Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Growth Conditions
2.2. Basic Genetic Techniques and Enzymes
2.3. Recombinant Plasmids Derived from pMG36c and Transformation into L. lactis Hosts
2.4. Recombinant Plasmids Derived from pNZ8048c and Transformation into L. lactis Hosts
2.5. Antimicrobial Activity of the Recombinant L. lactis Strains
2.6. Purification of Bacteriocins
2.7. Mass Spectrometry (MS) and Multiple Reaction Monitoring (MRM) Analysis of Purified Peptide Fractions from Supernatants of the Recombinant L. lactis Strains
3. Results
3.1. Genetic Design and Cloning of Synthetic Genes That Drive the Heterologous Production of GarA and/or GarQ by Recombinant L. lactis Cells
3.2. Antimicrobial Activity of the Recombinant L. lactis Strains as Determined by Their Direct Antagonistic Effect (SOAT) and the Antimicrobial Activity (ADT) of Their Cell-Free Supernatants
3.3. Antimicrobial Activity of Recombinant L. lactis Strains against Different L. garvieae Strains
3.4. Purification of Bacteriocins Produced by L. lactis subsp. cremoris WA2-67 (pJFQI) and L. lactis subsp. cremoris WA2-67 (pJFQIAI)
3.5. Mass Spectrometry (MS) and Multiple Reaction Monitoring (MRM) Analysis of the Purified Bacteriocin Fractions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chikindas, M.L.; Weeks, R.; Drider, D.; Chistyakov, V.A.; Dicks, L.M. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol. 2018, 49, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Sabharwal, V.; Kaushik, P.; Joshi, A.; Aayushi, A.; Suri, M. Postbiotics: From emerging concept to application. Front. Sustain. Food Syst. 2022, 6, 887642. [Google Scholar] [CrossRef]
- Todorov, S.D.; Popov, I.; Weeks, R.; Chikindas, M.L. Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: Benefits, challenges, concerns. Foods 2022, 11, 3145. [Google Scholar] [CrossRef] [PubMed]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from Lactic Acid Bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for food and feed. A bacteriocin perspective. Curr. Opin. Biotechnol. 2020, 61, 160–167. [Google Scholar] [CrossRef]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, fuaa039. [Google Scholar] [CrossRef]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef]
- Sadeghi, A.; Ebrahimi, M.; Kharazmi, M.S.; Jafari, S.M. Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome. General aspects and emerging trends. Food Chem. 2023, 411, 135478. [Google Scholar] [CrossRef]
- Górska, A.; Przystupski, D.; Niemczura, M.J.; Kulbacka, J. Probiotic bacteria: A promising tool in cancer prevention and therapy. Curr. Microbiol. 2019, 76, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.S.; Ng, Z.J.; Halim, M.; Oslan, S.N.; Oslan, S.N.H.; Tan, J.S. A comprehensive review on the anticancer potential of bacteriocins: Preclinical and clinical studies. Int. J. Pept. Res. Ther. 2022, 28, 75. [Google Scholar] [CrossRef]
- Molujin, A.M.; Abbasiliasi, S.; Nurdin, A.; Lee, P.-C.; Gansau, J.A.; Jawan, R. Bacteriocins as potential therapeutic approaches in the treatment of various cancers: A review of in vitro studies. Cancers 2022, 14, 4758. [Google Scholar] [CrossRef]
- Umu, Ö.C.O.; Bäuerl, C.; Oostindjer, M.; Pope, P.B.; Hernández, P.E.; Pérez-Martínez, G.; Diep, D.B. The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS ONE 2016, 11, e0164036. [Google Scholar] [CrossRef] [Green Version]
- Małaczewska, J.; Kaczorek-Łukowska, E. Nisin—A lantibiotic with immunomodulatory properties: A review. Peptides 2021, 137, 170479. [Google Scholar] [CrossRef]
- Havarstein, L.S.; Diep, D.B.; Nes, I.F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 1995, 16, 229–240. [Google Scholar] [CrossRef]
- Driessen, A.J.M.; Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 2008, 77, 643–667. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ramos, A.; Ladjouzi, R.; Benachour, A.; Drider, D. Evidence for the involvement of pleckstrin homology domain-containing proteins in the transport of enterocin DD14 (EntDD14); a leaderless two-peptide bacteriocin. Int. J. Mol. Sci. 2021, 22, 12877. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of Lactic Acid Bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Montalbán-López, M.; Scott, T.A.; Ramesh, S.; Rahman, I.R.; van Heel, A.J.; Viel, J.H.; Bandarian, V.; Dittmann, E.; Genilloud, O.; Goto, Y.; et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 2021, 38, 130–239. [Google Scholar] [CrossRef]
- Ongpipattanakul, C.; Desormeaux, E.K.; DiCaprio, A.; van der Donk, W.A.; Mitchell, D.A.; Nair, S.K. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 2022, 122, 14722–14814. [Google Scholar] [CrossRef]
- Acedo, J.Z.; Chiorean, S.; Vederas, J.C.; van Belkum, M.J. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol. Rev. 2018, 42, 805–828. [Google Scholar] [CrossRef] [PubMed]
- Diep, D.B.; Håvarstein, L.S.; Nes, I.F. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11: Induction of bacteriocin production. Mol. Microbiol. 1995, 18, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, O.P.; Beerthuyzen, M.M.; de Ruyter, P.G.G.A.; Luesink, E.J.; de Vos, W.M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 1995, 270, 27299–27304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ramos, A.; Madi-Moussa, D.; Coucheney, F.; Drider, D. Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms 2021, 9, 2107. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, D.; Balcazar, J.; Ruiz-Zarzuela, I.; Deblas, I.; Girones, O.; Muzquiz, J. Lactococcus garvieae in fish: A review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177–198. [Google Scholar] [CrossRef]
- Araújo, C.; Muñoz-Atienza, E.; Nahuelquín, Y.; Poeta, P.; Igrejas, G.; Hernández, P.E.; Herranz, C.; Cintas, L.M. Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Anaerobe 2015, 32, 7–14. [Google Scholar] [CrossRef]
- Gómez-Sala, B.; Herranz, C.; Díaz-Freitas, B.; Hernández, P.E.; Sala, A.; Cintas, L.M. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using Lactic Acid Bacteria of marine origin. Int. J. Food Microbiol. 2016, 223, 41–49. [Google Scholar] [CrossRef]
- Gómez-Sala, B.; Muñoz-Atienza, E.; Diep, D.B.; Feito, J.; del Campo, R.; Nes, I.F.; Herranz, C.; Hernández, P.E.; Cintas, L.M. Biotechnological potential and in vitro safety assessment of Lactobacillus curvatus BCS35, a multibacteriocinogenic strain isolated from dry-salted cod (Gadus morhua). LWT 2019, 112, 108219. [Google Scholar] [CrossRef]
- Feito, J.; Araújo, C.; Gómez-Sala, B.; Contente, D.; Campanero, C.; Arbulu, S.; Saralegui, C.; Peña, N.; Muñoz-Atienza, E.; Borrero, J.; et al. Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. LWT 2022, 162, 113496. [Google Scholar] [CrossRef]
- Pastorino, P.; Vela Alonso, A.I.; Colussi, S.; Cavazza, G.; Menconi, V.; Mugetti, D.; Righetti, M.; Barbero, R.; Zuccaro, G.; Fernández-Garayzábal, J.F.; et al. A summer mortality outbreak of lactococcosis by Lactococcus garvieae in a raceway system affecting farmed rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Animals 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Gibello, A.; Galán-Sánchez, F.; Blanco, M.M.; Rodríguez-Iglesias, M.; Domínguez, L.; Fernández-Garayzábal, J.F. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res. Vet. Sci. 2016, 109, 59–70. [Google Scholar] [CrossRef]
- Meyburgh, C.; Bragg, R.; Boucher, C. Lactococcus garvieae: An emerging bacterial pathogen of fish. Dis. Aquat. Org. 2017, 123, 67–79. [Google Scholar] [CrossRef]
- Francés-Cuesta, C.; Ansari, I.; Fernández-Garayzábal, J.F.; Gibello, A.; González-Candelas, F. Comparative genomics and evolutionary analysis of Lactococcus garvieae isolated from human endocarditis. Microb. Genom. 2022, 8, 000771. [Google Scholar] [CrossRef]
- Maldonado-Barragán, A.; Cardenas, N.; Martinez, B.; Ruiz-Barba, J.L.; Fernandez-Garayzabal, J.F.; Rodriguez, J.M.; Gibello, A. Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl. Environ. Microbiol. 2013, 79, 4336–4346. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Barragán, A.; Alegría-Carrasco, E.; Blanco, M.d.M.; Vela, A.I.; Fernández-Garayzábal, J.F.; Rodríguez, J.M.; Gibello, A. Garvicins AG1 and AG2: Two novel class IId bacteriocins of Lactococcus garvieae Lg-Granada. Int. J. Mol. Sci. 2022, 23, 4685. [Google Scholar] [CrossRef]
- Ovchinnikov, K.V.; Chi, H.; Mehmeti, I.; Holo, H.; Nes, I.F.; Diep, D.B. Novel group of leaderless multipeptide bacteriocins from Gram-positive bacteria. Appl. Environ. Microbiol. 2016, 82, 5216–5224. [Google Scholar] [CrossRef] [Green Version]
- Villani, F.; Aponte, M.; Blaiotta, G.; Mauriello, G.; Pepe, O.; Moschetti, G. Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow’s milk. J. Appl. Microbiol. 2001, 90, 430–439. [Google Scholar] [CrossRef]
- Borrero, J.; Brede, D.A.; Skaugen, M.; Diep, D.B.; Herranz, C.; Nes, I.F.; Cintas, L.M.; Hernández, P.E. Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl. Environ. Microbiol. 2011, 77, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Tosukhowong, A.; Zendo, T.; Visessanguan, W.; Roytrakul, S.; Pumpuang, L.; Jaresitthikunchai, J.; Sonomoto, K. Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl. Environ. Microbiol. 2012, 78, 1619–1623. [Google Scholar] [CrossRef] [Green Version]
- Tymoszewska, A.; Diep, D.B.; Aleksandrzak-Piekarczyk, T. The extracellular loop of man-PTS subunit IID is responsible for the sensitivity of Lactococcus garvieae to garvicins A, B and C. Sci. Rep. 2018, 8, 15790. [Google Scholar] [CrossRef] [Green Version]
- Desiderato, C.K.; Hasenauer, K.M.; Reich, S.J.; Goldbeck, O.; Holivololona, L.; Ovchinnikov, K.V.; Reiter, A.; Oldiges, M.; Diep, D.B.; Eikmanns, B.J.; et al. Garvicin Q: Characterization of biosynthesis and mode of action. Microb. Cell Fact. 2022, 21, 236. [Google Scholar] [CrossRef]
- Mulders, J.W.M.; Boerrigter, I.J.; Rollema, H.S.; Siezen, R.J.; Vos, W.M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 1991, 201, 581–584. [Google Scholar] [CrossRef]
- Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.-G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 2001, 276, 1772–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, M.; Gutiérrez, J.; Criado, R.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2007, 76, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Borrero, J.; Jiménez, J.J.; Gútiez, L.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Use of the Usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2011, 89, 131–143. [Google Scholar] [CrossRef]
- Borrero, J.; Jiménez, J.J.; Gútiez, L.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in Lactic Acid Bacteria. J. Biotechnol. 2011, 156, 76–86. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Diep, D.B.; Borrero, J.; Gútiez, L.; Arbulu, S.; Nes, I.F.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb. Cell. Fact. 2015, 14, 166. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yang, L.; Li, P.; Gu, Q. Heterologous expression of class IIb bacteriocin plantaricin JK in Lactococcus lactis. Protein Expr. Purif. 2019, 159, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.d.C.d.F.; Coelho, M.L.V.; Santos, O.C.d.S. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015, 161, 683–700. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.; Griffin, C.; O’Connor, P.M.; Serrano, L.M.; Meijer, W.C.; Hill, C.; Ross, R.P. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl. Environ. Microbiol. 2017, 83, e00799-17. [Google Scholar] [CrossRef] [Green Version]
- Desmond, A.; O’Halloran, F.; Cotter, L.; Hill, C.; Field, D. Bioengineered nisin A derivatives display enhanced activity against clinical neonatal pathogens. Antibiotics 2022, 11, 1516. [Google Scholar] [CrossRef]
- Kuipers, O.P.; de Ruyter, P.G.G.A.; Kleerebezem, M.; de Vos, W.M. Quorum sensing-controlled gene expression in Lactic Acid Bacteria. J. Biotechnol. 1998, 64, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.; Muñoz-Atienza, E.; Pérez-Sánchez, T.; Poeta, P.; Igrejas, G.; Hernández, P.E.; Herranz, C.; Ruiz-Zarzuela, I.; Cintas, L.M. Nisin Z production by Lactococcus lactis subsp. cremoris WA2-67 of aquatic origin as a defense mechanism to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against Lactococcus garvieae. Mar. Biotechnol. 2015, 17, 820–830. [Google Scholar] [CrossRef]
- Trotter, M.; Ross, R.P.; Fitzgerald, G.F.; Coffey, A. Lactococcus lactis DPC5598, a plasmid-free derivative of a commercial starter, provides a valuable alternative host for culture improvement studies. J. Appl. Microbiol. 2002, 93, 134–143. [Google Scholar] [CrossRef]
- Cintas, L.M.; Casaus, P.; Fernández, M.F.; Hernández, P.E. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 1998, 15, 289–298. [Google Scholar] [CrossRef]
- van de Guchte, M.; van der Vossen, J.M.; Kok, J.; Venema, G. Construction of a lactococcal expression vector: Expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 1989, 55, 224–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Asseldonk, M.; Rutten, G.; Oteman, M.; Siezen, R.J.; de Vos, W.M.; Simons, G. Cloning of Usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 1990, 95, 155–160. [Google Scholar] [CrossRef]
- Holo, H.; Nes, I.F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 1989, 55, 3119–3123. [Google Scholar] [CrossRef] [Green Version]
- El Qaidi, S.; Hardwidge, P.R. ABC cloning: An efficient, simple, and rapid restriction/ligase-free method. MethodsX 2019, 6, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Cintas, L.M.; Casaus, P.; Herranz, C.; Håvarstein, L.S.; Holo, H.; Hernández, P.E.; Nes, I.F. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the Sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 2000, 182, 6806–6814. [Google Scholar] [CrossRef] [Green Version]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sánchez, T.; Mora-Sánchez, B.; Balcázar, J.L. Biological approaches for disease control in aquaculture: Advantages, limitations and challenges. Trends Microbiol. 2018, 26, 896–903. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Larsen, R.; Cintas, L.M.; Kok, J.; Hernández, P.E. High-level heterologous production and functional expression of the Sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2006, 72, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Arbulu, S.; Jiménez, J.J.; Gútiez, L.; Feito, J.; Cintas, L.M.; Herranz, C.; Hernández, P.E. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res. Int. 2019, 121, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Ortega, C.; Irgang, R.; Valladares-Carranza, B.; Collarte, C.; Avendaño-Herrera, R. First identification and characterization of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) cultured in Mexico. Animals 2020, 10, 1609. [Google Scholar] [CrossRef]
- Shahin, K.; Veek, T.; Heckman, T.I.; Littman, E.; Mukkatira, K.; Adkison, M.; Welch, T.J.; Imai, D.M.; Pastenkos, G.; Camus, A.; et al. Isolation and characterization of Lactococcus garvieae from rainbow trout, Oncorhynchus mykiss, from California, USA. Transbound. Emerg. Dis. 2022, 69, 2326–2343. [Google Scholar] [CrossRef]
- Kok, J.; van der Vossen, J.M.; Venema, G. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 1984, 48, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Vos, W.M. Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 1987, 46, 281–295. [Google Scholar] [CrossRef]
- De Ruyter, P.G.; Kuipers, O.P.; de Vos, W.M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 1996, 62, 3662–3667. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Mills, D.A. Improvement of a nisin-inducible expression vector for use in Lactic Acid Bacteria. Plasmid 2007, 58, 275–283. [Google Scholar] [CrossRef]
- Diep, D.; Mathiesen, G.; Eijsink, V.; Nes, I. Use of Lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Curr. Pharm. Biotechnol. 2009, 10, 62–73. [Google Scholar] [CrossRef]
- Criado, R.; Gutiérrez, J.; Martín, M.; Herranz, C.; Hernández, P.E.; Cintas, L.M. Immunochemical characterization of temperature-regulated production of enterocin L50 (EntL50A and EntL50B), enterocin P, and enterocin Q by Enterococcus faecium L50. Appl. Environ. Microbiol. 2006, 72, 7634–7643. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Maldonado, C.E.; Quirasco, M. Enhancement of the antibacterial activity of an E. faecalis strain by the heterologous expression of enterocin A. J. Biotechnol. 2018, 283, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Barragán, A.; West, S.A. The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum. J. Evol. Biol. 2020, 33, 101–111. [Google Scholar] [CrossRef]
- Ricci, G.; Ferrario, C.; Borgo, F.; Eraclio, G.; Fortina, M.G. Genome sequences of two Lactococcus garvieae strains isolated from meat. Genome Announc. 2013, 1, e00018-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmström, J.; Lee, H.; Aebersold, R. Advances in proteomic workflows for systems biology. Curr. Opin. Biotechnol. 2007, 18, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Jensen, O.N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using Enrichment techniques. Proteomics 2009, 9, 4632–4641. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.; Muñoz-Atienza, E.; Ramírez, M.; Poeta, P.; Igrejas, G.; Hernández, P.E.; Herranz, C.; Cintas, L.M. Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Eur. Food Res. Technol. 2015, 241, 647–662. [Google Scholar] [CrossRef]
- Feito, J.; Contente, D.; Ponce-Alonso, M.; Díaz-Formoso, L.; Araújo, C.; Peña, N.; Borrero, J.; Gómez-Sala, B.; del Campo, R.; Muñoz-Atienza, E.; et al. Draft genome sequence of Lactococcus lactis subsp. cremoris WA2-67: A promising nisin-producing probiotic strain isolated from the rearing environment of a spanish rainbow trout (Oncorhynchus mykiss, Walbaum) farm. Microorganisms 2022, 10, 521. [Google Scholar] [CrossRef]
- Dong, H.; Wang, H.; Fu, S.; Zhang, D. CRISPR/Cas tools for enhancing the biopreservation ability of Lactic Acid Bacteria in aquatic products. Front. Bioeng. Biotechnol. 2022, 10, 1114588. [Google Scholar] [CrossRef]
- Mugwanda, K.; Hamese, S.; Van Zyl, W.F.; Prinsloo, E.; Du Plessis, M.; Dicks, L.M.T.; Thimiri Govinda Raj, D.B. Recent advances in genetic tools for engineering probiotic Lactic Acid Bacteria. Biosci. Rep. 2023, 43, BSR20211299. [Google Scholar] [CrossRef] [PubMed]
Strain or Plasmid | Description a | Source and/or Reference b |
---|---|---|
Strains | ||
Lactococcus lactis subsp. cremoris NZ9000 | Host strain; non-bacteriocin producer; pepN::nisRK. | NIZO, [52] |
Lactococcus lactis subsp. cremoris WA2-67 | Host strain; fish origin; nisin Z producer. | SD- NUTRYCIAL, [53] |
Lactococcus lactis subsp. lactis DPC5598 | Host strain; milk origin; nisin A producer. Plasmid-free derivative of DPC4268. | DPC, [54] |
Lactococcus lactis subsp. lactis BB24 | Host strain; meat origin; nisin A producer. | SD- NUTRYCIAL, [55] |
Lactococcus garvieae CF00021 | SOAT, ADT, MPA indicator | CEFAS-BCC |
Lactococcus garvieae CF01144 | MPA indicator | CEFAS-BCC |
Lactococcus garvieae CLG4 | MPA indicator | LFP-UNIZAR |
Lactococcus garvieae CLG5 | MPA indicator | LFP-UNIZAR |
Lactococcus garvieae CLFP28/06 | MPA indicator | LFP-UNIZAR |
Lactococcus garvieae JIP29/99 | MPA indicator | Jouy-en-Josas SC |
Pediococcus damnosus CECT4797 | SOAT, ADT indicator | CECT |
Plasmids | ||
pMG36c | Cmr; pMG36e derivative; constitutive expression vector carrying the P32 promoter. | RUG-MG, [56] |
pNZ8048c | Cmr; inducible expression vector carrying the nisA promoter. | NIZO, [52] |
pJFAI | Cmr, pMG36c derivative carrying the PCR product A (P32 ribosome binding site and the SPusp45 fused to mature lgnA and lgnI). | This work |
pJFQI | Cmr, pMG36c derivative carrying the PCR product B (P32 ribosome binding site and the SPusp45 fused to mature garQ and garI). | This work |
pJFAIQI | Cmr, pMG36c derivative carrying the PCR product C (P32 ribosome binding site and the SPusp45 fused to mature lgnA and lgnI and mature garQ and garI). | This work |
pJFQIAI | Cmr, pMG36c derivative carrying the PCR product D (P32 ribosome binding site and the SPusp45 fused to mature garQ and garI and mature lgnA and lgnI). | This work |
pNJFAI | Cmr, pNZ8048c derivative carrying the PCR product E (SPusp45 fused to mature lgnA and lgnI). | This work |
pNJFQI | Cmr, pNZ8048c derivative corresponding to the PCR product J (SPusp45 fused to mature garQ and garI). | This work |
pNJFQIAI | Cmr, pNZ8048c derivative corresponding to the PCR product K (SPusp45 fused to mature garQ and garI and mature lgnA and lgnI). | This work |
Strain | SOAT a | ADT b | ||
---|---|---|---|---|
L. garvieae CF00021 | P. damnosus CECT4797 | L. garvieae CF00021 | P. damnosus CECT4797 | |
L. lactis subsp. cremoris | ||||
NZ9000 (pMG36c) | (-) | (-) | (-) | (-) |
NZ9000 (pJFAI) | 6.7 | (-) | 10.1 | (-) |
NZ9000 (pJFQI) | 6.4 | 6.0 | 10.3 | 8.6 |
NZ9000 (pJFAIQI) | 6.6 | 5.8 | 10.4 | 8.9 |
NZ9000 (pJFQIAI) | 6.8 | 5.9 | 10.2 | 8.8 |
NZ9000 (pNZ8048c) | (-) | (-) | (-) | (-) |
NZ9000 (pNJFAI) | 8.6 | (-) | 11.9 | (-) |
NZ9000 (pNJFQI) | 8.3 | 7.1 | 12.2 | 11.2 |
NZ9000 (pNJFQIAI) | 8.1 | 6.5 | 11.7 | 9.5 |
WA2-67 (pMG36c) | 12.6 | 20.5 | 13.7 | 21.7 |
WA2-67 (pJFAI) | 12.8 | 20.4 | 14.0 | 21.8 |
WA2-67 (pJFQI) | 13.6 | 21.3 | 15.6 | 23.2 |
WA2-67 (pJFAIQI) | 12.7 | 20.1 | 13.8 | 21.7 |
WA2-67 (pJFQIAI) | 14.8 | 23.0 | 16.9 | 25.4 |
WA2-67 (pNZ8048c) | 12.3 | 20.5 | 13.6 | 21.3 |
WA2-67 (pNJFAI) | 12.7 | 20.1 | 13.8 | 21.7 |
WA2-67 (pNJFQI) | 12.2 | 20.8 | 14.0 | 22.2 |
WA2-67 (pNJFQIAI) | 12.3 | 20.3 | 13.8 | 22.0 |
L. lactis subsp. lactis | ||||
DPC5598 (pMG36c) | 7.2 | 9.0 | 13.7 | 20.0 |
DPC5598 (pJFAI) | 7.6 | 8.7 | 13.5 | 19.4 |
DPC5598 (pJFQI) | 7.5 | 8.9 | 13.6 | 19.7 |
DPC5598 (pJFAIQI) | 6.8 | 7.6 | 12.8 | 18.0 |
DPC5598 (pJFQIAI) | 6.2 | 6.5 | 11.9 | 16.7 |
DPC5598 (pNZ8048c) | 7.6 | 9.5 | 14.0 | 20.6 |
DPC5598 (pNJFAI) | 7.8 | 9.1 | 14.5 | 21.3 |
DPC5598 (pNJFQI) | 7.3 | 9.4 | 14.8 | 22.0 |
DPC5598 (pNJFQIAI) | 6.8 | 8.6 | 12.5 | 19.1 |
BB24 (pMG36c) | 7.9 | 9.7 | 12.4 | 18.6 |
BB24 (pJFAI) | 9.9 | 10.0 | 14.5 | 18.3 |
BB24 (pJFQI) | 9.4 | 13.4 | 14.6 | 20.5 |
BB24 (pJFAIQI) | 9.7 | 13.8 | 14.2 | 19.9 |
BB24 (pJFQIAI) | 9.6 | 13.9 | 14.3 | 20.2 |
BB24 (pNZ8048c) | 8.5 | 10.1 | 13.0 | 18.7 |
BB24 (pNJFAI) | 10.3 | 13.7 | 15.0 | 19.3 |
BB24 (pNJFQI) | 10.7 | 14.2 | 15.1 | 20.4 |
BB24 (pNJFQIAI) | 10.2 | 14.6 | 15.0 | 20.0 |
Strain | L. garvieae | |||||
---|---|---|---|---|---|---|
CF00021 | CF01144 | CLG4 | CLG5 | CLFP28/06 | JIP29/99 | |
L. lactis subsp. cremoris | ||||||
NZ9000 (pMG36c) | (-) | (-) | (-) | (-) | (-) | (-) |
NZ9000 (pJFAI) | 88 | 90 | 76 | 69 | 88 | 85 |
NZ9000 (pJFQI) | 98 | 143 | 112 | 106 | 97 | 100 |
NZ9000 (pJFAIQI) | 121 | 169 | 151 | 153 | 149 | 140 |
NZ9000 (pJFQIAI) | 126 | 145 | 101 | 167 | 107 | 108 |
WA2-67 (pMG36c) | 2199 | 1035 | 1148 | 391 | 1087 | 521 |
WA2-67 (pJFAI) | 2276 | 1469 | 1920 | 475 | 1566 | 744 |
WA2-67 (pJFQI) | 11,798 | 11,082 | 5935 | 4201 | 8864 | 4821 |
WA2-67 (pJFAIQI) | 2193 | 1749 | 1825 | 468 | 1637 | 847 |
WA2-67 (pJFQIAI) | 150,033 | 19,571 | 28,362 | 6780 | 33,114 | 9412 |
L. lactis subsp. lactis | ||||||
DPC5598 (pMG36c) | 1808 | 1271 | 1865 | 139 | 1042 | 855 |
DPC5598 (pJFAI) | 1529 | 1326 | 2133 | 198 | 1318 | 960 |
DPC5598 (pJFQI) | 1770 | 1338 | 1976 | 129 | 1288 | 1066 |
DPC5598 (pJFAIQI) | 1096 | 1068 | 1312 | 92 | 1064 | 905 |
DPC5598 (pJFQIAI) | 1033 | 659 | 1489 | 81 | 1055 | 815 |
BB24 (pMG36c) | 1123 | 790 | 443 | 115 | 1479 | 514 |
BB24 (pJFAI) | 2385 | 2480 | 1617 | 203 | 2036 | 1105 |
BB24 (pJFQI) | 2532 | 2530 | 1725 | 202 | 3115 | 1243 |
BB24 (pJFAIQI) | 2238 | 2756 | 1786 | 204 | 2615 | 1459 |
BB24 (pJFQIAI) | 2535 | 2699 | 1641 | 196 | 3166 | 1317 |
Strain | L. garvieae | |||||
---|---|---|---|---|---|---|
CF00021 | CF01144 | CLG4 | CLG5 | CLFP28/06 | JIP29/99 | |
L. lactis subsp. cremoris | ||||||
NZ9000 (pNZ8048c) | (-) | (-) | (-) | (-) | (-) | (-) |
NZ9000 (pNJFAI) | 1126 | 997 | 1440 | 1295 | 1600 | 1263 |
NZ9000 (pNJFQI) | 1214 | 1069 | 1395 | 1194 | 1440 | 1220 |
NZ9000 (pNJFQIAI) | 1051 | 1188 | 1297 | 1167 | 1541 | 1255 |
WA2-67 (pNZ8048c) | 1668 | 1002 | 897 | 364 | 987 | 369 |
WA2-67 (pNJFAI) | 1853 | 989 | 1000 | 412 | 902 | 385 |
WA2-67 (pNJFQI) | 2150 | 1351 | 1237 | 565 | 1163 | 486 |
WA2-67 (pNJFQIAI) | 2021 | 1223 | 1149 | 595 | 1245 | 491 |
L. lactis subsp. lactis | ||||||
DPC5598 (pNZ8048c) | 2123 | 1258 | 2317 | 198 | 1097 | 1096 |
DPC5598 (pNJFAI) | 2760 | 2699 | 3443 | 317 | 1610 | 1770 |
DPC5598 (pNJFQI) | 2605 | 1496 | 2334 | 266 | 1499 | 1492 |
DPC5598 (pNJFQIAI) | 1150 | 880 | 1800 | 98 | 1480 | 920 |
BB24 (pNZ8048c) | 1203 | 693 | 397 | 158 | 1022 | 685 |
BB24 (pNJFAI) | 3398 | 3102 | 2340 | 339 | 2989 | 1597 |
BB24 (pNJFQI) | 3705 | 3663 | 2732 | 397 | 4172 | 1603 |
BB24 (pNJFQIAI) | 3502 | 3375 | 2541 | 299 | 5016 | 2001 |
Purification Stage | Volume (mL) | Total A254 a | Total Antimicrobial Activity (BU) b | Specific Antimicrobial Activity (BU/A254) c | Increase in Specific Antimicrobial Activity (Fold) d | Recovery Antimicrobial Activity (%) |
---|---|---|---|---|---|---|
L. lactissubsp. cremorisWA2-67 (pJFQI) | ||||||
Culture supernatant | 1000 | 30,500 | 10.6 × 106 | 347 | 1 | 100 |
Ammonium sulfate precipitation | 100 | 1930 | 12.3 × 106 | 6370 | 18 | 116 |
Gel filtration chromatography | 185 | 872 | 2.1 × 106 | 2410 | 7 | 20 |
Cation-exchange chromatography | 50 | 75 | 11.3 × 106 | 150,670 | 434 | 107 |
Hydrophobic-interaction chromatography | 15 | 8.4 | 1.0 × 106 | 119,050 | 343 | 9 |
Reversed-phase chromatography | ||||||
Fraction 8 | 0.300 | 0.325 | 50.0 × 103 | 153,850 | 443 | 0.5 |
Fraction 14 | 0.400 | 0.056 | 2.3 × 103 | 41,070 | 118 | 0.02 |
L. lactissubsp. cremoris WA2-67 (pJFQIAI) | ||||||
Culture supernatant | 1000 | 28,400 | 1.4 × 108 | 4930 | 1 | 100 |
Ammonium sulfate precipitation | 100 | 1510 | 1.5 × 109 | 993,380 | 201 | 1071 |
Gel filtration chromatography | 185 | 832 | 2.3 × 108 | 276,440 | 56 | 164 |
Cation-exchange chromatography | 50 | 119 | 1.8 × 109 | 15,130 | 3 | 1286 |
Hydrophobic-interaction chromatography | 15 | 13.8 | 16.1 × 106 | 1,166,670 | 237 | 11.5 |
Reversed-phase chromatography | ||||||
Fraction 7 | 0.300 | 0.125 | 21,400 | 171,200 | 35 | 0.015 |
Fraction 9 | 0.450 | 0.218 | 2200 | 10,100 | 2 | 0.0016 |
Fraction 12 | 0.500 | 0.040 | 200 | 5000 | 1 | 0.00014 |
Strain | Fraction | Peptide Sequence | Precursor MW | Detected m/z | Retention Time | Detected Transitions | MS/MS Confirmation |
---|---|---|---|---|---|---|---|
L. lactis subsp. cremoris | |||||||
WA2-67 (pJFQI) | 14 | GarQ | |||||
EYHLMNGANGYLTR | 1638.76 | 546.92 (+3) | 20.1 | 4 | + | ||
VNGKYVYR | 998.54 | 499.77 (+2) | 8.7 | 4 | + | ||
WA2-67 (pJFQIAI) | 9 | GarQ | |||||
EYHLMNGANGYLTR | 1638.76 | 546.92 (+3) | 21.3 | 4 | + | ||
VNGKYVYR | 998.54 | 499.77 (+2) | 10.4 | 4 | + | ||
12 | GarA | ||||||
GKINQYRPY | 1138.60 | 569.8 (+3) | 14.7 | 4 | + | ||
INQYRPY | 953.48 | 477.24 (+2) | 15.6 | 5 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feito, J.; Araújo, C.; Arbulu, S.; Contente, D.; Gómez-Sala, B.; Díaz-Formoso, L.; Muñoz-Atienza, E.; Borrero, J.; Cintas, L.M.; Hernández, P.E. Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023, 12, 1063. https://doi.org/10.3390/foods12051063
Feito J, Araújo C, Arbulu S, Contente D, Gómez-Sala B, Díaz-Formoso L, Muñoz-Atienza E, Borrero J, Cintas LM, Hernández PE. Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods. 2023; 12(5):1063. https://doi.org/10.3390/foods12051063
Chicago/Turabian StyleFeito, Javier, Carlos Araújo, Sara Arbulu, Diogo Contente, Beatriz Gómez-Sala, Lara Díaz-Formoso, Estefanía Muñoz-Atienza, Juan Borrero, Luis M. Cintas, and Pablo E. Hernández. 2023. "Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae" Foods 12, no. 5: 1063. https://doi.org/10.3390/foods12051063
APA StyleFeito, J., Araújo, C., Arbulu, S., Contente, D., Gómez-Sala, B., Díaz-Formoso, L., Muñoz-Atienza, E., Borrero, J., Cintas, L. M., & Hernández, P. E. (2023). Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods, 12(5), 1063. https://doi.org/10.3390/foods12051063