Comparison of Chemical and Sensory Profiles between Cabernet Sauvignon and Marselan Dry Red Wines in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Reagents
2.3. Quantitation of Aroma Compounds
2.3.1. Headspace–Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS)
2.3.2. Solid-Phase Extraction–GC–Triple Quadrupole MS/MS (SPE-GC-QqQ-MS/MS)
2.4. Colorimetric Measurements
2.5. Quantitation of Phenolic Compounds by HPLC-QqQ-MS/MS
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Aroma Compounds
Compound | Class a | Threshold (μg/L) b | Cabernet Sauvignon | Marselan | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | OAV c | Minimum | Maximum | Mean | OAV | ||||
1-Hexanol | C6 | 8000 [1] | 1810 | 4370 | 2792 | 0.35 | 1371 | 3326 | 2166 | 0.27 | 0.075 |
(Z)-3-Hexenol | C6 | 400 [1] | 131.2 | 289 | 182.9 | 0.46 | 112.5 | 221.6 | 179.9 | 0.45 | 0.822 |
Linalool | T | 15 [1] | 3.84 | 7.75 | 5.56 | 0.37 | 3.89 | 10.63 | 7.82 | 0.52 | 0.014 * |
Terpinen-4-ol | T | 5000 [2] | 3.45 | 6.05 | 3.89 | <0.01 | 3.45 | 8.5 | 5.22 | 0 | 0.014 * |
α-Terpineol | T | 250 [3] | 1.36 | 6.77 | 4.69 | 0.02 | 1.36 | 12.63 | 8.75 | 0.04 | 0.032 * |
β-Damascenone | N | 0.05 [1] | 2.35 | 8.93 | 5.16 | 103.2 | 2.7 | 9.78 | 5.09 | 101.8 | 0.873 |
β-Ionone | N | 0.09 [3] | 0.62 | 3.2 | 0.94 | 10.44 | 0.62 | 0.62 | 0.62 | 6.89 | 0.351 |
Isobutanol | H | 40,000 [1] | 20,875 | 33,091 | 27,821 | 0.70 | 20,422 | 40,174 | 26,741 | 0.67 | 0.685 |
Isoamyl alcohol | H | 30,000 [1] | 443,808 | 599,200 | 532,549 | 17.75 | 342,445 | 478,139 | 408,934 | 13.63 | 0.004 ** |
1-Heptanol | H | 2500 [2] | 18.71 | 58.77 | 32.78 | 0.01 | 14.16 | 58.49 | 28.75 | 0.01 | 0.52 |
2-Ethylhexanol | H | - | 2.81 | 10.59 | 5.49 | - | 2.55 | 25.18 | 8.27 | - | 0.383 |
1-Octanol | H | 800 [4] | 13.58 | 24.76 | 17.21 | 0.02 | 11.16 | 24.53 | 17 | 0.02 | 0.903 |
2,3-Butanediol | H | 150,000 [4] | 73,548 | 120,706 | 91,623 | 0.61 | 70,200 | 105,393 | 85,503 | 0.57 | 0.384 |
1-Nonanol | H | 600 [5] | 8.11 | 13.89 | 10.05 | 0.02 | 4.14 | 10.82 | 7.85 | 0.01 | 0.107 |
1-Decanol | H | 400 [3] | 3.58 | 5.77 | 4.55 | 0.01 | 3.36 | 5.69 | 4.47 | 0.01 | 0.793 |
Benzyl alcohol | H | 900,000 [2] | 436 | 727.8 | 562.2 | <0.01 | 451.9 | 1271 | 633.5 | 0 | 0.466 |
2-Phenylethyl alcohol | H | 10,000 [1] | 30,013 | 58,484 | 46145 | 4.61 | 13,145 | 44,894 | 30,740 | 3.07 | 0.027 * |
Ethyl butanoate | EEFA | 20 [1] | 323.9 | 732.6 | 505.8 | 25.29 | 337.4 | 739.8 | 509.1 | 25.46 | 0.887 |
Ethyl hexanoate | EEFA | 5 [1] | 637.3 | 1864 | 1306 | 261.2 | 552.4 | 2383 | 1286 | 257.2 | 0.888 |
Ethyl octanoate | EEFA | 580 [2] | 939.1 | 2506 | 1637 | 2.82 | 859.6 | 3210 | 1608 | 2.77 | 0.887 |
Ethyl decanoate | EEFA | 200 [3] | 105.3 | 582 | 295.3 | 1.48 | 75.18 | 784.7 | 319.3 | 1.6 | 0.685 |
Ethyl dodecanoate | EEFA | 500 [2] | 0.3 | 1.18 | 0.63 | <0.01 | 0.29 | 1.92 | 0.9 | 0 | 0.129 |
Ethyl hexadecanoate | EEFA | 1000 [2] | 19.75 | 68.69 | 36.31 | 0.04 | 34.09 | 106.9 | 64.3 | 0.06 | <0.001 *** |
Ethyl 2-methylbutanoate | EEBA | 1 [1] | 0.46 | 100.2 | 54 | 54.0 | 0.46 | 95.36 | 41.63 | 41.63 | 0.116 |
Ethyl 3-methylbutanoate | EEBA | 3 [1] | 2.86 | 152.2 | 77.83 | 25.94 | 2.86 | 149.1 | 68.95 | 22.98 | 0.292 |
Ethyl acetate | EEOA | 75,000 [1] | 213,390 | 4,088,045 | 289,335 | 3.86 | 199,877 | 506,477 | 323,956 | 4.32 | 0.1 |
Ethyl heptanoate | EEOA | 220 [2] | 4.75 | 7.76 | 5.69 | 0.03 | 4.44 | 6.18 | 5.13 | 0.02 | 0.199 |
Ethyl lactate | EEOA | 150,000 [2] | 71914 | 195,240 | 109,931 | 0.73 | 67,826 | 147,,835 | 107,157 | 0.71 | 0.8 |
Ethyl nonanoate | EEOA | - | 1.99 | 3.33 | 2.46 | - | 1.6 | 2.68 | 2.14 | - | 0.073 |
Ethyl 2-hydroxy-4-methylpentanoate | EEOA | 300 [6] | 128.7 | 255.8 | 183.5 | 0.61 | 104.9 | 401.8 | 186 | 0.62 | 0.925 |
Ethyl 2-furoate | EEOA | 16,000 [3] | 13.66 | 25.94 | 19.57 | <0.01 | 11 | 29.08 | 18.62 | 0 | 0.372 |
Dithyl succinate | EEOA | 200,000 [7] | 2348 | 28,121 | 18,801 | 0.09 | 3700 | 32,033 | 19,184 | 0.1 | 0.832 |
Ethyl benzeneacetate | EEOA | - | 4.18 | 9.31 | 6.58 | - | 2.5 | 9.88 | 5.84 | - | 0.079 |
Ethyl cinnamate | EEOA | 1 [1] | 51.36 | 411.6 | 114.4 | 114.4 | 33.33 | 46.29 | 36.88 | 36.88 | 0.107 |
Methyl octanoate | OE | 200 [8] | 3.91 | 6.58 | 4.86 | 0.02 | 3.69 | 6.31 | 4.7 | 0.02 | 0.551 |
Methyl salicylate | OE | - | 6.99 | 11.27 | 8.42 | - | 7.97 | 19.23 | 10.62 | - | 0.163 |
Isoamyl hexanoate | OE | - | 3.63 | 4.75 | 4.15 | - | 3.11 | 4.36 | 3.67 | - | <0.001 *** |
Isoamyl octanoate | OE | 125 [3] | 7.55 | 16.57 | 10.95 | 0.09 | 6.66 | 15.87 | 10.07 | 0.08 | 0.255 |
Isoamyl acetate | HA | 30 [1] | 680 | 1948 | 1135 | 37.83 | 484.8 | 3074 | 951.4 | 31.71 | 0.605 |
Hexyl acetate | HA | 1000 [9] | 11.22 | 30.47 | 17.66 | 0.02 | 10.19 | 62.49 | 19.28 | 0.02 | 0.782 |
β-Phenethyl acetate | HA | 250 [1] | 2.86 | 4.04 | 3.22 | 0.01 | 2.5 | 6.42 | 3.27 | 0.01 | 0.887 |
Furfural | F | 14,100 [3] | 316.5 | 4557 | 1398 | 0.10 | 191.4 | 5090 | 1250 | 0.09 | 0.858 |
5-Methylfurfural | F | 20,000 [7] | 106.7 | 620.4 | 314.5 | 0.02 | 106.7 | 667.6 | 233.5 | 0.01 | 0.401 |
Acetic acid | A | 200,000 [1] | 0.11 | 0.19 | 0.14 | <0.01 | 0.08 | 0.2 | 0.13 | 0 | 0.927 |
Isobutyric acid | A | 2300 [3] | 1072 | 2998 | 1844 | 0.80 | 1042 | 2745 | 1467 | 0.64 | 0.245 |
Isovaleric acid | A | 33.4 [3] | 1092 | 1729 | 1288 | 38.56 | 852 | 1097 | 978.3 | 29.29 | 0.007 ** |
Octanoic acid | A | 500 [3] | 2160 | 2753 | 2307 | 4.61 | 1902 | 4021 | 2440 | 4.88 | 0.55 |
n-Decanoic acid | A | 1000 [3] | 236.3 | 279.2 | 252.5 | 0.25 | 211.49 | 482.6 | 266.6 | 0.27 | 0.656 |
γ-Butyrolactone | L | 20,000 [4] | 17,079 | 27,552 | 22,754 | 1.14 | 10,273 | 23,094 | 17,719 | 0.89 | 0.011 * |
Pantolactone | L | 2000 [4] | 304 | 634.4 | 480.7 | 0.24 | 314.2 | 815.1 | 537.9 | 0.27 | 0.429 |
γ-Hexalactone | L | 13,000 [3] | 16.04 | 245.5 | 67 | 0.01 | 0.4 | 0.4 | 0.4 | 0 | 0.403 |
γ-Octalactone | L | 7 [10] | 0.72 | 78.13 | 10.55 | 1.51 | 0.82 | 3.99 | 1.44 | 0.21 | 0.36 |
δ-Octalactone | L | 400 [11] | 2.57 | 7.34 | 6.09 | 0.02 | 6.71 | 10.17 | 8.22 | 0.02 | 0.003 ** |
γ-Nonalactone | L | 30 [3] | 4.2 | 11.74 | 8.53 | 0.28 | 3.81 | 10.95 | 8.04 | 0.27 | 0.41 |
γ-Decalatone | L | 0.7 [10] | 0.33 | 0.71 | 0.45 | 0.64 | 0.48 | 0.69 | 0.56 | 0.8 | 0.067 |
δ-Decalactone | L | 100 [10] | 3.59 | 6.29 | 4.9 | 0.05 | 3.99 | 11.5 | 5.98 | 0.06 | 0.145 |
γ-Undecalactone | L | 60 [7] | 0.27 | 0.35 | 0.3 | 0.01 | 0.28 | 0.35 | 0.31 | 0.01 | 0.025 * |
γ-Dodecalactone | L | 7 [10] | 0.55 | 0.68 | 0.6 | 0.09 | 0.57 | 0.71 | 0.62 | 0.09 | 0.056 |
δ-Dodecalactone | L | - | 2.96 | 4.9 | 3.75 | - | 2.66 | 6.58 | 3.96 | - | 0.466 |
Sotolon | L | 5 [1] | 0.66 | 3.43 | 1.97 | 0.39 | 0.62 | 5.39 | 2.53 | 0.51 | 0.205 |
Benzaldehyde | O | 2000 [8] | 11.93 | 41.34 | 23.44 | 0.01 | 10.84 | 205.2 | 48.91 | 0.02 | 0.281 |
Methionol | O | 1000 [3] | 1976 | 4036 | 2824 | 2.82 | 645.6 | 2610 | 1691 | 1.69 | 0.009 ** |
(Z)-Oaklactone | O | 67 [2] | 172.2 | 558.2 | 424 | 6.33 | 122.9 | 799.5 | 439.9 | 6.57 | 0.824 |
Phenol | O | - | 14.93 | 53.6 | 26.71 | - | <0.01 | 27.88 | 16.49 | - | 0.183 |
3.2. Phenolic Compounds
3.3. Color Parameters Analysis and Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rotaru, L.G.; Filipov, F.; Mustea, M.; Stoleru, V. Influence of some “Terroir Viticole” Factors on Quantity and Quality of Grapes. Not. Bot. Horti. Agrobo. 2010, 38, 176–181. [Google Scholar] [CrossRef]
- Alonso, U.A.; Cardebat, J.M.; Corsi, A. (Eds.) The Palgrave Handbook of Wine Industry Economics; Palgrave Macmillan: London, UK, 2019; pp. 1–542. [Google Scholar] [CrossRef]
- Robinson, J.; Harding, J.; Vouillamoz, J. Wine Grapes: A Complete Guide to 1368 Vine Varieties, including Their Origins and Flavours; Penguin: Westminster, UK, 2013; pp. 601–602. [Google Scholar]
- Li, M.; Guo, Z.; Jia, N.; Yuan, J.; Han, B.; Yin, Y.; Sun, Y.; Liu, C.; Zhao, S. Evaluation of Eight Rootstocks on the Growth and Berry Quality of Marselan Grapevines. Sci. Hortic. 2019, 248, 58–61. [Google Scholar] [CrossRef]
- Lyu, J.; Ma, Y.; Xu, Y.; Nie, Y.; Tang, K. Characterization of the Key Aroma Compounds in Marselan Wine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests. Molecules 2019, 24, 2978. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Liu, M.; Zhang, X.; Li, S.; Shi, Y.; Duan, C. Regional Variation of Chemical Characteristics in Young Marselan (Vitis vinifera L.) Red Wines from Five Regions of China. Foods 2022, 11, 787. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-B.; Xiang, X.-F.; Qian, X.; Wang, J.-M.; Ling, M.-Q.; Zhu, B.-Q.; Liu, T.; Sun, L.-B.; Shi, Y.; Reynolds, A.G.; et al. Characterization and Differentiation of Key Odor-Active Compounds of ‘Beibinghong’ Icewine and Dry Wine by Gas Chromatography-Olfactometry and Aroma Reconstitution. Food Chem. 2019, 287, 186–196. [Google Scholar] [CrossRef]
- Qian, X.; Lan, Y.; Han, S.; Liang, N.; Zhu, B.; Shi, Y.; Duan, C. Comprehensive Investigation of Lactones and Furanones in Icewines and Dry Wines Using Gas Chromatography-Triple Quadrupole Mass Spectrometry. Food Res. Int. 2020, 137, 109650. [Google Scholar] [CrossRef]
- Ayala, F.; Echávarri, J.F.; Negueruela, A.I. A New Simplified Method for Measuring the Color of Wines. I. Red and Rose Wines. Am. J. Enol. Vitic. 1997, 48, 357–363. [Google Scholar] [CrossRef]
- Li, S.Y.; He, F.; Zhu, B.Q.; Xing, R.R.; Reeves, M.J.; Duan, C.Q. A Systematic Analysis Strategy for Accurate Detection of Anthocyanin Pigments in Red Wines. Rapid Commun. Mass Spr. 2016, 30, 1619–1626. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhu, B.Q.; Reeves, M.J.; Duan, C.Q. Phenolic Analysis and Theoretic Design for Chinese Commercial wines’ Authentication. J. Food Sci. 2018, 83, 30–38. [Google Scholar] [CrossRef]
- Ling, M.; Bai, X.; Cui, D.; Shi, Y.; Duan, C.; Lan, Y. An Efficient Methodology for Modeling to Predict Wine Aroma Expression Based on Quantitative Data of Volatile Compounds: A Case Study of Oak Barrel-Aged Red Wines. Food Res. Int. 2023, 164, 112440. [Google Scholar] [CrossRef]
- Guth, H. Identification of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. [Google Scholar] [CrossRef]
- Li, Z.; Pan, Q.; Jin, Z.; Mu, L.; Duan, C. Comparison on Phenolic Compounds in Vitis vinifera cv. Cabernet Sauvignon Wines from Five Wine-Growing Regions in China. Food Chem. 2011, 125, 77–83. [Google Scholar] [CrossRef]
- Marais, J. Terpenes in the Aroma of Grapes and Wines: A Review. S. Afr. J. Enol. Vitic. 1986, 4, 49–58. [Google Scholar] [CrossRef]
- Strauss, C.R.; Wilson, B.; Gooley, P.R.; Williams, P.J. Role of Monoterpenes in Grape and Wine Flavor. In Biogeneration of Aromas; American Chemical Society USA: New York, NY, USA, 1986; Chapter 18; pp. 222–242. [Google Scholar] [CrossRef]
- López, R.; Ezpeleta, E.; Sánchez, I.; Cacho, J.; Ferreira, V. Analysis of the Aroma Intensities of Volatile Compounds Released from Mild Acid Hydrolysates of Odourless Precursors Extracted from Tempranillo and Grenache Grapes Using Gas Chromatography-Olfactometry. Food Chem. 2004, 88, 95–103. [Google Scholar] [CrossRef]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas Chromatography−Olfactometry and Chemical Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red Wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Syed, N.; Singh, S.; Chaturvedi, S.; Nannaware, A.D.; Khare, S.K.; Rout, P.K. Production of Lactones for Flavoring and Pharmacological Purposes from Unsaturated Lipids: An Industrial Perspective. Crit. Rev. Food Sci. 2022, 1–32. [Google Scholar] [CrossRef]
- Pons, A.; Mouakka, N.; Deliere, L.; Crachereau, J.C.; Davidou, L.; Sauris, P.; Guilbault, P.; Darriet, P. Impact of Plasmopara Viticola Infection of Merlot and Cabernet Sauvignon Grapes on Wine Composition and Flavor. Food Chem. 2018, 239, 102–110. [Google Scholar] [CrossRef]
- Swiegers, J.; Bartowsky, E.; Henschke, P.; Pretorius, I. Yeast and Bacterial Modulation of Wine Aroma and Flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic Reactions During Winemaking and Aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their Variation in Red Wines, I. Monomeric Anthocyanins and their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
- Ignat, G.; Balan, G.; Sandu, I.; Costuleanu, C.L.; Ville, S.T.S. Study of Phenolic Compounds in Merlot Red Wines Obtained by Different Technologies. Rev. Chim. 2016, 67, 1560–1565. [Google Scholar]
- Aleixandre-Tudo, J.L.; du Toit, W. Cold maceration application in red wine production and its effects on phenolic compounds: A review. LWT. 2018, 95, 200–208. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, Q.; Tao, P.; Tao, P. Effects of Different Maceration Methods on Wine Quality. Chn. Brw. 2012, 31, 150–152. [Google Scholar]
- Daudt, C.E.; Fogaça, A.D.O. Phenolic Compounds in Merlot Wines from Two Wine Regions of Rio Grande do Sul, Brazil. Food Sci. Tech-Brazi. 2013, 33, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.A. Wine colour. In Managing Wine Quality: Viticulture and Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing Limited: Oxford, UK, 2010; Volme 1, pp. 73–104. [Google Scholar]
- Fournand, D.; Vicens, A.; Sidhoum, L.; Souquet, J.M.; Moutounet, M.; Cheynier, V. Accumulation and Extractability of Grape Skin Tannins and Anthocyanins at Different Advanced Physiological Stages. J. Agric. Food Chem. 2006, 54, 7331–7338. [Google Scholar] [CrossRef]
- Boulton, R. The Copigmentation of Anthocyanins and its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Shi, P.B.; Yue, T.X.; Ai, L.L.; Cheng, Y.F.; Meng, J.F.; Li, M.H.; Zhang, Z.W. Phenolic Compound Profiles in Grape Skins of Cabernet Sauvignon, Merlot, Syrah and Marselan Cultivated in the Shacheng Area (China). S. Afr. J. Enol. Vitic. 2006, 37, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.K.; Jeffery, D.W.; Li, D.M.; Lan, Y.B.; Zhao, X.; Duan, C.Q. Red Wine Coloration: A Review of Pigmented Molecules, Reactions, and Applications. Compr. Rev. Food Sci. F. 2002, 21, 3834–3866. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xie, S.; Guan, X.; Song, C.; Zhang, Z.; Meng, J. Methoxypyrazines Biosynthesis and Metabolism in Grape: A review. Food Chem. 2018, 245, 1141–1147. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Guo, X.; Wang, N.; Geng, K.; Li, D.; Wang, Z. Comparison of Methoxypyrazine Content and Expression Pattern of O-Methyltransferase Genes in Grape Berries and Wines from Six Cultivars (Vitis vinifera L.) in the Eastern Foothill of the Helan Mountain. Plants 2022, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory Evaluation of Bitterness and Astringency Sub-Qualities of Wine Phenolic Compounds: Synergistic Effect and Modulation by Aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Hufnagel, J.C.; Hofmann, T. Orosensory-Directed Identification of Astringent Mouthfeel and Bitter-Tasting Compounds in Red Wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Casassa, L.F.; Ceja, G.M.; Vega-Osorno, A.; du Fresne, F.; Llodrá, D. Detailed Chemical Composition of Cabernet Sauvignon Wines Aged in French Oak Barrels Coopered with Three Different Stave Bending Techniques. Food Chem. 2021, 340, 127573. [Google Scholar] [CrossRef]
Groups a | Variety b | Winery | Region | Vintage | |
---|---|---|---|---|---|
1 | CS-1 | MA-1 | Chateau Yunmo Greatwall | Jiaodong Peninsula | 2016 |
2 | CS-2 | MA-2 | Amethyst Manor | Huaizhuo Basin | 2015 |
3 | CS-3 | MA-3 | Martin Vineyard | Huaizhuo Basin | 2017 |
4 | CS-4 | MA-4 | Grace Vineyard | Loess Pplateau | 2013 |
5 | CS-5 | MA-5 | Huangkou Winery | Eastern Foothill of Helan Mountain | 2017 |
6 | CS-6 | MA-6 | Chateau Huahao | Eastern Foothill of Helan Mountain | 2017 |
7 | CS-7 | MA-7 | Chateau Huahao | Eastern Foothill of Helan Mountain | 2018 |
8 | CS-8 | MA-8 | Chateau Zhongfei | Xinjiang | 2015 |
9 | CS-9 | MA-9 | Chateau Zhongfei | Xinjiang | 2016 |
10 | CS-10 | MA-10 | Tiansai Vineyards | Xinjiang | 2015 |
11 | CS-11 | MA-11 | Tiansai Vineyards | Xinjiang | 2016 |
12 | CS-12 | MA-12 | CITIC Guoan Winery | Xinjiang | 2017 |
No. | Compounds | Abbreviation | Cabernet Sauvignon | Marselan | p-Values | ||||
---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Minimum | Maximum | Mean | ||||
1 | Cyanidin-glucoside | Cy | 0.19 | 1.7 | 1 | 0.15 | 2.45 | 0.95 | 0.782 |
2 | Cyanidin-3-O-acetylglucoside | CyA | 0.17 | 1.87 | 0.94 | 0.12 | 2.41 | 0.9 | 0.791 |
3 | Cyanidin-3-O-coumaroylglucoside (cis + trans) | CyC | 0.12 | 1.55 | 0.65 | 0.11 | 1.56 | 0.67 | 0.653 |
4 | Delphinidin-3-O-glucoside | Dp | 3.47 | 22.77 | 9.97 | 0.98 | 21.23 | 9.3 | 0.577 |
5 | Delphinidin-3-O-acetylglucoside | DpA | 1.23 | 7.72 | 3.3 | 0.63 | 5.48 | 2.75 | 0.181 |
6 | Delphinidin-3-O-coumaroylglucoside (cis + trans) | DpC | 0.62 | 1.76 | 1.18 | 0.59 | 1.92 | 1.23 | 0.227 |
7 | Malvidin-3-O-glucoside | Mv | 23.98 | 172.81 | 79.26 | 1.82 | 206.07 | 81.88 | 0.692 |
8 | Malvidin-acetylglucoside | MvA | 10.78 | 99.13 | 37.19 | 1.61 | 86.46 | 32.06 | 0.034 * |
9 | Malvidin-coumaroylglucoside (cis + trans) | MvC | 2.15 | 20.93 | 7.64 | 0.43 | 20.39 | 8.06 | 0.376 |
10 | Peonidin-glucoside | Pn | 0.56 | 4.89 | 2.37 | 0.28 | 4.68 | 2.08 | 0.348 |
11 | Peonidin-acetylglucoside | PnA | 0.42 | 3.23 | 1.58 | 0.12 | 3.35 | 1.34 | 0.153 |
12 | Peonidin-coumaroylglucoside (cis + trans) | PnC | 0.15 | 2.4 | 1.02 | 0.1 | 2.68 | 1.01 | 0.911 |
13 | Petunidin-glucoside | Pt | 0.74 | 8.87 | 3.8 | 0.23 | 13.04 | 4.19 | 0.382 |
14 | Petunidin-acetylglucoside | PtA | 0.4 | 4.12 | 1.92 | 0.11 | 5.12 | 1.83 | 0.624 |
15 | Petunidin-coumaroylglucoside (cis + trans) | PtC | 0.11 | 2 | 0.77 | 0.08 | 2.32 | 0.83 | 0.073 |
Total monomeric anthocyanins | T-Anthocyanins | 45.11 | 355.74 | 152.58 | 7.36 | 379.16 | 149.08 | ||
16 | Malvidin-3-O-glucoside-pyruvic acid | Mv-py acid | 2.23 | 7.43 | 3.82 | 2.71 | 9.86 | 4.73 | 0.197 |
17 | Malvidin-3-O-acetylglucoside-pyruvic acid | MvA-py acid | 1.08 | 4.41 | 2.35 | 1.08 | 6.1 | 2.38 | 0.955 |
18 | Malvidin-3-O-coumaroylglucoside-pyruvic acid | MvC-py acid | n.d. | 0.09 | 0.06 | n.d. | 0.09 | 0.06 | 0.809 |
19 | Malvidin-3-O-glucoside-acetaldehyde | Mv-aldehyde | 0.99 | 5.76 | 2.71 | 0.68 | 20.55 | 3.76 | 0.460 |
20 | Malvidin-3-O-acetylglucoside-acetaldehyde | MvA-aldehyde | 0.56 | 4.01 | 1.87 | 0.28 | 5.68 | 1.63 | 0.535 |
21 | Malvidin-3-O-coumaroylglucoside-acetaldehyde | MvC-aldehyde | 0.29 | 1.97 | 1.07 | 0.17 | 3.71 | 1.13 | 0.840 |
Total vitisins | T-Vitisins | 5.16 | 23.68 | 11.89 | 4.92 | 46 | 13.7 | ||
22 | Malvidin-3-O-glucoside-4-vinylphenol | Mv-vpol | 0.91 | 8.74 | 3.31 | 1.34 | 7.91 | 3.89 | 0.347 |
23 | Malvidin-3-O-glucoside-4-vinylsyringol | Mv-vsol | 0.11 | 1.53 | 0.59 | 0.11 | 1.54 | 0.61 | 0.036 * |
24 | Malvidin-3-O-glucoside-4-vinylguaiacol | Mv-vgol | 0.29 | 1.68 | 0.85 | 0.33 | 1.67 | 0.96 | 0.036 * |
25 | Malvidin-3-O-glucoside-4-vinylcatechol | Mv-vcol | 0.62 | 2.22 | 1.37 | 0.52 | 6.95 | 2.85 | 0.037 * |
26 | Malvidin-3-O-acetylglucoside-4-vinylphenol | MvA-vpol | 0.55 | 4.75 | 1.96 | 0.09 | 5.42 | 1.86 | 0.719 |
27 | Malvidin-3-O-acetylglucoside-4-vinylsyringol | MvA-vsol | 0.11 | 1.53 | 0.59 | 0.1 | 1.53 | 0.59 | 0.28 |
28 | Malvidin-3-O-acetylglucoside-4-vinylguaiacol | MvA-vgol | 0.18 | 1.58 | 0.69 | 0.18 | 1.58 | 0.7 | 0.538 |
29 | Malvidin-3-O-acetylglucoside-4-vinylcatechol | MvA-vcol | 0.27 | 1.770 | 0.860 | 0.22 | 2.72 | 1.28 | 0.075 |
30 | Malvidin-3-O-coumaroylglucoside-4-vinylphenol | MvC-vpol | 0.22 | 1.94 | 1.13 | 0.34 | 2.51 | 1.25 | 0.191 |
31 | Malvidin-3-O-coumaroylglucoside-4-vinylsyringol | MvC-vsol | 0.1 | 1.53 | 0.58 | 0.1 | 1.53 | 0.58 | 0.040 * |
32 | Malvidin-3-O-coumaroylglucoside-4-vinylguaiacol | MvC-vgol | 0.13 | 1.55 | 0.62 | 0.14 | 1.56 | 0.64 | 0.004 ** |
33 | Malvidin-3-O-coumaroylglucoside-4-vinylcatechol | MvC-vcol | 0.17 | 1.62 | 0.78 | 0.17 | 1.98 | 0.86 | 0.516 |
Total pinotins | T-Pinontins | 3.63 | 30.42 | 13.31 | 3.64 | 36.89 | 16.07 | ||
34 | Malvidin-3-O-glucoside-ethyl-catechin | Mv-e-cat | 0.35 | 5.07 | 1.89 | 0.22 | 7.84 | 2.27 | 0.364 |
35 | Malvidin-3-O-acetylglucoside-ethyl-(epi)catechin | MvA-e-(e)cat | 0.16 | 2.03 | 1.03 | 0.11 | 2.01 | 1.04 | 0.893 |
36 | Malvidin-3-O-glucoside-ethyl-di(epi)catechin | Mv-e-di(e)cat | 0.14 | 1.6 | 0.72 | 0.11 | 1.64 | 0.8 | 0.167 |
37 | Malvidin-3-O-coumaroylglucoside-ethyl-(epi)catechin | MvC-e-(e)cat | 0.31 | 1.82 | 1.08 | 0.15 | 2.01 | 1.21 | 0.103 |
Total A-e-F | T-A-e-F | 0.95 | 10.52 | 4.72 | 0.59 | 13.51 | 5.31 | ||
38 | Malvidin-3-O-glucoside-4-vinyl(epi)catechin | Mv-v(e)cat | 0.37 | 1.87 | 1.08 | 0.41 | 2.28 | 1.42 | 0.009 ** |
39 | Malvidin-3-O-glucoside-4-vinyl-di(epi)catechin | Mv-vdi(e)cat | 0.12 | 1.56 | 0.63 | 0.15 | 1.61 | 0.67 | 0.014 * |
40 | Malvidin-3-O-coumaroylglucoside-4-vinyl(epi)catechin | MvC-v(e)cat | 0.16 | 1.6 | 0.68 | 0.19 | 1.72 | 0.74 | 0.015 * |
41 | Malvidin-3-O-acetylglucoside-4-vinyl(epi)catechin | MvA-v(e)cat | 0.28 | 1.7 | 0.89 | 0.24 | 1.69 | 0.92 | 0.502 |
Total A-v-F | T-A-v-F | 0.94 | 6.73 | 3.29 | 0.98 | 7.3 | 3.76 | ||
42 | Malvidin-3-O-glucoside-di(epi)catechin | Mv-di(e)cat | 0.11 | 1.53 | 0.6 | 0.1 | 1.54 | 0.6 | 0.018 * |
43 | (Epi)catechin-Malvidin-3-O-coumaroylglucoside | (E)cat-MvC | 0.18 | 1.58 | 0.7 | 0.13 | 1.62 | 0.74 | 0.082 |
44 | (Epi)catechin-Malvidin-3-O-acetylglucoside | (E)cat-MvA | 0.43 | 1.7 | 0.95 | 0.18 | 1.7 | 0.91 | 0.198 |
45 | (Epi)gallocatechin-Malvidin-3-O-glucoside | Mv-(e)gcat | 0.10 | 1.53 | 0.59 | 0.09 | 1.53 | 0.58 | 0.121 |
46 | Malvidin-3-O-glucoside-(epi)catechin (A type) | Mv-(e)cat | 0.55 | 1.71 | 1.15 | 0.52 | 1.92 | 1.26 | 0.234 |
47 | (Epi)catechin-Malvidin-3-O-glucoside | (E)cat-Mv | 1.44 | 3.65 | 2.26 | 0.98 | 3.48 | 2.46 | 0.213 |
Total F-A/A-F | T-F-A/A-F | 2.81 | 11.7 | 6.25 | 2.00 | 11.79 | 6.55 | ||
48 | Catechin | C | 11.02 | 100.26 | 45.6 | 14.95 | 64.72 | 40.34 | 0.323 |
49 | Gallocatechin | GC | n.d. | 0.43 | 0.13 | n.d. | 1.18 | 0.2 | 0.312 |
50 | Epicatechin | EC | 9.97 | 51.9 | 28.92 | 7.18 | 47.5 | 27.5 | 0.699 |
51 | Epigallocatechin | EGC | n.d. | 17.66 | 6.63 | n.d. | 16.24 | 5.05 | 0.067 |
52 | Procyanidin B1 | Pro B1 | 4.76 | 93.98 | 48.68 | 3.93 | 95.73 | 42.36 | 0.322 |
53 | Procyanidin B2 | Pro B2 | 3.82 | 71.09 | 24.58 | 1.56 | 70.29 | 27.42 | 0.363 |
Total flavan-3-ols | T-Flavan-3-ols | 29.58 | 335.32 | 154.54 | 27.61 | 295.67 | 142.86 | ||
54 | Protocatechuic acid | ProA | 0.47 | 3.39 | 1.01 | 0.01 | 2.48 | 0.85 | 0.355 |
55 | Gentisic acid | GenA | n.d. | 0.54 | 0.06 | n.d. | 0.4 | 0.06 | 0.976 |
56 | Vanillic acid | VanA | n.d. | 4.02 | 1.09 | n.d. | 6.65 | 1.17 | 0.754 |
57 | Gallic acid | GalA | 10.82 | 38 | 21.68 | n.d. | 44.57 | 21.06 | 0.826 |
58 | Chlorogentic acid | ChlA | n.d. | 8.94 | 1.2 | n.d. | 6.69 | 1.42 | 0.631 |
Total hydroxybenzoic acids | T-Hydroxybenzoic acids | 11.29 | 54.87 | 25.03 | 0.01 | 60.79 | 24.56 | ||
59 | 2-Hydroxycinnamic acid | 2HydroA | n.d. | 0.97 | 0.64 | n.d. | 0.98 | 0.6 | 0.375 |
60 | 3-Hydroxycinnamic acid | 3HydroA | n.d. | 1.22 | 0.72 | n.d. | 1.54 | 0.78 | 0.473 |
61 | 4-Hydroxycinnamic acid | 4HydroA | 0.33 | 0.95 | 0.79 | 0.31 | 1 | 0.81 | 0.767 |
62 | Caffeic acid | CafA | n.d. | 9.49 | 1.12 | n.d. | 28.09 | 8.72 | 0.017 * |
Total hydroxycinnamates | T-Hydroxycinnamates | 0.33 | 12.63 | 3.27 | 0.31 | 31.61 | 10.9 | ||
63 | Myricetin | Myr | 0.66 | 4.3 | 2.22 | 0.32 | 5.8 | 2.08 | 0.629 |
64 | Myricetin-3-O-glucoside | Myr-3-glu | 1.68 | 40.34 | 19.99 | n.d. | 53.97 | 19.96 | 0.991 |
65 | Myricetin-3-O-galactoside | Myr-3-gal | 0.06 | 1.49 | 0.45 | n.d. | 1.02 | 0.23 | 0.007 ** |
66 | Kaempferol-3-O-glucoside | Kae-3-glu | 0.24 | 2.36 | 0.85 | 0.21 | 1.22 | 0.6 | 0.219 |
67 | Kaempferol-3-O-galactoside | Kae-3-gal | n.d. | 0.57 | 0.25 | n.d. | 0.48 | 0.16 | 0.076 |
68 | Quercetin-3-O-glucoside | Que-3-glu | n.d. | 22.21 | 6.89 | n.d. | 12.08 | 4.33 | 0.233 |
69 | Quercetin-3-O-glucuronide | Que-3-glucur | 5.88 | 25.36 | 14.89 | 7.13 | 31.87 | 14.73 | 0.907 |
70 | Quercetin-3-O-galactoside | Que-3-gal | 0.13 | 1.65 | 0.89 | 0.07 | 1.22 | 0.5 | 0.005 ** |
71 | Quercetin-rhamnoside | Que-rha | 0.04 | 0.35 | 0.19 | 0.14 | 0.57 | 0.27 | 0.06 |
72 | Dihydroquercetin | Dihydroque | n.d. | 1.91 | 0.4 | n.d. | 3.74 | 0.61 | 0.536 |
Total flavonols | T-Flavonols | 8.69 | 100.54 | 47.03 | 7.86 | 111.98 | 43.47 |
Attributes | Cabernet Sauvignon | Marselan | p-Value | ||||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Minimum | Maximum | Mean | ||
L* | 37.450 | 66.160 | 55.880 | 25.910 | 62.980 | 47.036 | <0.001 *** |
a* | 29.790 | 53.960 | 39.134 | 36.580 | 61.760 | 45.918 | <0.001 *** |
b* | 5.240 | 22.010 | 14.540 | 1.410 | 20.400 | 13.055 | 0.168 |
Red fruit | 4.923 | 6.583 | 5.673 | 5.349 | 6.547 | 5.713 | 0.824 |
Black fruit | 5.384 | 6.111 | 5.718 | 5.050 | 6.540 | 5.745 | 0.839 |
Fresh fruit | 2.910 | 4.738 | 3.491 | 3.081 | 4.500 | 3.708 | 0.171 |
Floral | 2.456 | 4.052 | 2.796 | 2.361 | 4.167 | 3.048 | 0.166 |
Dried fruit | 2.057 | 3.771 | 2.847 | 1.589 | 4.343 | 3.020 | 0.099 |
Herbaceous | 2.278 | 4.842 | 3.197 | 2.194 | 3.334 | 2.689 | 0.013 * |
Sweet | 1.383 | 2.623 | 1.756 | 1.403 | 3.118 | 2.089 | 0.076 |
Oak | 2.291 | 5.041 | 3.233 | 1.972 | 4.174 | 2.939 | 0.020 * |
Astringency | 3.188 | 7.009 | 4.311 | 2.906 | 5.484 | 4.068 | 0.309 |
Tannin quality | 4.268 | 6.673 | 5.725 | 5.238 | 6.574 | 5.936 | 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Yang, W.; Qian, X.; Zhang, X.; Ling, M.; Yang, L.; Shi, Y.; Duan, C.; Lan, Y. Comparison of Chemical and Sensory Profiles between Cabernet Sauvignon and Marselan Dry Red Wines in China. Foods 2023, 12, 1110. https://doi.org/10.3390/foods12051110
Song X, Yang W, Qian X, Zhang X, Ling M, Yang L, Shi Y, Duan C, Lan Y. Comparison of Chemical and Sensory Profiles between Cabernet Sauvignon and Marselan Dry Red Wines in China. Foods. 2023; 12(5):1110. https://doi.org/10.3390/foods12051110
Chicago/Turabian StyleSong, Xixian, Weixi Yang, Xu Qian, Xinke Zhang, Mengqi Ling, Li Yang, Ying Shi, Changqing Duan, and Yibin Lan. 2023. "Comparison of Chemical and Sensory Profiles between Cabernet Sauvignon and Marselan Dry Red Wines in China" Foods 12, no. 5: 1110. https://doi.org/10.3390/foods12051110
APA StyleSong, X., Yang, W., Qian, X., Zhang, X., Ling, M., Yang, L., Shi, Y., Duan, C., & Lan, Y. (2023). Comparison of Chemical and Sensory Profiles between Cabernet Sauvignon and Marselan Dry Red Wines in China. Foods, 12(5), 1110. https://doi.org/10.3390/foods12051110