Contribution of Starmerella bacillaris and Oak Chips to Trebbiano d’Abruzzo Wine Volatile and Sensory Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Samples
2.2. Pilot Scale Fermentation
2.3. Physical and Chemical Analysis
2.4. Determination of Volatile Organic Compounds
2.5. Sensorial Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Oenological Parameters
3.2. Determination of Volatile Organic Compounds
Chemical Classes | Odor Description | Trials | |||||
---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W6 | ||
Higher Alcohols | |||||||
2-methyl-1-butanol | n.f. | 2.91 ± 0.52 A | 1.09 ± 0.43 C | 1.98 ± 0.64 B | 0.92 ± 0.02 D | 0.53 ± 0.09 E | 1.97 ± 0.36 B |
Furfuryl alcohol | n.f. | n.d. | n.d. | 0.08 ± 0.04 B | 0.08 ± 0.06 B | 0.30 ± 0.11 A | 0.31 ± 0.16 A |
3-methyl-1-butanol | Fusel, alcoholic, whiskey, fruity, banana | 14.36 ± 3.72 AB | 14.97 ± 3.25 A | 14.29 ± 3.81 B | 14.85 ± 5.47 A | 14.57 ± 1.19 AB | 14.27 ± 2.56 B |
1-pentanol | Pungent, fermented, bready, yeasty, fusel, winey, solvent | 1.12 ± 0.21 B | 0.44 ± 0.01 D | 0.67 ± 0.03 C | 0.43 ± 0.33 D | 0.98 ± 0.07 B | 1.54 ± 0.75 A |
1-hexanol | Ethereal, fusel, oily, fruity, alcoholic, sweet | 0.13 ± 0.03 C | 0.12 ± 0.05 C | 0.15 ± 0.03 C | 0.12 ± 0.02 C | 3.71 ± 1.13 A | 2.12 ± 0.79 B |
3-methyl-1-pentanol | Fusel, cognac, winey, cocoa, green, fruity | 0.17 ± 0.04 B | 0.18 ± 0.01 B | n.d | n.d. | n.d. | 0.27 ± 0.03 A |
1-octanol | Waxy, green, rose, mushroom | 0.77 ± 0.13 C | 0.91 ± 0.01 C | 2.85 ± 0.01 B | 2.88 ± 0.01 B | 3.09 ± 0.01 B | 4.11 ± 0.04 A |
Phenylethyl alcohol | Sweet, floral fresh, bready, rose, honey | 10.85 ± 2.16 D | 12.86 ± 1.72 B | 12.25 ± 3.19 C | 15.87 ± 2.34 A | 12.76 ± 1.81 BC | 11.32 ± 2.38 D |
TOTAL | 30.43 | 30.74 | 32.27 | 35.15 | 34.94 | 35.91 | |
Organic acids | |||||||
n-Decanoic acid | Rancid, sour, fatty, citrus | 3.45 ± 0.06 A | 3.36 ± 0.25 A | 2.31 ± 0.06 C | 2.75 ± 0.63 B | 2.69 ± 0.55 B | 2.34 ± 0.88 C |
Acetic acid | Sharp, pungent, sour, vinegar | 0.22 ± 0.04 C | 0.31 ± 0.01 A | 0.32 ± 0.12 A | 0.25 ± 0.05 B | 0.14 ± 0.03 C | 0.15 ± 0.02 C |
Nonanoic acid | Fatty, waxy, cheesy, sweet, creamy | 0.17 ± 0.02 C | 0.13 ± 0.01 CD | 0.15 ± 0.05 C | 0.09 ± 0.01 D | 0.43 ± 0.13 A | 0.32 ± 0.08 B |
Hexanoic acid | Sour, fatty, sweat, cheese | 1.33 ± 0.82 E | 1.78 ± 0.76 B | 1.67 ± 0.33 C | 1.87 ± 0.41 A | 1.45 ± 0.99 D | 1.47 ± 0.92 D |
Octadecanoic acid | n.f. | 1.39 ± 0.33 A | 1.22 ± 0.35 B | 0.89 ± 0.78 D | 0.54 ± 0.42 E | 0.98 ± 0.07 C | 0.51 ± 0.15 E |
Propanoic acid | Fatty, waxy, rancid, oily, vegetable, cheesy | 2.62 ± 0.22 D | 2.75 ± 0.28 D | 5.08 ± 0.37 A | 4.18 ± 0.05 C | 5.13 ± 0.03 A | 4.48 ± 0.13 B |
Octanoic acid | Pungent, acidic, cheesy, vinegar | 0.23 ± 0.06 D | 0.12 ± 0.03 D | 0.76 ± 0.25 A | 0.55 ± 0.19 B | 0.74 ± 0.03 AB | 0.34 ± 0.07 C |
TOTAL | 9.41 | 9.67 | 11.18 | 10.23 | 10.7 | 9.61 | |
Esters | |||||||
Isoamyl acetate | Sweet, banana, fruity, ripe, estery | 0.65 ± 0.16 C | 1.00 ± 0.45 B | 0.52 ± 0.23 C | 1.32 ± 0.18 B | 1.07 ± 0.75 B | 1.80 ± 1.33 A |
Phenethyl acetate | Floral, rose, sweet, honey, fruity, tropical | 3.06 ± 0.99 D | 4.29 ± 1.62 B | 3.79 ± 0.13 C | 3.17 ± 0.45 C | 4.23 ± 0.21 B | 5.38 ± 1.06 A |
Pentanoic acid, 2-methyl-butyl ester | Aromatic, floral, fruity, chamomile, rose | 0.52 ± 0.15 B | 0.64 ± 0.17 B | 0.61 ± 0.28 B | 0.41 ± 0.01 B | 0.98 ± 0.15 A | 0.73 ± 0.25 B |
Hexyl ethanoate | Fruity, green apple, banana, sweet | 0.22 ± 0.04 C | 0.17 ± 0.01 C | 0.08 ± 0.01 C | 0.84 ± 0.01 AB | 0.65 ± 0.17 B | 0.94 ± 0.17 A |
Ethyl butanoate | Fruity, juicy, fruity, pineapple, cognac | 0.32 ± 0.03 ABC | 0.21 ± 0.04 BC | 0.31 ± 0.04 AB | 0.21 ± 0.02 ABC | 0.14 ± 0.02 C | 0.41 ± 0.05 A |
Ethyl decanoate | Sweet, waxy, fruity, apple, grape, oily, brandy | 3.45 ± 0.11 AB | 3.88 ± 0.39 A | 2.86 ± 1.06 B | 3.49 ± 0.43 AB | 3.7 ± 0.91 A | 3.65 ± 0.53 A |
Ethyl E-11-hexadecenoate | n.f. | 0.2 ± 0.14 B | 0.19 ± 0.08 B | 0.15 ± 0.01 B | 0.15 ± 0.05 B | 0.36 ± 0.04 B | 0.72 ± 0.06 A |
Ethyl 9-decenoate | Fruity, fatty | 0.34 ± 0.07 B | 0.36 ± 0.06 B | 0.5 ± 0.02 B | 0.43 ± 0.08 B | 0.95 ± 0.18 A | 1.25 ± 0.29 A |
Hexanoic acid ethyl ester | n.f. | 0.87 ± 0.42 C | 1.57 ± 0.14 AB | 1.12 ± 0.53 BC | 1.78 ± 0.71 A | 1.67 ± 0.38 A | 1.42 ± 0.33 AB |
2-methylbutyl valerate | n.f. | 2.46 ± 0.64 B | 3.76 ± 0.88 A | 3.12 ± 0.74 A | 3.86 ± 0.92 A | 2.31 ± 0.31 B | 2.09 ± 0.38 B |
Methyl 2-methylhexanoate | n.f. | 0.52 ± 0.03 A | n.d. | 0.18 ± 0.07 B | n.d. | 0.04 ± 0.01 B | 0.14 ± 0.01 B |
Ethyl octadecanoate | Waxy | n.d. | n.d. | 0.04 ± 0.01 A | n.d. | 0.02 ± 0.01 A | 0.06 ± 0.02 A |
Ethyl octanoate | Fruity, wine, waxy, sweet, apricot, banana, brandy, pear | 2.15 ± 0.14 E | 2.97 ± 0.84 D | 4.34 ± 1.03 C | 4.56 ± 1.33 C | 7.96 ± 3.01 A | 7.13 ± 0.95 B |
Pentanoic acid, 2,2-dimethyl-methyl ester | n.f. | 2.52 ± 0.66 AB | 2.88 ± 0.13 A | 1.66 ± 0.71 C | 1.89 ± 0.54 BC | 1.75 ± 0.21 BC | 1.83 ± 0.73 B |
Pentanoic acid, 2,4-dimethyl-methyl ester | n.f. | n.d. | 0.31 ± 0.03 A | n.d. | 0.14 ± 0.09 B | n.d. | 0.19 ± 0.05 B |
Pentanoic acid, 2-methyl-butyl ester | n.f. | 0.03 ± 0.02 A | 0.04 ± 0.01 A | 0.05 ± 0.02 A | 0.02 ± 0.01 A | 0.09 ± 0.01 A | 0.02 ± 0.01 A |
Methyl vanillate | Warm, spicy, vanilla, guaiacol, phenolic, carnation | n.d. | n.d. | 0.65 ± 0.01 D | 1.12 ± 0.34 C | 1.55 ± 0.51 B | 1.74 ± 0.35 A |
Ethyl vanillate | Phenolic, burnt, guaiacol, smoky, powdery, metallic | n.d. | n.d. | 2.65 ± 0.13 C | 3.12 ± 1.04 B | 3.78 ± 1.27 A | 3.81 ± 1.38 A |
Diethyl succinate | Mild, fruity, cooked apple, ylang | 0.47 ± 0.11 D | 0.66 ± 0.24 D | 2.34 ± 0.17 C | 3.12 ± 1.19 B | 3.55 ± 1.93 A | 3.14 ± 1.16 B |
TOTAL | 17.79 | 22.93 | 24.97 | 29.63 | 34.8 | 36.45 | |
Thiols | |||||||
1-Propene-1-thiol | n.f. | 0.41 ± 0.12 A | 0.32 ± 0.09 A | 0.29 ± 0.04 A | 0.31 ± 0.07 A | 0.33 ± 0.01 A | 0.33 ± 00.09 A |
TOTAL | 0.41 | 0.32 | 0.29 | 0.31 | 0.33 | 0.31 | |
Ketones | |||||||
3,3-Dimethyl-4-methylamino-butan-2-one | n.f. | 0.04 ± 0.01 A | 0.05 ± 0.01 A | 0.06 ± 0.04 A | 0.05 ± 0.03 A | 0.04 ± 0.02 A | 0.05 ± 0.13 A |
Β-damascenone | Sweet, fruity, rose, plum, grape, raspberry, sugar | 0.0005 ± 0.0001 A | 0.0004 ± 0.0002 A | 0.0005 ± 0.0002 A | 0.0005 ± 0.0003 A | 0.0005 ± 0.0001 A | 0.0006 ± 0.0002 A |
TOTAL | 0.0405 | 0.0504 | 0.0605 | 0.0505 | 0.0405 | 0.0506 | |
Terpenes | |||||||
Linalool | Citrus, floral, sweet, bois de rose, woody, green, blueberry | 0.45 ± 0.15 C | 0.98 ± 0.39 BC | 1.77 ± 0.48 AB | 1.98 ± 0.62 A | 2.12 ± 1.04 A | 2.32 ± 0.94 A |
Citronellol | Floral, leather, waxy, rose, bud, citrus | 1.23 ± 0.04 B | 1.12 ± 0.61 B | 1.98 ± 0.83 A | 1.73 ± 0.55 AB | 1.84 ± 0.73 AB | 1.91 ± 0.58 A |
Geraniol | n.f. | 0.44 ± 0.11 B | 0.69 ± 0.17 A | 0.12 ± 0.04 B | 0.22 ± 0.09 B | 0.18 ± 0.08 B | 0.16 ± 0.03 B |
Eugenol | Sweet, spicy, clove, woody | 1.16 ± 0.01 A | 1.12 ± 0.03 A | 0.43 ± 0.06 B | 0.65 ± 0.12 B | 0.98 ± 0.31 AB | 0.77 ± 0.11 AB |
TOTAL | 3.28 | 3.91 | 4.3 | 4.58 | 5.12 | 5.16 | |
Phenols | |||||||
4-vinylguaiacol | Sweet, spicy, clove-like, somewhat smoky | n.d. | n.d. | 0.65 ± 0.13 AB | 0.32 ± 0.07 B | 0.98 ± 0.24 A | 0.44 ± 0.14 B |
TOTAL | n.d. | n.d. | 0.65 | 0.32 | 0.98 | 0.44 | |
Aldehydes | |||||||
Furfural | Almond, wood, caramel | n.d. | n.d. | 0.87 ± 0.02 D | 0.98 ± 0.03 C | 1.28 ± 0.02 B | 1.43 ± 0.02 A |
Vanillin | Sweet, vanilla, creamy, chocolate | n.d. | n.d. | 1.56 ± 0.23 B | 2.74 ± 0.03 B | 3.78 ± 0.76 A | 3.98 ± 0.04 A |
TOTAL | n.d. | n.d. | 2.46 | 3.72 | 5.06 | 5.41 | |
Lactones | |||||||
Butyrolactone | Milky, creamy, fruity, peach | n.d. | n.d. | 0.91 ± 0.36 A | 0.98 ± 0.45 A | 1.12 ± 0.34 A | 0.87 ± 0.27 A |
Trans-whiskey lactone | n.f. | n.d. | n.d. | 1.88 ± 0.47 A | 1.66 ± 0.63 A | 1.98 ± 0.77 A | 1.87 ± 0.55 A |
TOTAL | n.d. | n.d. | 2.79 | 2.64 | 3.1 | 2.74 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bisson, L.F.; Waterhouse, A.L.; Ebeler, S.E.; Walker, M.A.; Lapsley, J.T. The present and future of the international wine industry. Nature 2002, 418, 696–699. [Google Scholar] [CrossRef]
- Bavčar, D.; Baša Česnik, H.; Čuš, F.; Košmerl, T. The influence of skin contact during alcoholic fermentation on the aroma composition of Ribolla Gialla and Malvasia Istriana Vitis vinifera (L.) grape wines. Int. J. Food Sci. Technol. 2011, 46, 1801–1808. [Google Scholar] [CrossRef]
- Herjavec, S.; Jeromel, A.; Da Silva, A.; Orlic, S.; Redzepovic, S. The quality of white wines fermented in Croatian oak barrels. Food Chem. 2007, 100, 124–128. [Google Scholar] [CrossRef]
- Kozlovic, G.; Jeromel, A.; Maslov, L.; Pollnitz, A.; Orlić, S. Use of acacia barrique barrels–Influence on the quality of Malvazija from Istria wines. Food Chem. 2010, 120, 698–702. [Google Scholar] [CrossRef]
- Liberatore, M.T.; Pati, S.; Del Nobile, M.A.; La Notte, E. Aroma quality improvement of Chardonnay white wine by fermentation and ageing in barrique on lees. Food Res. Int. 2010, 43, 996–1002. [Google Scholar] [CrossRef]
- Jordão, A.M.; Correia, A.C.; Del Campo, R.; González San José, M.L. Antioxidant capacity, scavenger activity, and ellagitannins content from commercial oak pieces used in winemaking. Eur. Food Res. Technol. 2012, 235, 817–825. [Google Scholar] [CrossRef]
- Vilela, A. Modulating wine pleasantness throughout wine-yeast co-inoculation or sequential inoculation. Fermentation 2020, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Tofalo, R.; Schirone, M.; Torriani, S.; Rantsiou, K.; Cocolin, L.; Perpetuini, G.; Suzzi, G. Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiol. 2012, 29, 18–26. [Google Scholar] [CrossRef]
- Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolin, L. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl. Environ. Microbiol. 2012, 78, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Perpetuini, G.; Rossetti, A.P.; Tittarelli, F.; Battistelli, N.; Arfelli, G.; Suzzi, G.; Tofalo, R. Promoting Candida zemplinina adhesion on oak chips: A strategy to enhance esters and glycerol content of Montepulciano d’Abruzzo organic wines. Food Res. Int. 2021, 150, 110772. [Google Scholar] [CrossRef]
- Russo, P.; Tufariello, M.; Renna, R.; Tristezza, M.; Taurino, M.; Palombi, L.; Capozzi, V.; Rizzello, C.G.; Grieco, F. New insights into the oenological significance of Candida zemplinina: Impact of selected autochthonous strains on the volatile profile of Apulian wines. Microorganisms 2020, 8, 628. [Google Scholar] [CrossRef] [PubMed]
- Nadai, C.; Giacomini, A.; Corich, V. The addition of wine yeast Starmerella bacillaris to grape skin surface influences must fermentation and glycerol production. OENO One 2021, 55, 47–55. [Google Scholar] [CrossRef]
- Nisiotou, A.; Sgouros, G.; Mallouchos, A.; Nisiotis, C.S.; Michaelidis, C.; Tassou, C.; Banilas, G. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Food Res. Int. 2018, 111, 498–508. [Google Scholar] [CrossRef]
- Ruggieri, F.; D’Archivio, A.A.; Foschi, M.; Maggi, M.A. Multivariate optimization of an analytical method for the analysis of Abruzzo white wines by ICP OES. Anal. Methods 2020, 12, 2772–2778. [Google Scholar] [CrossRef] [PubMed]
- Suzzi, G.; Arfelli, G.; Schirone, M.; Corsetti, A.; Perpetuini, G.; Tofalo, R. Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d‘Abruzzo red wine quality. Food Res. Int. 2012, 46, 22–29. [Google Scholar] [CrossRef]
- Organisation International de la Vigne et du Vin (OIV). Compendium of International Methods of Wine and Must Analysis. Vol. 1 and 2. Paris, France, 2018. Available online: http://188.165.107.123/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 16 January 2023).
- Organisation International de la Vigne et du Vin (OIV). Chromatic Characteristics. In Compendium of International Methods of Analysis; International Organisation of Vine and Wine: Paris, France, 2009. [Google Scholar]
- Gómez-Míguez, J.M.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Chira, K.; Teissedre, P.L. Chemical and sensory evaluation of wine matured in oak barrel: Effect of oak species involved and toasting process. Eur. Food Res. Technol. 2015, 240, 533–547. [Google Scholar] [CrossRef]
- Gonçalves, F.J.; Jordão, A.M. Changes in antioxidant activity and proanthocyanidin fraction of red wine aged in contact with Portuguese (Quercus pyrenaica Willd.) and American (Quercus alba L.) oak wood chips. Ital. J. Food Sci. 2009, 21, 51–64. [Google Scholar]
- Vasserot, Y.; Caillet, S.; Maujean, A. Study of Anthocyanin Adsorption by Yeast Lees. Effect of Some Physicochemical Parameters. Am. J. Enol. Vitic. 1997, 48, 433–437. [Google Scholar] [CrossRef]
- Fulcrand, H.; Benabdeljalil, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochem. 1998, 47, 1401–1407. [Google Scholar] [CrossRef]
- Dallas, C.; Ricardo-da-Silva, J.M.; Laureano, O. Interactions of oligomeric procyanidins in model wine solutions containing malvidin-3-glucoside and acetaldehyde. J. Sci. Food Agric. 1996, 70, 493–500. [Google Scholar] [CrossRef]
- Liu, S.Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Tech. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Caridi, A.; Cufari, A.; Lovino, R.; Palumbo, R.; Tedesco, I. Influence of yeast on polyphenols in wine. Food Technol. Biotechnol. 2004, 42, 37–40. [Google Scholar]
- Fia, G.; Giovani, G.; Rosi, I. Study of β-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J. Appl. Microbiol. 2005, 99, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of Non-Saccharomyces on wine chemistry: A Focus on aroma-related compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef]
- Recamales, Á.F.; Sayago, A.; González-Miret, M.L.; Hermanz, D. The effect of time and storage conditions on the phenolic composition and color of white wine. Food Res. Int. 2006, 39, 220–229. [Google Scholar] [CrossRef]
- Nonier, M.F.; Pianet, I.; Laguerre, M.; Vivas, N.; De Gaulejac, N.V. Condensation products derived from flavan-3-ol oak wood aldehydes reaction-1. Structural investigation. Anal. Chim. Acta 2006, 563, 76–83. [Google Scholar] [CrossRef]
- Sousa, C.; Mateus, N.; Silva, A.M.S.; González-Paramás, A.M.; Santos-Buelga, C.; De Freitas, V. Structural and chromatic characterization of a new malvidin-3-glucoside-vanillyl-catechin pigment. Food Chem. 2007, 102, 1344–1351. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Yokotsuka, K.; Matsunaga, M.; Singleton, V. Comparison of composition of Koshu white wines fermented in oak barrels and plastic tanks. Am. J. Enol. Vitic. 1994, 45, 11–16. [Google Scholar] [CrossRef]
- Gonzàlez-Marco, A.; Jimenez-Moreno, N.; Ancìn Azpilicueta, C. Concentration of volatile compounds in Chardonnay wine fermented in stainless steel tanks and oak barrels. Food Chem. 2008, 108, 213–219. [Google Scholar] [CrossRef]
- Torrea, D.; Fraile, P.; Garde, T.; Ancín, C. Production of volatile compounds in the fermentation of chardonnay musts inoculated with two strains of Saccharomyces cerevisiae with different nitrogen demands. Food Control 2003, 14, 565–571. [Google Scholar] [CrossRef]
- Coelho, E.; Domingues, L.; Teixeira, J.A.; Oliveira, J.M.; Tavares, T. Understanding wine sorption by oak wood: Modeling of wine uptake and characterization of volatile compounds retention. Food Res. Int. 2019, 116, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Jia, F.; Cai, J.; Shi, Y.; Duan, C.; Lan, Y. Characterization and evolution of volatile compounds of Cabernet Sauvignon wines from two different clones during oak barrel aging. Foods 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: An analytical study. J. Agric. Food Chem. 2005, 53, 4166–4177. [Google Scholar] [CrossRef] [PubMed]
- Curiel, J.A.; Morales, P.; Gonzalez, R.; Tronchoni, J. Different Non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures. Front. Microbiol. 2017, 31, 2121. [Google Scholar] [CrossRef] [Green Version]
- Loira, I.; Morata, A.; Comuzzo, P.; Callejo, M.J.; González, C.; Calderón, F.; Suárez-Lepe, J.A. Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality. Food Res. Int. 2015, 76, 325–333. [Google Scholar] [CrossRef]
- Dumitriu, G.D.; Teodosiu, C.; Gabur, I.; Cotea, V.V.; Peinado, R.A.; López de Lerma, N. Evaluation of aroma compounds in the process of wine ageing with oak chips. Foods 2019, 8, 662. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Moreno, N.; Ancín-Azpilicueta, C. The development of esters in filtered and unfiltered wines that have been aged in oak barrels. Int. J. Food Sci. Technol. 2006, 41, 155–161. [Google Scholar] [CrossRef]
- Kyraleou, M.; Tzanakouli, E.; Kotseridis, Y.; Chira, K.; Ligas, I.; Kallithraka, S.; Teissedre, P.L. Addition of wood chips in red wine during and after alcoholic fermentation: Differences in color parameters, phenolic content and volatile composition. OENO One 2016, 50, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 73–884. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Ferreira, A.S.; Jourdes, M.; Teissedre, P.L.; Rodrigues, A.; Armando, O.; Saraiva, J.A.; Coimbra, M.A. Comparison of high pressure treatment with conventional red wine aging processes: Impact on phenolic composition. Food Res. Int. 2019, 116, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Louw, L.; Tredoux, A.G.J.; Van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived aroma compounds in varietal young wines from South Africa. S. Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Palomo, E.; Alonso-Villegas, R.; Delgado, J.A.; González-Viñas, M.A. Improvement of Verdejo white wines by contact with oak chips at different winemaking stages. LWT Food Sci. Technol. 2017, 79, 111–118. [Google Scholar] [CrossRef]
- Călugăr, A.; Coldea, T.E.; Pop, C.R.; Pop, T.I.; Babeș, A.C.; Bunea, C.I.; Manolache, M.; Gal, E. Evaluation of volatile compounds during ageing with oak chips and oak barrel of Muscat Ottonel wine. Processes 2020, 8, 1000. [Google Scholar] [CrossRef]
- Dumitriu, G.D.; Lopez de Lerma, N.; Zamfir, C.I.; Cotea, V.V.; Peinado, R.A. Volatile and phenolic composition of red wines subjected to aging in oak cask of different toast degree during two periods of time. LWT Food Sci. Technol. 2017, 86, 643–651. [Google Scholar] [CrossRef]
- Herrera, P.; Durán-Guerrero, E.; Sánchez-Guillén, M.M.; García-Moreno, M.V.; Guillén, D.A.; Barroso, C.G.; Castro, R. Effect of the type of wood used for ageing on the volatile composition of Pedro Ximénez sweet wine. J. Sci. Food Agric. 2020, 100, 2512–2521. [Google Scholar] [CrossRef]
- Ferreras, D.; Fernández, E.; Falqué, E. Note: Effects of Oak Wood on the Aromatic Composition of Vitis vinifera L. var. Treixadura wines. Food Sci. Technol. Int. 2002, 8, 343–349. [Google Scholar] [CrossRef]
- Guchu, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; González-Viñas, M.A.; Cabezudo Ibáñez, M.D. Volatile composition and sensory characteristics of Chardonnay wines treated with American and Hungarian oak chips. Food Chem. 2006, 99, 350–359. [Google Scholar] [CrossRef]
- Garde-Cerdan, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Arapitsas, P.; Antonopoulos, A.; Stefanou, E.; Dourtoglou, V.G. Artificial aging of wines using oak chips. Food Chem. 2004, 86, 563–570. [Google Scholar] [CrossRef]
- De Rosso, M.; Panighel, A.; Dalla-Vedova, A.; Stella, L.; Flamini, R. Changes in chemical composition of a red wine aged in acacia, cherry, chestnut, mulberry, and oak wood barrels. J. Agric. Food Chem. 2009, 57, 1915–1920. [Google Scholar] [CrossRef]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of lactones in wines by headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry. J. Anal. Methods Chem. 2014, 2014, 863019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Orte, P.; Franco, E.; González Huerta, C.; Martínez García, J.; Cabellos, M.; Suberviola, J.; Orriols, I.; Cacho, J. Criteria to discriminate between wines aged in oak barrels and macerated with oak fragments. Food Res. Int. 2014, 57, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, K.L.; Prida, A.; Hayasaka, Y. Role of glycoconjugates of 3-methyl-4-hydroxyoctanoic acid in the evolution of oak lactone in wine during oak maturation. J. Agric. Food Chem. 2013, 61, 4411–4416. [Google Scholar] [CrossRef] [PubMed]
Trial | Strains | Type of Inoculum |
---|---|---|
W1 | RT73 + CZ31 | CO |
W2 | RT73 + CZ31 | SQ |
W3 | RT73 + CZ31 | CO+ oak chips |
W4 | RT73 + CZ31 | SQ+ oak chips |
W5 | RT73 + CZ31 | CO+ CZ31 adhered to oak chips |
W6 | RT73 + CZ31 | SQ+ CZ31 adhered to oak chips |
Trial | Alcohol (% v/v) | Residual Sugars (g/L) | pH | Total Acidity (g/L) * | Volatile Acidity (g/L) ** | Glycerol (g/L) | Polyphenols (g/L) |
---|---|---|---|---|---|---|---|
W1 | 11.07 ± 1.23 A | 0.51 ± 0.11 A | 3.48 ± 0.45 A | 6.05 ± 1.09 A | 0.56 ± 0.08 A | 5.19 ± 2.43 B | 126 ± 37.89 C |
W2 | 11.07 ± 2.89 A | 0.58 ± 0.12 A | 3.52 ± 0.77 A | 6.04 ± 1.22 A | 0.56 ± 0.14 A | 5.18 ± 1.88 B | 183 ± 58.43 C |
W3 | 11.04 ± 0.98 A | 0.59 ± 0.09 A | 3.48 ± 0.26 A | 6.12 ± 2.09 A | 0.54 ± 0.06 A | 5.33 ± 1.05 B | 223 ± 88.43 B |
W4 | 11.13 ± 1.55 A | 0.61 ± 0.17 A | 3.56 ± 0.84 A | 6.11 ± 0.87 A | 0.52 ± 0.04 A | 5.15 ± 0.62 B | 220 ± 91.84 B |
W5 | 11.06 ± 2.06 A | 0.59 ± 0.06 A | 3.51 ± 0.98 A | 5.99 ± 0.44 A | 0.57 ± 0.18 A | 6.53 ± 1.29 A | 330 ± 73.54 A |
W6 | 11.07 ± 1.22 A | 0.58 ± 0.04 A | 3.54 ± 0.37 A | 6.02 ± 0.35 A | 0.55 ± 0.09 A | 6.85 ± 1.84 A | 344 ± 81.45 A |
Trial | L* | a* | b* | C* | H* | Intensity |
---|---|---|---|---|---|---|
W1 | 97.44 ± 1.34 B | −0.25 ± 0.04 B | 2.07 ± 0.87 C | 2.07 ± 0.54 C | 95.22 ± 1.98 C | 0.11 ± 0.12 B |
W2 | 97.41 ± 6.87 B | −0.21 ± 0.06 B | 2.25 ± 0.91 C | 2.26 ± 0.36 C | 96.37 ± 1.49 C | 0.12 ± 0.22 B |
W3 | 97.99 ± 3.66 A | −0.27 ± 0.03 B | 2.56 ± 0.5 B | 2.57 ± 0.55 B | 97.05 ± 1.45 B | 0.13 ± 0.08 B |
W4 | 98.28 ± 5.12 A | −0.31 ± 0.05 B | 2.68 ± 0.77 B | 2.71 ± 0.13 B | 97.66 ± 1.87 B | 0.19 ± 0.45 A |
W5 | 98.21 ± 2.77 A | −0.41 ± 0.02 A | 3.04 ± 0.27 A | 3.07 ± 0.54 A | 98.59 ± 0.99 A | 0.15 ± 0.17 B |
W6 | 98.25 ± 7.98 A | −0.39 ± 0.06 A | 3.45 ± 0.62 A | 3.07 ± 0.98 A | 98.31 ± 1.32 A | 0.18 ± 0.15 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perpetuini, G.; Rossetti, A.P.; Battistelli, N.; Zulli, C.; Piva, A.; Arfelli, G.; Corsetti, A.; Tofalo, R. Contribution of Starmerella bacillaris and Oak Chips to Trebbiano d’Abruzzo Wine Volatile and Sensory Diversity. Foods 2023, 12, 1102. https://doi.org/10.3390/foods12051102
Perpetuini G, Rossetti AP, Battistelli N, Zulli C, Piva A, Arfelli G, Corsetti A, Tofalo R. Contribution of Starmerella bacillaris and Oak Chips to Trebbiano d’Abruzzo Wine Volatile and Sensory Diversity. Foods. 2023; 12(5):1102. https://doi.org/10.3390/foods12051102
Chicago/Turabian StylePerpetuini, Giorgia, Alessio Pio Rossetti, Noemi Battistelli, Camillo Zulli, Andrea Piva, Giuseppe Arfelli, Aldo Corsetti, and Rosanna Tofalo. 2023. "Contribution of Starmerella bacillaris and Oak Chips to Trebbiano d’Abruzzo Wine Volatile and Sensory Diversity" Foods 12, no. 5: 1102. https://doi.org/10.3390/foods12051102
APA StylePerpetuini, G., Rossetti, A. P., Battistelli, N., Zulli, C., Piva, A., Arfelli, G., Corsetti, A., & Tofalo, R. (2023). Contribution of Starmerella bacillaris and Oak Chips to Trebbiano d’Abruzzo Wine Volatile and Sensory Diversity. Foods, 12(5), 1102. https://doi.org/10.3390/foods12051102