6, 122–130. [Google Scholar]
- Wang, K. Research progress of Rosa roxburghii. Beijing Agric. 2015, 14, 131. [Google Scholar]
- Chen, X.; Li, X. Research progress on nutritional characteristics and product development of Rosa roxbunghii. Mod. Food 2021, 3, 28–33. [Google Scholar]
- Fu, Y.; Liu, J.; Lu, X.; Peng, Q.; Xie, Y.; Yang, M. Research progress on main active components and pharmacological effects of Rosa roxburghii Tratt. Sci. Technol. Food Ind. 2020, 41, 328–335. [Google Scholar]
- Zhao, Z.; Zhang, A.; Hong, F. Trends in the researches on the nutritional and medical value of Rosa roxburghii Tratt and its products. J. Environ. Occup. Med. 2007, 1, 82–84. [Google Scholar]
- Shi, G.; Tu, X.; Li, H. Research on problems and countermeasures of optimizing development of Rosa roxburghii industry in Guizhou province. China Fruits 2021, 11, 103–108. [Google Scholar]
- Wang, Y.; Li, G.; Zhu, Y. Research progress of Rosa roxburghii food. Food Res. Dev. 2019, 40, 213–218. [Google Scholar]
- Zhao, F.; Niu, H.; Tong, C.; Li, W. Research progress on processing technology and processing products of Rosa roxburghii Tratt. Farm Prod. Process. 2017, 16, 41–45. [Google Scholar]
- Yu, L.; Zhao, Z.; Zhang, W.; Ren, T. Comparative comprehensive quality analysis of Rosa roxburghii fruit from different regions in Guizhou province. Mod. Food Sci. Technol. 2021, 37, 184–193. [Google Scholar]
- Lian, Z.; Wang, Y.; Liu, Y.; Zhou, X.; Cheng, Z.; Zheng, J.; He, J.; Rua, P.; Ge, F. Determination and comprehensive quality evaluation of main effective components in Rosa roxburghii resources. J. Chin. Med. Mater. 2021, 44, 1906–1913. [Google Scholar]
- Fan, W.; Zhou, Y. The Components, contents of polyphenols, triterpenoids in leaf, petal, fruit of Rosa roxburghii and the antioxidant properties of their extracts. J. Guizhou Univ. (Nat. Sci.) 2022, 39, 13–21. [Google Scholar]
- Cai, J.; Wu, X. Nutritional Components and characteristics of Rosa roxburghii Tratt Fruit, rosella and pyracantha fortuneana fruit. Guizhou Agric. Sci. 1997, 3, 17–21. [Google Scholar]
- Liu, Y.; Fan, W. Nutrition, health components and utilization value of Rosa roxburghii petals. South China Fruits 2021, 50, 153–158. [Google Scholar]
- Chen, Y.; Xu, Y.; Lin, X.; Yu, Y.; Wen, J.; Fu, M. Comparisons of nutritional and bioactive components of Rosa roxburghii fruits of different maturities, altitudes and regions. J. Food Saf. Qual. 2021, 12, 9556–9564. [Google Scholar]
- Tan, D.; Wang, P.; Zhang, S.; Zhao, M.; Liu, Y.; Zhang, M.; Gao, X. Study on content determination of ellagic acid in different medicinal parts of Rosa roxburghii and in vitro antioxidant activity of its ethanol extract. China Pharm. 2019, 30, 1236–1240. [Google Scholar]
- Shi, X.; Gu, Y.; Zhang, C. Analysis of superoxide dismutase content in Rosa roxburghii Tratt. Wild Plant Resour. China 1998, 4, 51–52, 54. [Google Scholar]
- Tardy, A.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention. China Food Composition Tables; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- Li, P.; He, W.; Wu, G. Composition of amino acids in foodstuffs for humans and animals. Adv. Exp. Med. Biol. 2021, 1332, 189–210. [Google Scholar] [PubMed]
- Huang, Y.; Ren, T.; Wan, H.; Xie, J. Research on functional activities of organic acids in edible plant ferment. Food Mach. 2021, 37, 209–214. [Google Scholar]
- Zhang, J.; Zhang, S.; Huang, H.; Wang, H. Analysis of polybasic acids and higher fatty acids in Rosa roxburghii Tratt fruit. Food Drug 2007, 6, 25–27. [Google Scholar]
- An, H.; Liu, M.; Yang, M.; Fan, W. Analysis of main organic acid compositions in Rosa roxburghii Tratt. Sci. Agric. Sin. 2011, 44, 2094–2100. [Google Scholar]
- Liu, M.; Zhang, Q.; Zhang, Y.; Lu, X.; Fu, W.; He, J. Chemical analysis of dietary constituents in Rosa roxburghii Tratt and Rosa sterilis fruits. Molecules 2016, 21, 1204. [Google Scholar] [CrossRef]
- Lv, J.; Li, S.; Chen, J. Study on stability of Vc and SOD in Rosa roxburghii Tratt. J. Mt. Agric. Biol. 2006, 3, 223–228. [Google Scholar]
- Gao, Y.; Lin, X.; Su, S. The research of Rosa roxburghii Tratt’s Vc and SOD in different moisture content. Chin. Agric. Sci. Bull. 2014, 30, 149–152. [Google Scholar]
- Xiang, Z.; Xia, C.; Deng, J.; Zhu, Y.; Chen, J.; Zheng, A.; Liu, X.; Zhao, X.; Lin, C. Effect of hot air drying on bioactive substance in Rose roxburghii. Food Nutr. China 2021, 27, 9–12. [Google Scholar]
- Yan, G.; Zheng, P.; Weng, S.; Zhang, Y.; Xu, W.; Luo, J.; Fei, J.; Wang, J.; Zhang, H.; Hu, H.; et al. Comparison of chemical compositions and antioxidant activities of fresh and dried R. roxburghii Tratt fruit. Nat. Prod. Commun. 2022, 17, 4. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Chapter seven–dietary Vitamin C in human health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar] [PubMed]
- Bryan, N.; Justin, R.; Lewis, C.; Jihye, Y. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 2019, 19, 271–282. [Google Scholar]
- Ying, W.; Robyn, B.; Alycia, N.; Siegfried, H. Superoxide dismutases dual roles in controlling ROS damage and regulating ROS signaling. J. Biol. Chem. 2018, 217, 1915–1928. [Google Scholar]
- Arianna, C.R.; Daniele, C.; Niccolò, C.; Natascia, B.; Franco, D. Superoxide dismutase administration a review of proposed human uses. Molecules 2021, 26, 1844. [Google Scholar]
- Yuan, M.; Wang, C.; Wang, Y.; Xu, G.; Han, X. Progress in the research of superoxide dismutase. Chin. J. Histochem. Cytochem. 2016, 25, 550–558. [Google Scholar]
- Wu, S.; Zhang, W.; Sun, X.; Jin, J.; Shi, J.; Gu, G. Studies on determination of SOD activity in Rosa roxburghii Tratt. Food Sci. 2005, 11, 38–42. [Google Scholar]
- Wang, Z.; Xu, L. Study on ultrasonic assisted extraction of SOD from Rosa roxburghii. J. Yellow River Conserv. Tech. Inst. 2015, 27, 46–49. [Google Scholar]
- Li, D.; Jiang, N. Determination VC SOD and flavonoids content and interaction of Rosa roxburghii Tratt. Farm Prod. Process. 2016, 5, 49–50, 57. [Google Scholar]
- Tang, F.; Mao, Y.; Yang, X.; Xu, J.; Du, L. Research on the SOD determination of Rosa roxburghii Tratt and preserving methods. J. Southwest Univ. Natl. 2009, 35, 543–546. [Google Scholar]
- Fu, A.; Gao, M.; Feng, J. Extraction and activity determination of SOD in Rosa roxburghii Tratt. Guangzhou Chem. Ind. 2016, 44, 144–146. [Google Scholar]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y. Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. Int. J. Biol. Macromol. 2019, 139, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Peng, S.; Wang, H. Analysis on polysaccharide content of Rosa roxburghii from different producing areas. Stud. Trace Elem. Health 2006, 5, 69–70. [Google Scholar]
- Chen, F.; Huang, G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 112, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, L. Research progress on extraction purification and biological activity of prickly pear polysaccharide. Agric. Technol. Equip. 2021, 11, 105–107. [Google Scholar]
- Wang, H.; Li, Y.; Ren, Z.; Cong, Z.; Chen, M.; Lin, S.; Xu, H.; Jin, P. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity. Int. J. Biol. Macromol. 2018, 112, 473–482. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Li, C. Structural characterization of a novel acidic polysaccharide from Rosa roxburghii Tratt fruit and its α-glucosidase inhibitory activity. Food Funct. 2018, 9, 3974–3985. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, C.; Huang, Q.; Fu, X. Polysaccharide from Rosa roxburghii Tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice. J. Agric. Food Chem. 2020, 68, 147–159. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Xiao, J.; Qiang, H.; Chao, L.; Xiong, F. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem. 2018, 249, 127–135. [Google Scholar] [CrossRef]
- Chen, Q.; Li, C.; Huang, T.; Fu, X.; Jia, Q. Physicochemical characterization, in vitro antioxidant and α-glucosidase inhibitory activity of polysaccharides from rosa sterilis fruit. Mod. Food Sci. Technol. 2019, 35, 114–119. [Google Scholar]
- Chen, G.; Kan, J. Characterization of a novel polysaccharide isolated from Rosa roxburghii Tratt fruit and assessment of its antioxidant in vitro and in vivo. Int. J. Biol. Macromol. 2018, 107, 166–174. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Chen, Y.; Tian, Y.; Chen, J. Physicochemical characterization and in vitro biological activities of water-extracted polysaccharides fractionated by stepwise ethanol precipitation from Rosa roxburghii Tratt fruit. J. Food Meas. Charact. 2022, 16, 38–48. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Y.; Wang, L.; Fu, X.; Li, C. Physicochemical characterization of a polysaccharide from Rosa roxburghii Tratt fruit and its antitumor activity by activating ROS mediated pathways. Curr. Res. Food Sci. 2022, 5, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, C.; Huang, Q.; Fu, X. Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H2O2-induced apoptosis in INS-1 cells. Food Funct. 2019, 10, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, F.; Liang, G. Studies on physicochemical properties and anti-hypoxia activity of polysaccharide RRTP-1 from Rosa roxburghii. Chin. Pharm. J. 2005, 23, 1775–1778. [Google Scholar]
- Xie, H.; Deng, J.; Yang, X.; Li, L.; Wang, Y.; Li, Q.; Luo, Z.; Yang, J. Structure analysis and NGF-Like neurotrophic activity of polysaccharides RRTFP-2 from Rosa roxburghii Tratt. Food Sci. Technol. 2022, 47, 224–230. [Google Scholar]
- Wang, L.; Tian, Y.; Zhang, P.; Li, C.; Chen, J. Polysaccharide isolated from Rosa roxburghii Tratt fruit as a stabilizing and reducing agent for the synthesis of silver nanoparticles: Antibacterial and preservative properties. J. Food Meas. Charact. 2022, 16, 1241–1251. [Google Scholar] [CrossRef]
- Lu, W.; Fei, J.; Shen, X.; Wang, J. Phenolic profiles, antioxidant and antiproliferative activities towards tumor cells of five fruit juices. Sci. Technol. Food Ind. 2022, 43, 365–371. [Google Scholar]
- Adila, N.; Muhammad, Z.I.K.; Madiha, A.; Nosheen, A.; Mohammad, K.O.; Abdulrahman, A.H.; Wahidah, H.A.Q.; Hamada, A.; Ihsan-Ul, H. HPLC-DAD based polyphenolic profiling and evaluation of pharmacological attributes of Putranjiva roxburghii wall. Molecules 2021, 27, 68. [Google Scholar]
- Chen, C. Isolation, Purification, Hypoglycemic Activity and Mechanism of Flavonoids from R. roxburghii. Master′s Thesis, Guizhou University, Guizhou, China, 2022. [Google Scholar]
- Fan, B.; Wang, Y.; Lian, X.; Xie, W.; Yu, Y.; Liang, J. Structure-activity relationships and mechanisms of triterpenoids against virus. CIESC J. 2020, 71, 4071–4101. [Google Scholar]
- Qin, J.; Li, Q.; Xue, Y.; Ma, L.; Yang, X. Study on extraction methods and α-glucosidase inhibitory activity from the total triterpenes of Rosa roxbughii. Sci. Technol. Food Ind. 2014, 35, 186–189. [Google Scholar]
- Luo, S.; Tan, B.; Wang, Q.; Liao, J. Effect of Rosa roxburghii on monoamine oxidase activity in aging mice. Sichuan J. Tradit. Chin. Med. 2003, 4, 5. [Google Scholar]
- Liu, S.; Yin, R.; Wei, Y.; Xia, X.; Li, Y. Study on the Effect of Rosa roxburghii Tratt on preventing skin aging induced by d-galactose in mice. Food Res. Dev. 2020, 41, 1–5. [Google Scholar]
- Fan, C.; Deng, Y.; Zhang, Y.; Xin, N. Research Progress on Pharmacological Activity of Rosa roxburghii Tratt. Life Sci. Instrum. 2021, 19, 14–21. [Google Scholar]
- Zhang, S.; Tang, Y.; Zhang, D.; Zhang, J. Effect of Rosa roxburghii Tratt powder on alleviating oxidative stress injury of skeletal muscle in overtrained rat. Sci. Technol. Food Ind. 2022, 43, 338–346. [Google Scholar]
- Zhang, H.; Wu, C.; Fan, G.; Ying, R.; Li, T. Refining and antioxidant activity of flavonoids from Rosa roxburghii Tratt. J. Nanjing For. Univ. 2015, 39, 101–105. [Google Scholar]
- Yang, S.; Tan, S.; Chen, C.; Dai, X. Study on Purification Technology and in vitro Antioxidant Activity of Rosa roxburghii Polyphenols. Food Ferment. Sci. Technol. 2022, 58, 7–14. [Google Scholar]
- Yang, Y.; Li, W.; Xian, W.; Huang, W.; Yang, R. Free and bound phenolic profiles of Rosa roxburghii Tratt leaves and their antioxidant and inhibitory effects on α-glucosidase. Front. Nutr. 2022, 9, 922496. [Google Scholar] [CrossRef]
- Zhou, G.; Lu, M.; An, H. Analysis of main active substances and antioxidant activities in leaves of Rosa roxburghii and the two related species. J. Nucl. Agric. Sci. 2019, 33, 1658–1665. [Google Scholar]
- Cao, J.; Yang, W.; Cao, Y. Anti-fatigue and antioxidant activity of the polysaccharides isolated from Rosa roxburghii Tratt. F. Normalis Rehd. Wils. Chin. J. Basic Med. Tradit. Chin. Med. 2018, 24, 474–476, 481. [Google Scholar]
- Liu, M.; Zhan, J.; Guo, Y.; Wang, Z.; Hu, M. Effect of Cili freeze-dried powder on renal fibrosis model in rats and intervention mechanism. J. Clin. Nephrol. 2017, 17, 366–371. [Google Scholar]
- Lu, X.; Bao, S. Effect of polysaccharides from fructus Rosae Roxburghii on stress tolerance and immune function. J. Guangzhou Univ. Tradit. Chin. Med. 2002, 2, 141–142. [Google Scholar]
- Tian, Q.; Li, L.; Peng, M.; Li, Y.; Niu, Z.; Li, Q.; Wang, T.; Yang, X. Immunocompetence of total triterpenoids from Rosa roxburghii Tratt fruit. J. Northwest A F Univ. 2022, 50, 11–19. [Google Scholar]
- Li, J.; Zhang, A.; Ren, Y.; Liu, Z.; Huang, X.; Yang, D. Regulating effects of Rosa roxburghii Tratt preparation on immune function in arseniasis patients caused by coal burning. Chin. J. Prev. Med. 2013, 47, 5. [Google Scholar]
- Li, S.; Su, W.; Zhang, X.; Guan, Y. Arachidonic acid metabolism in liver glucose and lipid homeostasis. Acta Physiol. Sin. 2021, 73, 657–664. [Google Scholar]
- Schmidt, A.M. Highlighting diabetes mellitus: The epidemic continues. Arter. Throm Vas. 2018, 38, e1–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Zhang, B.; Wang, B.; Li, C.; Fu, X.; Huang, Q. In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on α-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose. J. Funct. Foods 2019, 50, 13–21. [Google Scholar] [CrossRef]
- An, Y.; Lu, M.; Lu, X.; Li, D.; Huang, Y.; Peng, Y. Rosa roxburghii Tratt wine can improve glucose metabolism disorder in type 1 diabetic rats through Insulin-PI3K pathway. Mod. Food Sci. Technol. 2020, 36, 25–33. [Google Scholar]
- An, Y.; Zhou, J.; Zhu, D. Rosa roxburghii fruit wine improves glucose and lipid metabolism disorder in Type 2 diabetic rats. Sci. Technol. Food Ind. 2022, 43, 361–368. [Google Scholar]
- Chen, C.; Tan, S.; Ren, T.; Wang, H.; Dai, X.; Wang, H. Polyphenol from Rosa roxburghii Tratt fruit ameliorates the symptoms of diabetes by activating the P13K/AKT insulin pathway in db/db mice. Foods 2022, 11, 636. [Google Scholar] [CrossRef]
- Walid, H.E.; Abeer, T. Natural products for controlling hyperlipidemia: Review. Arch. Physiol. Biochem. 2019, 125, 128–135. [Google Scholar]
- Zhou, Y. The Study on the Hypoglycemic and Hypolipidemic and Antioxidant Activity Effect from the Tea of Rosa roxbugrhii Tratt. Master′s Thesis, Guizhou University, Guizhou, China, 2017. [Google Scholar]
- Zhang, X.; Qu, W.; Sun, B.; Zhang, Z.; Niu, W.; Pan, Y. The preventive effect of flavoniod of Rosa roxburghii Tratt on diabetic mice on diabetic mice. Acta Nutr. Sin. 2004, 6, 474–476. [Google Scholar]
- Wu, P.; Han, S.; Wu, M. Beneficial effects of hydroalcoholic extract from Rosa roxburghii Tratt fruit on hyperlipidemia in high-fat-fed rats. Acta Cardiol. Sin. 2020, 36, 148–159. [Google Scholar]
- Ji, J.; Zhang, S.; Yuan, M.; Zhang, M.; Tang, L.; Wang, P.; Liu, Y.; Xu, C.; Luo, P.; Gao, X. Fermented Rosa roxburghii Tratt juice alleviates high-fat diet-induced hyperlipidemia in rats by modulating gut microbiota and metabolites. Front. Pharmacol. 2022, 13, 883629. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, P.; Li, C.; Xu, F.; Chen, J. A polysaccharide from Rosa roxburghii Tratt fruit attenuates high-fat diet-induced intestinal barrier dysfunction and inflammation in mice by modulating the gut microbiota. Food Funct. 2022, 13, 530–547. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Yang, P.; Xia, R. Study on weight loss activity and mechanism based on the “digestion” effect of juice of Rosa roxburghii. Asia-Pac. Tradit. Med. 2020, 16, 25–28. [Google Scholar]
- Wang, J. Facing the 21st Century Curriculum Materials <Biochemistry>; Higher Education Press: Beijing, China, 2007. [Google Scholar]
- Wu, L.; Yang, L.; He, Z.; Xiong, L.; Liang, X.; Zhang, X. Effects of Rosa roxburghii juice on the experimental hy-perlipoidemia and arteriosclerosis in rabbits. Chin. Vet. J. 1995, 4, 386–389. [Google Scholar]
- Jian, C.; Lu, W.; Tang, X.; Huang, X.; Chen, H. Study on the anti-atherosclerosis effect of Rosa roxburghii Tratt. Asia-Pac. Tradit. Med. 2015, 11, 10–11. [Google Scholar]
- Zhang, C.; Ji, W.; Zhuang, Y.; Chen, D.; Liu, X.; Qiang, H. Inhibitory effects of Rosa roxburghii Tratt juice on macrophage-derived foamy cell formation. Bull. Med. Postgrad. 2000, 6, 366–368. [Google Scholar]
- Jian, C.; Tang, X.; Huang, X.; Chen, H.; Tang, H. Clinical study of oral Rosa roxburghii juice against atherosclerosis in patients with cerebral infarction. Asia-Pac. Tradit. Med. 2017, 13, 136–137. [Google Scholar]
- Dai, T.; Yang, X. Research progress on chemical constituents and pharmacological activities of Rosa roxburghii Tratt. J. Guiyang Coll. Tradit. Chin. Med. 2015, 37, 93–97. [Google Scholar]
- Yu, L.; Fang, N.; Yang, X.; Liu, J.; Liu, J.; Liu, H.; Zhou, Q.; Chen, D. Effects of Rosa roxburghii extract on proliferation and differentiation in human hepatoma SMMC-7721 cells and CD34+ haematopoietic cells. Yakugaku Zasshi 2007, 53, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Xu, R.; Hu, Y.; Li, Y. Research progress on nutritional and medicinal value of Rosa roxburghii. Plant Physiol. J. 2021, 57, 1393–1400. [Google Scholar]
- Chen, Y.; Liu, Z.; Liu, J.; Liu, L.; Zhang, E.; Li, W. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from Rosa roxburghii Tratt in vitro. Asian Pac. J. Cancer Prev. 2015, 15, 10351–10354. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chang, Y.; Liu, Z. Experimental study on inhibitory effect of Rosa roxburghii polysaccharide on melanoma in mice. Shaanxi Med. J. 2021, 50, 529–533. [Google Scholar]
- Tang, J.; Lü, D.; Peng, M.; Fan, J.; Pan, M.; Chen, Z.; Wang, H.; Yang, J. Optimization of enzymatic-assisted thermal water extraction of Rosa roxburghii polysaccharide and its antitumor activity. Sci. Technol. Food Ind. 2021, 42, 98–105. [Google Scholar]
- Dai, Z.; Xu, L.; Yang, X.; Shi, J. Effects of roxide triterpenoid CL1 on human adenocarcinoma endometrium cell in vitro. Lishizhen Med. Mater. Med. Res. 2011, 22, 1656–1658. [Google Scholar]
- Huang, J.; Jiang, J.; Luo, Y.; Dai, Z. Effect of Rosa roxburghii Tratt triterpene on proliferation of human hepatoma SMMC-7721 Cells. Food Sci. 2013, 34, 275–279. [Google Scholar]
- Xu, P.; Cai, X.; Zhang, W.; Li, Y.; Qiu, P.; Lu, D.; He, X. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway. Apoptosis 2016, 21, 1125–1143. [Google Scholar] [CrossRef]
- Xu, P.; Liu, X.; Xiong, X.; Zhang, W.; Cai, X.; Qiu, P.; Hao, M.; Wang, L.; Lu, D.; Zhang, X.; et al. Flavonoids of Rosa roxburghii Tratt exhibit anti-apoptosis properties by regulating PARP-1/AIF. J. Cell. Biochem. 2017, 118, 3943–3952. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Wang, T.; Lin, Z.; Hu, Y.; Huang, Z.; Yang, X.; Xu, P. Flavonoids from Rosa roxburghii Tratt prevent reactive oxygen species-mediated DNA damage in thymus cells both combined with and without PARP-1 expression after exposure to radiation in vivo. Aging 2020, 12, 16368–16389. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Wang, J. Progress in the studies of pharmacology of Rosa roxbughii tratt. J. Med. Postgrad. 2005, 11, 93–95. [Google Scholar]
- Qin, X.; Zhang, X.; Xia, B. The protective effects of SOD enriched Cili juice on cadmium poisoning rats. Chin. J. Indusreial Hyg. Dccupational Dis. 1998, 1, 49–51. [Google Scholar]
- Cai, W.; Li, S.; Miao, J.; Xia, B. Experimental study on the therapeutic effects of Cili juice enriched with SOD (CLJES) in mice and rats with arsenic poisoning. Chin. Pharm. J. 2001, 12, 27–32. [Google Scholar]
- Xiang, C. Effect of SOD-enriched cili juice on immune function of arsenic poisoning rats. Chin. J. Control. Endem. Dis. 2016, 31, 233–234. [Google Scholar]
- Fang, X.; Li, S.; Zheng, Y. Nutritional value and exploitation of Rosa roxburghii. Sci. Technol. Food Ind. 2004, 1, 137–138. [Google Scholar]
- Yang, L.; Li, S.; Xia, B. Therapeutic effect of Cili juice enriched with SOD on lead poisoning in rats and mice. Chin. Pharm. J. 1998, 4, 21–24. [Google Scholar]
- Liu, Q.; Dong, G.; Cui, R.; Zhao, Y.; Li, H.; Zhao, M. Antagonistic effect of Rosa roxburghii juice beverage on lipid peroxidation damage induced by manganese poisoning. J. Health Toxicol. 1999, 1, 44–46. [Google Scholar]
- Chen, K.; Song, L.; Feng, C.; Cai, C.; Wang, M.; Meng, X.; Peng, M. Further study on the lead expelling effect of Rosa roxburghii juice. Chin. J. Prev. Med. 2001, 2, 69. [Google Scholar]
- Chen, K.; Song, L.; Cai, G.; Feng, C.; Cai, H. Clinical observation on lead expelling by Cili ‘931’ oral liquid. Guizhon Med. J. 1995, 1, 22–24. [Google Scholar]
- Fu, M. A Preliminary Study on the Role of Flavonoid of Rosa roxburghii Tratt and Its Mechanism in Progression of Chronic renocardiac Syndrome. Master′s Thesis, Southwest Medical University, Luzhou, China, 2016. [Google Scholar]
- Chen, H. Effects of Flavone of Rasa raxburghii Tustt on the Expression of Integrinβ-1, FAK and BAX, bcl-2 and p53 in Heart Failure Rats. Master′s Thesis, Xinxiang Medical University, Xinxiang, China, 2019. [Google Scholar]
- Yuan, H.; Wang, Y.; Chen, H.; Cai, X. Protective effect of flavonoids from Rosa roxburghii Tratt on myocardial cells via autophagy. 3 Biotech 2020, 10, 58. [Google Scholar] [CrossRef]
- Chen, J.; Meng, Q.; Chen, J.; Peng, Y.; Liu, X. An experiment study on acute gastric mucosal injury protective effects of ethnic drug root of Rose roxburghii Tratt. Chin. J. Ethnomed. Ethnopharm. 1999, 3, 167–169, 186. [Google Scholar]
- Zheng, B.; Qin, J.; Zhang, W. Effect of Cili juice on superoxide dismutase, malondialdehyde and prostaglandin E-2 of experimental gastric ulcer rats. Chin. Arch. Tradit. Chin. Med. 2017, 35, 991–993. [Google Scholar]
- Zheng, B.; Qin, J.; Li, Y.; Luo, J. Effect of Rosa roxburghii juice on serum TFF-2, egf and no in rats with acetic acid induced gastric ulcer. Chin. Tradit. Pat. Med. 2017, 39, 1064–1066. [Google Scholar]
- Hu, S.; Niu, H.; Yu, R.; Li, W. Hepatoprotective effect of Rosa roxburghii juice on chronic ethanol-induced liver injury in mice. J. Anhui Agric. Sci. 2017, 45, 102–105. [Google Scholar]
- Huang, Y.; Tan, S.; Chen, X.; Chen, P.; Song, Z. Antialcoholism effects of Rosa roxburghii Tratt oral liquid in acute drunkenness mice. Mod. Food Sci. Technol. 2019, 35, 18–23. [Google Scholar]
- Yang, S.; Huang, X.; Zhou, N.; Wu, Q.; Liu, J.; Shi, J. RNA-Seq analysis of protection against chronic alcohol liver injury by Rosa roxburghii fruit juice (Cili) in mice. Nutrients 2022, 14, 1974. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, Y.; Tan, S.; Tu, Y.; Luo, J. Anti-alcoholic and hepatoprotective effects of polyphenols from the fruit of Rosa roxburghii Tratt. in rats with acute alcoholism. Food Sci. 2021, 42, 163–169. [Google Scholar]
- Xu, Y.; Yu, C.; Zeng, Q.; Yao, M.; Chen, X.; Zhang, A. Assessing the potential value of Rosa roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. Environ. Geochem. Health 2021, 43, 1165–1175. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, Q.; Sun, B.; Wei, S.; Wang, Q.; Zhang, A. Assessing the role of Nrf 2/GPX 4-mediated oxidative stress in arsenic-induced liver damage and the potential application value of Rosa roxburghii Tratt [Rosaceae]. Oxidative Med. Cell. Longev. 2022, 2022, 9865606. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, J.; Pan, L.; Guo, Y.; Xie, X.; Ma, J. Intervention of Rosa roxburghii Tratt on FGF23-klotho axis in patients with spleen and kidney deficiency type CKD stage 3. Yunnan J. Tradit. Chin. Med. Mater. Med. 2019, 40, 70–72. [Google Scholar]
- Zhan, J.; Liu, M.; Pan, L.; He, L.; Guo, Y. Oxidative stress and TGF-B1/Smads signaling are involved in Rosa roxburghii fruit extract alleviating renal fibrosis. Evid.-Based Complement. Altern. Med. 2019, 4946580. [Google Scholar]
- Guo, Y.; Ge, P.; Ma, J.; Zhan, J. Mechanism of Rosa roxbunghii, a miao medicine, on delaying renal fibrosis by regulating SIRT1-TGFβ/Smads signal pathway. Chin. J. Gerontol. 2020, 40, 1922–1926. [Google Scholar]
- Li, D.; Liu, X.; Yang, X.; Zhang, H. Effect of superoxide dismutase from Rosa roxburghii on fertility of male mice. Chin. Pharmacol. Bull. 1995, 1, 80. [Google Scholar]
- Li, J. Study on Pharmacodynamic Material Basis and Mechanism of Rosa roxburghii Seed. Master′s Thesis, Beijing University of Chinese Medicine, Beijing, China, 2020. [Google Scholar]
- Chen, B.; Zhao, L.; Luo, Y.; Guan, L.; Yu, H.; Zhao, J.; Zhang, X.; Jiang, Z.; Chen, Y. Study the mechanism of Guizhou Rosa roxburghii radix on ulcerative colitis based on TLR4/NF-κB signaling pathway. Sci. Technol. Food Ind. 2022, 43, 353–358. [Google Scholar]
- Liang, Y. Study on Chemical Constituents and Anti-Inflammatory Activity of Rosa Roxbunghii Tratt rhizomes. Master’s Thesis, Guizhou Medical University, Guizhou, China, 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Yang, J.; Yang, X.; Wang, Y.; Wang, L.; Liao, X.; Li, Q.; Yang, Y.; Song, J. Study on the moistening and laxative function of dietary fiber from fermented Roxburgh Rose Pomace. Food Ferment. Sci. Technol. 2021, 57, 30–34. [Google Scholar]
- Chen, Y.; Yang, Q.; He, R. Study on the problems and countermeasures of Rosa roxburghii industry development in China. China Market 2021, 81, 49–50. [Google Scholar]
- Guo, X.; Hu, C.; Lu, X.; Tang, H.; Li, L.; Yi, W. Study on the problems and countermeasures of high-quality development of Rosa roxburghii Tratt industry in Guizhou province. North. Hortic. 2021, 21, 143–151. [Google Scholar]
- Zhu, Q.; Shi, Y.; Sun, Y.; Duan, L.; Wang, X.; Liu, K.; Li, H.; Feng, M. Study on the improvement of the quality standard of Rosa roxburghii Tratt. Chin. J. Ethnomed. Ethnopharm. 2022, 31, 48–52. [Google Scholar]
- Wang, Y.; Lei, Y.; Ma, X.; Liu, C.; Huang, Y.; Wang, A.; Li, Y. Quality standard of Rosa roxburghii leaves. China Pharm. 2019, 28, 36–38. [Google Scholar]
- Liang, Q.; Wu, Q.; Wu, J.; Li, L.; Chen, W.; Jiang, F. Study on extraction technology and determination method of root polyphenols in Rosa roxburghii Tratt. Lishizhen Med. Mater. Med. Res. 2019, 30, 319–322. [Google Scholar]
- Zhou, X.; Chen, H.; Zhang, M.; Yang, S. Study on HPLC fingerprint of Rosa roxburghii Tratt. Med. Her. 2014, 33, 82–85. [Google Scholar]
- Wang, T.; Li, L.; Yan, Y.; Tian, Q.; Chen, F.; Tan, Y.; Yang, J.; Peng, M.; Yang, L.; Luo, Z.; et al. Optimization of extraction process and simultaneous content determination for quality marker from Rosa roxburghii. Sci. Technol. Food Ind. 2022, 43, 251–260. [Google Scholar]
- Liu, D. Rosa roxburghii Leaves Quality Standards Rise and Rosa roxburghii Fruit Polyphenols Extraction Technology Research. Master’s Thesis, Guizhou Normal University, Guizhou, China, 2017. [Google Scholar]
- Chen, J.; Li, B.; Hu, Y.; Zhang, J.; Wang, R.; Sun, X. Phytochemical active composites in Rosa roxburghii Tratt: Content distribution and spectroscopic characterization. Spectrosc. Spectr. Anal. 2022, 42, 3403–3408. [Google Scholar]
- Li, Q.; Nan, Y.; Yang, Y.; Wang, D.; Yang, X. Simultaneous determination of two triterpenoids components from Rose roxburghii by HPLC. Guizhou Agric. Sci. 2016, 44, 125–128. [Google Scholar]
Nutrients and Active Ingredients | Fruits | Flowers | Leaves | |
---|---|---|---|---|
1 | Vitamin C (mg/100 g) | 276.87~3716.19 (FW) | 149.33 (FW) | 205.41 (FW) |
2 | Vitamin E (mg/100 g) | 3 (FW) | 10.89 (FW) | 1.53 (FW) |
3 | Vitamin P (mg/100 g) | 2909 (FW) | ||
4 | Vitamin A (mg/100 g) | 0.483 (FW) | ||
5 | Carotene (mg/100 g) | 2.9 (FW) | ||
6 | Vitamin B1 (mg/100 g) | 0.05 (FW) | 0.16 (DW) | |
7 | Vitamin B2 (mg/100 g) | 0.03 (FW) | 0.12 (DW) | |
8 | Vitamin B12 (mg/100 g) | 0.07 (DW) | ||
9 | Soluble sugar | 4.10%~9.37% | 22.71 g/100 g (DW) | 2.75% |
10 | Reducing sugar | 3.14%~7.09% | 4.77 g/100 g (DW) | 1.99% |
11 | protein | 11.62%~26.29% | 7.8 g/100 g (DW) | 16.04% |
12 | Total free amino acids (mg/100 g) | 1465.8~5755 (FW) | 360.51 (DW) | 781.63 (DW) |
13 | Essential amino acid (mg/100 g) | 229.3~1292.7 (FW) | 39.64 (DW) | 93.56 (DW) |
14 | Important trace element (mg/100 g) | Fe (19.20 FW), Mn (1.77 FW), Zn (1.50 FW), B (1.34 FW), Cu (0.94 FW), P (0.02 FW), K (0.16 FW), Ca (0.04 FW) | Fe (12.03 DW), Mn (7.01 DW), Cu (2.49 DW, Zn (6.89 DW), B (5.42 DW) | Fe (1.58 DW), Mn (0.05 DW), Cu (0.09 DW), Zn (0.22 DW), B (0.05 DW), Mo (0.08 DW) |
15 | Phenolic acid (mg/100 g) | 3356.68 (DW) | 1389.61 (DW) | 3928.21 (DW) |
16 | Flavone (mg/100 g) | 4956.7 (DW) | 1962.55 (DW) | 1864.95 (DW) |
17 | Triterpenoids (mg/100 g) | 1055.16 (DW) | 804.06 (DW) | 1423.64 (DW) |
18 | Anthocyanin (mg/100 g) | 179.97 (DW) | ||
19 | Total ellagic acid (mg/100 g) | 4936.37 (DW) | 19,708.54 (DW) | |
20 | SOD (U/g) | 22,000 (DW) | 2500 (DW) | 600 (DW) |
Fruit | R. roxburghii | Apple | Banana | Lemon | Lychee | Strawberry | Ficus | Pineapple | Kiwifruit | Mulbrry |
---|---|---|---|---|---|---|---|---|---|---|
Edible part (%) | 100 | 85 | 59 | 66 | 73 | 97 | 100 | 68 | 83 | 100 |
Moisture (g) | 81.00 | 86.10 | 75.80 | 91.00 | 81.90 | 91.30 | 81.3 | 88.40 | 83.40 | 82.80 |
Energy (kcal) | 63.00 | 53.00 | 93.40 | 37.00 | 71.00 | 32.20 | 65.0 | 43.60 | 61.20 | 57.20 |
Vitamin A (μg) | 483.00 | 4.00 | 5.00 | 150.00 | 1.00 | 2.50 | 2.50 | 20.00 | 11.00 | 2.50 |
Vitamin B1 (mg) | 0.05 | 0.02 | 0.02 | 0.05 | 0.10 | 0.02 | 0.03 | 0.04 | 0.05 | 0.02 |
Vitamin B2 (mg) | 0.03 | 0.02 | 0.04 | 0.02 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.06 |
Vitamin C (mg) | 2586.00 | 3.00 | 8.00 | 22.00 | 41.00 | 47.00 | 2.00 | 18.00 | 62.00 | - |
Vitamin E (mg) | 3.00 | 0.43 | 0.24 | 1.14 | - | 0.71 | 1.82 | - | 2.43 | 9.87 |
Carotene (μg) | 2900 | 20.00 | 60.00 | - | 10.00 | 30.00 | - | 20.00 | 130 | 30.00 |
Fe (mg) | 19.20 | 0.30 | 0.40 | 0.80 | 0.40 | 1.80 | 0.10 | 0.60 | 1.20 | 0.40 |
Zn (mg) | 1.50 | 0.04 | 0.18 | 0.65 | 0.17 | 0.14 | 1.42 | 0.14 | 0.57 | 0.26 |
Cu (mg) | 0.94 | 0.07 | 0.14 | 0.14 | 0.16 | 0.04 | 0.01 | 0.07 | 1.87 | 0.07 |
Mn (mg) | 1.77 | 0.03 | 0.65 | 0.05 | 0.09 | 0.49 | 0.17 | 1.04 | 0.73 | 0.28 |
Time | Components | Molecular Weight | Components (Molar Ratio/Molar Percentages) | Bioactivities | References |
---|---|---|---|---|---|
2018 | PR-1 | 7.4~6.2 × 103 KDa | Man (2.10%), Ribose (0.54%), Rha (2.10%), GluH (0.26%), GlcA (1.50%), GalA (22.70%), Glc (24.0%), Gal (26.40%), Ara (19.60%), Fuc (0.89%) | Antioxidant and strong α-D-glucosidase inhibitory activity | [46] |
2018 | PR-2 | 106.6~559.8 KDa | Man (3.2%), Ribose (0.8%), Rha (3.2%), GluA (2.2%), GalA (34.8%), Glc (12.1%), Gal (24.0%), Ara (19.4%) | Antioxidant and strong α-D-glucosidase inhibitory activity | [46] |
2018 2020 | RTFP | -- | Ara (33.80%), Gal (37.30%), Glc (20.70%), Man (1.74%), Xyl (3.43%), Fu (2.95%) | α-Amylase and α-glucosidase inhibitory capacities; Ameliorating hyperglycemia and hyperlipidemia; reversing diabetes-induced gut disorder | [48,49] |
2018 | RTFP-3 | 67.2 KDa | Ara (37.20%), Gal (34.14%), Glc (10.02%), Man (0.15%), Xy l (0.17%), Fu (18.30%), | α-Glucosidase inhibitory activity, attenuating oxidative stress and antimicrobial ability | [47,54,57] |
2019 | RSPs-40 | 228.3 kDa | Ara:Gal:Glc:Fru:GalA = 0.24:0.37:3.22:0.27:1.44 | Antioxidant and stronger α-glucosidase inhibitory activity than acarbose. | [50] |
2019 | RSPs-60 | 124.14 kDa | Ara:Gal:Glc:GalA = 1.58:2.06:2.37:1.69 | Antioxidant and stronger α-glucosidase inhibitory activity than acarbose. | [50] |
2019 | RTP1-1 | 97.58 kDa | Man:AsA:Rha:GlcA:GalA:Glc:Gal:Ara:Xyl = 2.88:1.39:2.83:1.00:69.11:3.04:2.52:3.41 | Antioxidant and anti-aging | [51] |
2021 | RTFP-30 | 515.1 kDa | Fuc:Rha:Ara:Gal:Glc:Xyl:Man:GalA:GluA = 2.56:3.22: 24.55:30.81:29.24:1.17:1.88:4.79:1.83 | Antioxidant and prevention of obesity and hypercholesterolemia | [52] |
2021 | RTFP-50 | 517.3 kDa | Fuc:Rha:Ara:Gal:Glc:Xyl:GalA:GluA = 2.73:4.85:15.38:26.35:10.52:2.06:37.17:0.94 | Antioxidant and prevention of obesity and hypercholesterolemia | [52] |
2021 | RTFP-80 | 176.5 kDa | Fuc:Rha:Ara:Gal:Glc:Xyl:GalA:GluA = 2.21:5.16:18.00:28.21:11.20:0.57:33.46:1.19 | Antioxidant and strong α-glucosidase inhibitory activity | [52] |
2005 | RRTP-1 | 3200 kDa | Rha:Ara:Unknown monose:Xyl:Man:Gal:Clu = 1.00:16.75:13.37:5.86:11.49:22.73:7.80 | Remarkable protective effect on neural stem cells damage induced by Na2S2O3. | [55] |
2022 | RRTFP-2 | 74.33 kDa | Rha:Ara:Man:Glc:Gal:GluA:GalA = 1.1:6.5:1.1:1.2:1.2:16.1 | NGF-like neurotrophic activity. | [56] |
2022 | RTFP-1 | 128.7 kDa | Ara (34.84%), Gal (40.59%), Glc (12.11%), Man (5.06%), Xyl (3.39%), and Fuc (4.01%) | Chemopreventive and antitumor agent | [53] |
Components | Fruits | Petals | Leaves | |
---|---|---|---|---|
(mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | ||
Flavonoid | Catechin | 1114.18 | 720.70 | 867.41 |
Epicatechin | 227.60 | 284.00 | 194.95 | |
Rutin | 681.27 | 88.21 | 88.37 | |
Quercetin | 644.40 | 49.64 | 9.85 | |
Quercitrin | 420.82 | 159.02 | 65.03 | |
Isoquercitrin | 269.07 | 50.10 | 138.38 | |
Luteolin | 411.73 | 54.91 | 44.72 | |
Myricetin | 614.65 | 186.88 | 289.47 | |
Kaempferol | 421.91 | 64.65 | 36.43 | |
Proanthocyanidins | 14.25 | 95.44 | 4.98 | |
Apigenin | 27.48 | 12.03 | 7.84 | |
Naringenin | 49.53 | 53.22 | 9.67 | |
Naringin | 59.81 | 143.75 | 107.85 | |
Total content of flavonoid | 4956.7 | 1962.55 | 1864.95 | |
Phenolic acid | Gallic acid | 80.05 | 92.46 | 138.06 |
Protocatechuic acid | 135.42 | 144.93 | 200.63 | |
Caffeic acid | 70.79 | 313.59 | 326.69 | |
Syringic acid | 30.47 | 11.38 | 267.50 | |
P-coumaric acid | 62.26 | 41.71 | 15.09 | |
Chlorogenic acid | 131.90 | 45.63 | 1363.17 | |
Ferulic acid | 49.88 | 88.64 | 50.45 | |
Vanillic acid | 110.27 | 354.52 | 821.39 | |
Rosmarinic acid | 60.66 | 163.21 | 225.54 | |
Tannic acid | 2624.98 | 133.54 | 519.68 | |
Total content of flavonoid | 3356.38 | 1389.61 | 3928.8 |
Components | Fruits | Petals | Leaves |
---|---|---|---|
(mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | |
Echinacoside | 441.16 | 133.72 | 600.41 |
Roseoside | 69.37 | 45.15 | 238.81 |
Rosolic acid | 681.27 | 614.7 | 566.13 |
Ursolic acid | 530.81 | 10.49 | 18.29 |
Total content | 1055.16 | 804.06 | 1423.62 |
Constituents | Fresh Fruits | Dried Fruits | |
---|---|---|---|
Amino acids | 21.34% | 34.29% | |
Acylamide | 0% | 11.29% | |
Flavonoids | 35% | 22.13% | |
Main component of flavonoids | Catechin or its isomer (13.25%), procyanidin B1 or its isomer (8.96%) | Catechin or its isomer (10.32%), procyanidin B1 or its isomer (4.44%) | |
Organic acids | 60.37% | 52.81% | |
Main component of organic acids | L-ascorbic acid (30.8%) | L-ascorbic acid (25.28%) | |
Phenols | 3.88% | 19.10% | |
Main component of phenols | Ellagic acid (1.31%) | Ellagic acid (4.84%) and gallic acid (4.54%) | |
Terpenoids | 16.56% | 13.3% | |
DPPH radical scavenging activity (mg AAE/g) | DPPH | 2.92 | 5.05 |
IC50 (mg/mL) | 4.21 | 3.69 | |
FRAP value (mmol Fe2+/100 g) | FRAP | 110.62 | 187.3 |
No. | Functions | Mechanisms | Active Components | References |
---|---|---|---|---|
1 | Antioxidant activity | Scavenging free radicals, regulating the activity of related enzymes, chelating metal ions (Fe3+), regulating the level of Na+, K+, regulating the expression of related genes, increasing the content of beneficial substances, and reducing the content of harmful substances. | Polysaccharides, polyphenols, flavonoids, vitamin C, triterpenesand and SOD | [9,15,19,31,46,50,51,52,63,64,65,66,67,68,69,70,71] |
2 | Immune regulation | Reducing the expression of immune inflammatory factors, increasing the content and phagocytosis of macrophages, improving the ability to resist oxidative stress, regulating the immune microenvironment, and enhancing immune function. | Polysaccharide, triterpenoid | [72,73,74,75] |
3 | Reducing blood glucose | Inhibiting the activity of related enzymes to decrease the absorption rate of blood glucose; regulating the expression of protease through multiplying cellular signaling pathways. | Polysaccharides, polyphenols, flavonoids and triterpenes. | [46,47,48,49,50,52,54,62,78,79,80,81] |
4 | Reducing blood lipid | Improving the activity of related enzymes, regulating the expression of related proteases and binding cholesterol, bile acids and the fat of the body. | Polysaccharide, phenolic acids | [52,82,83,84] |
5 | Modulating intestinal flora and lipid metabolism | Increasing the abundance of beneficial groups and their related metabolites and SCFAs in intestinal tract; down-regulating the key enzymes related to fatty acid synthesis in liver lipid metabolism; regulating the expression of related factors; promoting the transformation of adipose tissue macrophages from M1 phenotype to M2 phenotype. Improving the level of lipid decomposition and reducing the accumulation of fat in the body. | Polysaccharides, polyphenols, flavonoids, and vitamin C | [49,85,86,87] |
6 | Anti-atherosclerosis | Reducing the contents of HDL, TC and TG, inhibiting ox-VLDL and foam-stimulating cell, improving SOD activity, regulating lipid metabolism, reducing lipid and oxidative damage, and preventing plaque formation. | Closely related to vitamin C | [89,90,91,92] |
7 | Antitumor | Controlling the expression of related genes and molecules, blocking the synthesis of carcinogens, inducing the apoptosis of cancer cells, and inhibiting the proliferation of tumor cells; down-regulating the expression of bad mRNA and inducing cell differentiation. | Polysaccharides, triterpenes | [93,94,95,96,97,98,99,100] |
8 | Anti-radiation | Regulating related genes and signaling pathways, reducing ROS production and cells’ apoptosis. | Flavonoids | [101,102,103] |
9 | Heavy metal detoxification | Promoting the excretion of heavy metals, supplementing the body trace elements, reducing peroxide damage, improving SOD activity, and enhancing body immunity. | Polysaccharide, vitamin C, SOD, and trace elements | [105,106,107,108,109,110,111,112] |
10 | Cardioprotection | Enhancing the ability of antioxidant damage, improving blood rheology, regulating the excessive stress of endoplasmic reticulum; regulating related signaling pathways and key proteins, and down-regulating cardiac autophagy. | Flavonoids | [113,114,115] |
11 | Gastric mucosal protection | Inhibiting injury factors, increasing the content of protective factors and vasoactive substances, and promoting antioxidant and anti-inflammatory effects. | Antioxidant and anti-inflammatory related active ingredients | [116,117,118] |
12 | Reducing alcoholic liver injury | Regulating related gene expression and protease activity, accelerating ethanol metabolism, reducing oxidative stress, and reducing the level of harmful substances in liver and serum. | Polyphenols | [119,120,121,122] |
13 | Alleviating coal-fired arsenic poisoning liver injury. | Reducing the accumulation of arsenic in the body, inhibiting the damage-related signaling pathways, improving the disorder of elemental metabolism and weight loss caused by arsenic poisoning, and reducing oxidative stress injury. | Active substances related to heavy metal detoxification | [123,124] |
14 | Renal protective function | Reducing oxidative stress injury, regulating related signaling pathways and proteases, and resisting renal interstitial fibrosis. | Flavonoids, vitamin C and SOD | [125,126,127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wei, T.; Zheng, L.; Jiang, F.; Ma, W.; Lu, M.; Wu, X.; An, H. Recent Advances on Main Active Ingredients, Pharmacological Activities of Rosa roxbughii and Its Development and Utilization. Foods 2023, 12, 1051. https://doi.org/10.3390/foods12051051
Wang L, Wei T, Zheng L, Jiang F, Ma W, Lu M, Wu X, An H. Recent Advances on Main Active Ingredients, Pharmacological Activities of Rosa roxbughii and Its Development and Utilization. Foods. 2023; 12(5):1051. https://doi.org/10.3390/foods12051051
Chicago/Turabian StyleWang, Li, Tingting Wei, Li Zheng, Fangfang Jiang, Wentao Ma, Min Lu, Xiaomao Wu, and Huaming An. 2023. "Recent Advances on Main Active Ingredients, Pharmacological Activities of Rosa roxbughii and Its Development and Utilization" Foods 12, no. 5: 1051. https://doi.org/10.3390/foods12051051
APA StyleWang, L., Wei, T., Zheng, L., Jiang, F., Ma, W., Lu, M., Wu, X., & An, H. (2023). Recent Advances on Main Active Ingredients, Pharmacological Activities of Rosa roxbughii and Its Development and Utilization. Foods, 12(5), 1051. https://doi.org/10.3390/foods12051051