Extraction, Characterization, and Bioactivity of Phenolic Compounds—A Case on Hibiscus Genera
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Extraction and Analytical Characterization of Phenolic Compounds from Hibiscus
3.2. Bioactivity Evaluation of Hibiscus Phenolic Compounds
3.3. Bioaccessibility and Microbiota Interaction of Phenolic Compounds from Hibiscus
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramalingum, N.; Mahomoodally, M.F. The Therapeutic Potential of Medicinal Foods. Adv. Pharmacol. Sci. 2014, 2014, 354264. [Google Scholar] [CrossRef] [Green Version]
- Arablou, T.; Aryaeian, N. The effect of ginger (Zingiber officinale) as an ancient medicinal plant on improving blood lipids. J. Herb. Med. 2018, 12, 11–15. [Google Scholar] [CrossRef]
- Mickymaray, S. Efficacy and Mechanism of Traditional Medicinal Plants and Bioactive Compounds against Clinically Important Pathogens. Antibiotics 2019, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Bagues, M.; Nagaz, K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS ONE 2020, 15, e0232599. [Google Scholar] [CrossRef] [PubMed]
- Dikpınar, T.; Süzgeç-Selçuk, S. Antimicrobial activities of medicinal plants containing phenolic compounds. J. Nat. Prod. 2020, 10, 514–534. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Antimicrobial potential of pomegranate peel: A review. Int. J. Food Sci. Technol. 2019, 54, 959–965. [Google Scholar] [CrossRef]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries (Rubus idaeus): A General Review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef]
- Kırmızıbekmez, H.; İnan, Y.; Reis, R.; Sipahi, H.; Gören, A.C.; Yeşilada, E. Phenolic compounds from the aerial parts of Clematis viticella L. and their in vitro anti-inflammatory activities. Nat. Prod. Res. 2019, 33, 2541–2544. [Google Scholar] [CrossRef] [PubMed]
- Laganà, P.; Anastasi, G.; Marano, F.; Piccione, S.; Singla, R.K.; Dubey, A.K.; Delia, S.; Coniglio, M.A.; Facciolà, A.; Di Pietro, A.; et al. Phenolic substances in foods: Health effects as anti-inflammatory and antimicrobial agents. J. AOAC Int. 2019, 102, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, M.; do Carmo, M.A.V.; Azevedo, L.; Cruz, T.M.; Marques, M.B.; Myoda, T.; Sant’Ana, A.S.; Furtado, M.M.; Wen, M.; Zhang, L.; et al. Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.] O. Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. FCT 2020, 142, 111439. [Google Scholar] [CrossRef]
- Calderón-Pérez, L.; Llauradó, E.; Companys, J.; Pla-Pagà, L.; Pedret, A.; Rubió, L.; Gosalbes, M.J.; Yuste, S.; Solà, R.; Valls, R.M. Interplay between dietary phenolic compound intake and the human gut microbiome in hypertension: A cross-sectional study. Food Chem. 2021, 344, 128567. [Google Scholar] [CrossRef]
- Escobar-Ortiz, A.; Castaño-Tostado, E.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Reynoso-Camacho, R. Anthocyanins extraction from Hibiscus sabdariffa and identification of phenolic compounds associated with their stability. J. Sci. Food Agric. 2021, 101, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Cassol, L.; Rodrigues, E.; Noreña, C.P.Z. Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Ind. Crops Prod. 2019, 133, 168–177. [Google Scholar] [CrossRef]
- Gad, F.A.-M.; Farouk, S.M.; Emam, M.A. Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environ. Sci. Pollut. Res. 2021, 28, 2379–2390. [Google Scholar] [CrossRef]
- Abdel-Shafi, S.; Al-Mohammadi, A.R.; Sitohy, M.; Mosa, B.; Ismaiel, A.; Enan, G.; Osman, A. Antimicrobial activity and chemical constitution of the crude, phenolic-rich extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 2019, 24, 4280. [Google Scholar] [CrossRef] [Green Version]
- Diez-Echave, P.; Vezza, T.; Rodriguez-Nogales, A.; Ruiz-Malagón, A.J.; Hidalgo-Garcia, L.; Garrido-Mesa, J.; Molina-Tijeras, J.A.; Romero, M.; Robles-Vera, I.; Pimentel-Moral, S.; et al. The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Res. Int. 2020, 127, 108722. [Google Scholar] [CrossRef]
- Bourqui, A.; Niang, E.A.B.; Graz, B.; Diop, E.A.; Dahaba, M.; Thiaw, I.; Soumare, K.; Valmaggia, P.; Nogueira, R.C.; Cavin, A.-L.; et al. Hypertension treatment with Combretum micranthum or Hibiscus sabdariffa, as decoction or tablet: A randomized clinical trial. J. Hum. Hypertens. 2021, 35, 800–808. [Google Scholar] [CrossRef]
- Jalalyazdi, M.; Ramezani, J.; Izadi-Moud, A.; Madani-Sani, F.; Shahlaei, S.; Ghiasi, S.S. Effect of Hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension. J. Adv. Pharm. Technol. Res. 2019, 10, 107. [Google Scholar] [CrossRef]
- Nguyen, C.; Baskaran, K.; Pupulin, A.; Ruvinov, I.; Zaitoon, O.; Grewal, S.; Scaria, B.; Mehaidli, A.; Vegh, C.; Pandey, S. Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complement. Altern. Med. 2019, 19, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskar, Y.B.; Mazumder, P.B. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomed. Pharmacother. 2020, 127, 110153. [Google Scholar] [CrossRef]
- Silva Zamora, R.; Baldelli, A.; Pratap-Singh, A. Characterization of selected dietary fibers microparticles and application of the optimized formulation as a fat replacer in hazelnut spreads. Food Res. Int. 2023, 165, 112466. [Google Scholar] [CrossRef]
- Ammar, I.; Ennouri, M.; Attia, H. Phenolic content and antioxidant activity of cactus (Opuntia ficusindica L.) flowers are modified according to the extraction method. Ind. Crops Prod. 2015, 64, 97–104. [Google Scholar] [CrossRef]
- Benayad, Z.; Martinez-Villaluenga, C.; Frias, J.; Gomez-Cordoves, C.; Es-Safi, N.E. Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind. Crops Prod. 2014, 62, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Mesgaran, M.B.; Mashhadi, H.R.; Zand, E.; Alizadeh, H.M. Comparison of three methodologies for efficient seed extraction in studies of soil weed seedbanks. Weed Res. 2007, 47, 472–478. [Google Scholar] [CrossRef]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef] [Green Version]
- Parisi, O.I.; Puoci, F.; Restuccia, D.; Farina, G.; Iemma, F.; Picci, N. Polyphenols and their formulations: Different strategies to overcome the drawbacks associated with their poor stability and bioavailability. In Polyphenols in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: San Diego, CA, USA, 2014; Chapter 4; pp. 29–45. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Şahin, S.; Pekel, A.G.; Toprakçı, İ. Sonication-assisted extraction of Hibiscus sabdariffa for the polyphenols recovery: Application of a specially designed deep eutectic solvent. Biomass Convers. Biorefin. 2020, 12, 4959–4969. [Google Scholar] [CrossRef]
- Calliari, C.M.; Campardelli, R.; Pettinato, M.; Perego, P. Encapsulation of Hibiscus sabdariffa Extract into Zein Nanoparticles. Chem. Eng. Technol. 2020, 43, 2062–2072. [Google Scholar] [CrossRef]
- Zannou, O.; Koca, I.; Aldawoud, T.M.S.; Galanakis, C.M. Recovery and stabilization of anthocyanins and phenolic antioxidants of roselle (Hibiscus sabdariffa L.) with Hydrophilic Deep Eutectic Solvents. Molecules 2020, 25, 3715. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. J. Pharm. Biomed. Anal. 2018, 156, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Pressurized GRAS solvents for the green extraction of phenolic compounds from Hibiscus sabdariffa calyces. Food Res. Int. 2020, 137, 109466. [Google Scholar] [CrossRef]
- Şahin, S.; Kurtulbaş, E.; Pekel, A.G.; Toprakçı, İ.; Bilgin, M. Enhanced extraction of high added-value products from Hibiscus sabdariffa using automatic solvent extractor: Kinetics and modeling. Sustain. Chem. Pharm. 2021, 19, 100356. [Google Scholar] [CrossRef]
- Deli, M.; Ndjantou, E.B.; Ngatchic Metsagang, J.T.; Petit, J.; Njintang Yanou, N.; Scher, J. Successive grinding and sieving as a new tool to fractionate polyphenols and antioxidants of plants powders: Application to Boscia senegalensis seeds, Dichrostachys glomerata fruits, and Hibiscus sabdariffa calyx powders. Food Sci. Nutr. 2019, 7, 1795–1806. [Google Scholar] [CrossRef] [Green Version]
- Herranz-López, M.; Olivares-Vicente, M.; Rodríguez-Gallego, E.; Encinar, J.A.; Pérez-Sánchez, A.; Ruiz-Torres, V.; Joven, J.; Roche, E.; Micol, V. Quercetin metabolites from Hibiscus sabdariffa contribute to alleviate glucolipotoxicity-induced metabolic stress in vitro. Food Chem. Toxicol. 2020, 144, 111606. [Google Scholar] [CrossRef]
- Silva, M.; Cueva, C.; Alba, C.; Rodriguez, J.M.; de Pascual-Teresa, S.; Jones, J.; Caturla, N.; Moreno-Arribas, M.V.; Bartolomé, B. Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. J. Funct. Foods 2022, 91, 105016. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.G.; Venema, K.; Tabernero, M.; Sarriá, B.; Bravo, L.; Mateos, R. Bioconversion of polyphenols and organic acids by gut microbiota of predigested Hibiscus sabdariffa L. calyces and Agave (A. tequilana Weber) fructans assessed in a dynamic in vitro model (TIM-2) of the human colon. Food Res. Int. 2021, 143, 110301. [Google Scholar] [CrossRef]
- Iftikhar, N.; Hussain, A.I.; Chatha, S.A.S.; Sultana, N.; Rathore, H.A. Effects of polyphenol-rich traditional herbal teas on obesity and oxidative stress in rats fed a high-fat–sugar diet. Food Sci. Nutr. 2022, 10, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Kao, E.S.; Yang, M.Y.; Hung, C.H.; Huang, C.N.; Wang, C.J. Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis. Food Funct. 2016, 7, 171–182. [Google Scholar] [CrossRef]
- Pillai, S.S.; Mini, S. Polyphenols rich Hibiscus rosa sinensis Linn. petals modulate diabetic stress signalling pathways in streptozotocin-induced experimental diabetic rats. J. Funct. Foods 2016, 20, 31–42. [Google Scholar] [CrossRef]
- Herranz-López, M.; Olivares-Vicente, M.; Boix-Castejón, M.; Caturla, N.; Roche, E.; Micol, V. Differential effects of a combination of Hibiscus sabdariffa and Lippia citriodora polyphenols in overweight/obese subjects: A randomized controlled trial. Sci. Rep. 2019, 9, 2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serna, A.; Marhuenda, J.; Arcusa, R.; Pérez-Piñero, S.; Sánchez-Macarro, M.; García-Muñoz, A.M.; Victoria-Montesinos, D.; Cánovas, F.; López-Román, F.J. Effectiveness of a polyphenolic extract (Lippia citriodora and Hibiscus sabdariffa) on appetite regulation in overweight and obese grade I population: An 8-week randomized, double-blind, cross-over, placebo-controlled trial. Eur. J. Nutr. 2022, 61, 825–841. [Google Scholar] [CrossRef]
- Boix-Castejón, M.; Herranz-López, M.; Pérez-Gago, A.; Olivares-Vicente, M.; Caturla, N.; Roche, E.; Micol, V. Hibiscus and lemon verbena polyphenols modulate appetite-related biomarkers in overweight subjects: A randomized controlled trial. Food Funct. 2018, 9, 3173–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, M.K.; Wang, J.; Mirzaei, R.; Chan, R.; Melo, H.; Zhang, P.; Ling, C.-C.; Bruccoleri, A.; Tang, L.; Yong, V.W. A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells 2022, 11, 440. [Google Scholar] [CrossRef]
- Zhang, R.-R.; Hu, R.-D.; Lu, X.-Y.; Ding, X.-Y.; Huang, G.-Y.; Duan, L.-X.; Zhang, S.-J. Polyphenols from the flower of Hibiscus syriacus Linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell. Biomed. Pharmacother. 2020, 130, 110517. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.C.; Wang, C.P.; Chen, J.H.; Lin, H.H. Anti-atherosclerotic effect of Hibiscus leaf polyphenols against tumor necrosis factor-alpha-induced abnormal vascular smooth muscle cell migration and proliferation. Antioxidants 2019, 8, 620. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, Y.N.L.; Zainalabidin, S.; Mohd, F.N.; Budin, S.B. Hibiscus sabdariffa (Roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Appl. Physiol. Nutr. Metab. 2022, 43, 1224–1232. [Google Scholar] [CrossRef]
- Huang, C.N.; Wang, C.J.; Yang, Y.S.; Lin, C.L.; Peng, C.H. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance. Food Funct. 2016, 7, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Hung, C.H.; Chen, C.C.; Kao, S.H.; Wang, C.J. Hibiscus sabdariffa polyphenol-enriched extract inhibits colon carcinoma metastasis associating with FAK and CD44/c-MET signaling. J. Funct. Foods 2018, 48, 542–550. [Google Scholar] [CrossRef]
- El-Hashash, S.A.; El-Sakhawy, M.A.; El-Nahass, E.E.; Abdelaziz, M.A.; Abdelbasset, W.K.; Elwan, M.M. Prevention of Hepatorenal Insufficiency Associated with Lead Exposure by Hibiscus sabdariffa L. Beverages Using In vivo Assay. Biomed. Res. Int. 2022, 2022, 7990129. [Google Scholar] [CrossRef] [PubMed]
- El Majdoub, Y.O.; Diouri, M.; Arena, P.; Arigò, A.; Cacciola, F.; Rigano, F.; Dugo, P.; Mondello, L. Evaluation of the availability of delphinidin and cyanidin-3-O-sambubioside from Hibiscus sabdariffa and 6-gingerol from Zingiber officinale in colon using liquid chromatography and mass spectrometry detection. Eur. Food Res. Technol. 2019, 245, 2425–2433. [Google Scholar] [CrossRef]
- Hassan, S.T.S.; Švajdlenka, E.; Berchová-Bímová, K. Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules 2017, 22, 722. [Google Scholar] [CrossRef] [PubMed]
- Majdoub, Y.O.E.; Ginestra, G.; Mandalari, G.; Dugo, P.; Mondello, L.; Cacciola, F. The digestibility of Hibiscus sabdariffa L. Polyphenols using an in vitro human digestion model and evaluation of their antimicrobial activity. Nutrients 2021, 13, 2360. [Google Scholar] [CrossRef] [PubMed]
Extraction Technique | Experimental Design | Extraction Parameters | Optimum Values | Response Variable | Analytical Technique | References |
---|---|---|---|---|---|---|
Maceration | No experimental design | Sample particle size (mm): 0–180, 180–212, 212–315, ≥315 µm, unsieved | 212–315 µm | TPC TFC | UV/visible spectrophotometry (Folin–Ciocalteu method, absorbance recorded at 510 nm) | [37] |
UAE | RSM (BB) | Output amplitude (15–35%), extraction time (15–45 min), additional water % (15–25%, v/v) in DES solvent (citric acid:ethylene glycol 1/4 molar ratio) | 32%, 43 min, 50% water addition | TPC TAC | UV/visible spectrophotometry (Folin–Ciocalteu and pH differential methods) | [30] |
UAE | No experimental design | Output amplitude (%), extraction time (min), solvent composition (water–ethanol, v/v) | 80%, 60 min, ethanol 80% (v/v) aqueous solution | TPC TAC | UV/visible spectrophotometry (Folin–Ciocalteu method and colorimetric assay) | [31] |
UAE | RSM (3-level BB) | Molarity ratio of DES components (sodium acetate:formic acid, 1, 2.5, and 4 molar ratio); additional water % in DES (0, 30, 60%); solvent to solid ratio (10:0.5, 25:0.5, 40:0.5 mL/g) | 1:3.6 sodium acetate:formic acid molar ratio; 0% additional water and 10 mL solvent ratio | TPC TAC TFC | UV/visible spectrophotometry (Folin–Ciocalteu method, pH differential method, absorbance at 510 nm) | [32] |
MAE | No experimental design | Temperature (°C), % EtOH in aqueous mixtures extraction time (min) | 150 °C, 80% EtOH, 60 min | TPC TAC | UV/visible spectrophotometry (Folin–Ciocalteu method and colorimetric assay) | [31] |
MAE | RSM (23 CCD) | Temperature (50–150 °C), % EtOH in aqueous mixtures (15–75%) and extraction time (5–20 min) | 164 °C, 59.63% EtOH, 22.2 min | Extraction yield (%) | HPLC-ESI-QTOF-MS (quantification of individual phenolic compounds) | [34] |
SFE | RSM (23 CCD) | Temperature (40, 50, 60 °C), pressure (150, 250, 350 bar) and co-solvent composition (7, 11, and 15% EtOH) | 50 °C, 250 bar, and 16.7% EtOH | TPC (individual phytochemical concentrations) | HPLC-ESI-QTOF-MS | [33] |
PLE | RSM (CCRD) | Temperature (40–200 °C) and solvent composition (EtOH-H2O, 0–100% v/v) | 200 °C and 100% EtOH | TPC (individual phytochemical concentrations) | HPLC-ESI-QTOF-MS | [35] |
PLE | RSM (FCCCD) | % EtOH in aqueous mixtures (10–80%), extraction time (40–60 min) and particle size of Hibiscus sabdariffa sample (0.5–2 mm). | 80% EtOH, 60 min, and 0.5 mm | TPC TAC | UV/visible spectrophotometry (Folin–Ciocalteu and pH differential methods) | [36] |
Assay Type | Model | Bioactive Effect | Responsible Compounds | Reference | |
---|---|---|---|---|---|
In vitro | 3T3-L1 pre-adipocyte culture | Reduction in metabolic stress | Quercetin derivatives | [38] | |
Static fecal fermentations (SIMGI®) | Modulation of obesity-associated microbiota | Anthocyanins, phenolic acids | [39] | ||
In vivo (animal) | Wistar Kyoto rats | Oxidative stress and weight gain reduction | Phenolic acids, flavonoids | [41] | |
Hamsters | Lipogenesis and adipogenesis inhibitionin pre-adipocytes | Total polyphenols, flavonoids | [42] | ||
Albino Sprague–Dawley rats | Diabetic stress signaling modulation | Myricetin, syringic acid, ferulic acid, ellagic acid, caffeic acid, cinnamic acid | [43] | ||
In vivo (humans) | Overweight women (ages 36–69) | Experimental group | Reduction in intracellular triglycerides in hypertrophied adipocytes | Delphinidin-3-O-sambubioside | [44] |
Control group | Cyanidim-3-O-sambubioside | ||||
Grade-I obese subjects (ages 18–65) | Experimental group | Appetite regulation in overweight and grade-I obese population | Sambubioside derivates | [45] | |
Control group | |||||
Overweight women (ages 30–75) | Experimental group | Appetite regulation in overweight population | Anthocyanins | [46] |
Study Target | Assay Type | Used Model | Bioactive Effect | Responsible Compounds | Reference |
---|---|---|---|---|---|
Neuroprotection | In vitro | Human and rat neuron cell cultures | Prevention of iron neurotoxicity | Anthocyanins | [47] |
SH-SY5Y cell culture | Improvement of neuro-inflammation | Hidroquinone, naringenic acid, parahidroxibenzaldehide, vinilic acid, fumaric acid | [48] | ||
Cardioprotection | In vitro | Bioresource Collection and Research Center rat cell culture | Anti-aterosclerofic effect | Total polyphenolic content | [49] |
In vivo | Sprague–Dawley rats | Cardioprotector effect on type-I diabetic rats | Cyanidin-3-glucoside, cyanidin-3-O-glucosil-rutinoside, quercetin, rutin | [50] | |
Mesenquimatic–epithelial transition | In vitro | HK-2 cell culture | Prevention of renal mesenquimatic epithelial transition | Caffeic acid, chlorogenic acid, gallic acid | [51] |
In vivo (animals) | Sprague–Dawley rats | Prevention of renal mesenquimatic epithelial transition | Caffeic acid, chlorogenic acid, gallic acid | [51] | |
Colon protection | In vitro | DLD-1 human colon cancer cell culture | Inhibition of colon carcinoma metastasis | Total polyphenolic content | [52] |
In vivo (animals) | Balb/c-nude rats | Inhibition of colon carcinoma metastasis | Total polyphenolic content | [52] | |
Liver and Kidney Toxicity | In vivo (animals) | Wistar rats | Reduction in lead toxicity in liver and kidney | Anthocyanins | [53] |
Antioxidant activity | In vivo (animals) | Wistar rats | Antioxidant effect | Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside | [54] |
Antiviral activity | In vitro | Vero cell culture and clinical isolates of HSV-2 | Antiviric effect of HSV-2 | Protocatechuic acid | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque-Soto, C.; Expósito-Almellón, X.; García, P.; Pando, M.E.; Borrás-Linares, I.; Lozano-Sánchez, J. Extraction, Characterization, and Bioactivity of Phenolic Compounds—A Case on Hibiscus Genera. Foods 2023, 12, 963. https://doi.org/10.3390/foods12050963
Duque-Soto C, Expósito-Almellón X, García P, Pando ME, Borrás-Linares I, Lozano-Sánchez J. Extraction, Characterization, and Bioactivity of Phenolic Compounds—A Case on Hibiscus Genera. Foods. 2023; 12(5):963. https://doi.org/10.3390/foods12050963
Chicago/Turabian StyleDuque-Soto, Carmen, Xavier Expósito-Almellón, Paula García, María Elsa Pando, Isabel Borrás-Linares, and Jesús Lozano-Sánchez. 2023. "Extraction, Characterization, and Bioactivity of Phenolic Compounds—A Case on Hibiscus Genera" Foods 12, no. 5: 963. https://doi.org/10.3390/foods12050963
APA StyleDuque-Soto, C., Expósito-Almellón, X., García, P., Pando, M. E., Borrás-Linares, I., & Lozano-Sánchez, J. (2023). Extraction, Characterization, and Bioactivity of Phenolic Compounds—A Case on Hibiscus Genera. Foods, 12(5), 963. https://doi.org/10.3390/foods12050963