Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Bacterial Growth and Cell Suspension Standardization
2.3. Proteolytic and Lipolytic Activities
2.4. Diacetyl and Exopolysaccharide Production
2.5. Salt Tolerance
2.6. Acidifying Activity
2.7. Aminopeptidase Activity
2.7.1. Cell Free Extract Preparation
2.7.2. Aminopeptidase N Activity
2.7.3. Aminopeptidase X Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proteolytic and Lipolytic Activities, Diacetyl and Exopolysaccharide Production
3.2. Salt Tolerance and Acidifying Activity
3.3. Aminopeptidase Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walther, B.; Schmid, A.; Sieber, R.; Wehrmüller, K. Cheese in Nutrition and Health. Dairy Sci. Technol. 2008, 88, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Carpino, S.; Randazzo, C.L.; Pino, A.; Russo, N.; Rapisarda, T.; Belvedere, G.; Caggia, C. Influence of PDO Ragusano Cheese Biofilm Microbiota on Flavour Compounds Formation. Food Microbiol. 2017, 61, 126–135. [Google Scholar] [CrossRef]
- Guarcello, R.; Carpino, S.; Gaglio, R.; Pino, A.; Rapisarda, T.; Caggia, C.; Marino, G.; Randazzo, C.L.; Settanni, L.; Todaro, M. A Large Factory-Scale Application of Selected Autochthonous Lactic Acid Bacteria for PDO Pecorino Siciliano Cheese Production. Food Microbiol. 2016, 59, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- el Soda, M.; Madkor, S.A.; Tong, P.S. Adjunct Cultures: Recent Developments and Potential Significance to the Cheese Industry. J. Dairy Sci. 2000, 83, 609–619. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- McAuliffe, O.; Kilcawley, K.; Stefanovic, E. Symposium Review: Genomic Investigations of Flavor Formation by Dairy Microbiota. J. Dairy Sci. 2019, 102, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Pino, A.; Liotta, L.; Randazzo, C.L.; Todaro, A.; Mazzaglia, A.; de Nardo, F.; Chiofalo, V.; Caggia, C. Polyphasic Approach to Study Physico-Chemical, Microbiological and Sensorial Characteristics of Artisanal Nicastrese Goat’s Cheese. Food Microbiol. 2018, 70, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; Singh, T.K.; McSweeney, P.L.H. Biogenesis of Flavour Compounds in Cheese. In Chemistry of Structure-Function Relationships in Cheese; Malin, E.L., Tunick, M.H., Eds.; Plenum Publishing Corporation: New York, NY, USA, 1995; pp. 59–98. [Google Scholar]
- Kumari, M.; Kumar, R.; Singh, D.; Bhatt, S.; Gupta, M. Physiological and Genomic Characterization of an Exopolysaccharide-Producing Weissella Cibaria CH2 from Cheese of the Western Himalayas. Food Biosci. 2020, 35, 100570. [Google Scholar] [CrossRef]
- Pino, A.; Russo, N.; van Hoorde, K.; de Angelis, M.; Sferrazzo, G.; Randazzo, C.L.; Caggia, C. Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms 2019, 7, 254. [Google Scholar] [CrossRef] [Green Version]
- Korcz, E.; Varga, L. Exopolysaccharides from Lactic Acid Bacteria: Techno-Functional Application in the Food Industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Kunji, E.R.S.; Mierau, I.; Hagting, A.; Poolman, B.; Konings, W.N. The Proteotytic Systems of Lactic Acid Bacteria. Antonie Van Leeuwenhoek 1996, 70, 187–221. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, L.; Simard, R.E. Bitter Flavour in Dairy Products. I. A Review of the Factors Likely to Influence Its Development, Mainly in Cheese Manufacture. Lait 1991, 71, 599–636. [Google Scholar] [CrossRef] [Green Version]
- Nicosia, F.D.; Puglisi, I.; Pino, A.; Caggia, C.; Randazzo, C.L. Plant Milk-Clotting Enzymes for Cheesemaking. Foods 2022, 11, 871. [Google Scholar] [CrossRef]
- Randazzo, C.L.; de Luca, S.; Todaro, A.; Restuccia, C.; Lanza, C.M.; Spagna, G.; Caggia, C. Preliminary Characterization of Wild Lactic Acid Bacteria and Their Abilities to Produce Flavour Compounds in Ripened Model Cheese System. J. Appl. Microbiol. 2007, 103, 427–435. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Pitino, I.; de Luca, S.; Scifò, G.O.; Caggia, C. Effect of Wild Strains Used as Starter Cultures and Adjunct Cultures on the Volatile Compounds of the Pecorino Siciliano Cheese. Int. J. Food. Microbiol. 2008, 122, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, B.A.; Magnani, M.; Luciano, W.A.; Campagnollo, F.B.; Pimentel, T.C.; Alvarenga, V.O.; Pelegrino, B.O.; Cruz, A.G.; Sant’Ana, A.S. Brazilian Artisanal Cheeses: An Overview of Their Characteristics, Main Types and Regulatory Aspects. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1636–1657. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, C.L.; Liotta, L.; de Angelis, M.; Celano, G.; Russo, N.; van Hoorde, K.; Chiofalo, V.; Pino, A.; Caggia, C. Adjunct Culture of Non-Starter Lactic Acid Bacteria for the Production of Provola Dei Nebrodi PDO Cheese: In Vitro Screening and Pilot-Scale Cheese-Making. Microorganisms 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, E.; Settanni, L.; Cavazza, A.; Poznanski, E. Biodiversity and Technological Potential of Wild Lactic Acid Bacteria from Raw Cows’ Milk. Int. Dairy J. 2009, 19, 3–11. [Google Scholar] [CrossRef]
- Hantsis-Zacharov, E.; Halpern, M. Culturable Psychrotrophic Bacterial Communities in Raw Milk and Their Proteolytic and Lipolytic Traits. Appl. Environ. Microbiol. 2007, 73, 7162–7168. [Google Scholar] [CrossRef] [Green Version]
- Dal Bello, B.; Cocolin, L.; Zeppa, G.; Field, D.; Cotter, P.D.; Hill, C. Technological Characterization of Bacteriocin Producing Lactococcus Lactis Strains Employed to Control Listeria Monocytogenes in Cottage Cheese. Int. J. Food. Microbiol. 2012, 153, 58–65. [Google Scholar] [CrossRef]
- Ferrari, I.d.S.; de Souza, J.V.; Ramos, C.L.; da Costa, M.M.; Schwan, R.F.; Dias, F.S. Selection of Autochthonous Lactic Acid Bacteria from Goat Dairies and Their Addition to Evaluate the Inhibition of Salmonella Typhi in Artisanal Cheese. Food Microbiol. 2016, 60, 29–38. [Google Scholar] [CrossRef]
- Requena, T.; Pelaez, C.; Fox, P.F. Peptidase and Proteinase Activity of Lactococcus Lactis, Lactobacillus Casei and Lactobacillus Plantarum. Z. Lebensm. Unters. Forsch. 1993, 196, 351–355. [Google Scholar] [CrossRef]
- Liu, M.; Bayjanov, J.R.; Renckens, B.; Nauta, A.; Siezen, R.J. The Proteolytic System of Lactic Acid Bacteria Revisited: A Genomic Comparison. BMC Genom. 2010, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A.M. Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021, 26, 1858. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, J.B.; Delahunty, C.M.; Wilkinson, M.G.; Sheehan, J. Relationships between the Gross, Non-Volatile and Volatile Compositions and the Sensory Attributes of Eight Hard-Type Cheeses. Int. Dairy J. 2002, 12, 493–509. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, L.; Xin, L.; Lin, K.; Yi, H.; Han, X. Technological Characterization of Lactobacillus in Semihard Artisanal Goat Cheeses from Different Mediterranean Areas for Potential Use as Nonstarter Lactic Acid Bacteria. J. Dairy Sci. 2018, 101, 2887–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monfredini, L.; Settanni, L.; Poznanski, E.; Cavazza, A.; Franciosi, E. The Spatial Distribution of Bacteria in Grana-Cheese during Ripening. Syst. Appl. Microbiol. 2012, 35, 54–63. [Google Scholar] [CrossRef]
- Silva, E.; Nespolo, C.R.; Sehn, C.P.; Pinheiro, F.C.; Stefani, L.M. Lactic Acid Bacteria with Antimicrobial, Proteolytic and Lipolytic Activities Isolated from Ovine Dairy Products. Food Sci. Technol. 2020, 40, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Tsigkrimani, M.; Panagiotarea, K.; Paramithiotis, S.; Bosnea, L.; Pappa, E.; Drosinos, E.H.; Skandamis, P.N.; Mataragas, M. Microbial Ecology of Sheep Milk, Artisanal Feta, and Kefalograviera Cheeses. Part II: Technological, Safety, and Probiotic Attributes of Lactic Acid Bacteria Isolates. Foods 2022, 11, 459. [Google Scholar] [CrossRef]
- Carafa, I.; Nardin, T.; Larcher, R.; Viola, R.; Tuohy, K.; Franciosi, E. Identification and Characterization of Wild Lactobacilli and Pediococci from Spontaneously Fermented Mountain Cheese. Food Microbiol. 2015, 48, 123–132. [Google Scholar] [CrossRef]
- Herrero, M.; Mayo, B.; González, B.; Suárez, J.E. Evaluation of Technologically Important Traits in Lactic Acid Bacteria Isolated from Spontaneous Fermentations. J. Appl. Bacteriol. 1996, 81, 565–570. [Google Scholar] [CrossRef]
- Câmara, S.; Dapkevicius, A.; Riquelme, C.; Elias, R.; Silva, C.; Malcata, F.; Dapkevicius, M. Potential of Lactic Acid Bacteria from Pico Cheese for Starter Culture Development. Food Sci. Technol. Int. 2019, 25, 303–317. [Google Scholar] [CrossRef]
- Peralta, G.H.; Bergamini, C.V.; Audero, G.; Páez, R.; Wolf, I.V.; Perotti, M.C.; Hynes, E.R. Spray-Dried Adjunct Cultures of Autochthonous Non-Starter Lactic Acid Bacteria. Int. J. Food Microbiol. 2017, 255, 17–24. [Google Scholar] [CrossRef]
- Rincon-Delgadillo, M.I.; Lopez-Hernandez, A.; Wijaya, I.; Rankin, S.A. Diacetyl Levels and Volatile Profiles of Commercial Starter Distillates and Selected Dairy Foods. J. Dairy Sci. 2012, 95, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Thierry, A.; Valence, F.; Deutsch, S.-M.; Even, S.; Falentin, H.; le Loir, Y.; Jan, G.; Gagnaire, V. Strain-to-Strain Differences within Lactic and Propionic Acid Bacteria Species Strongly Impact the Properties of Cheese—A Review. Dairy Sci. Technol. 2015, 95, 895–918. [Google Scholar] [CrossRef] [Green Version]
- Christianah Adebayo-Tayo, B.; Onilude, A.; Adebayo-tayo, B.C.; Onilude, A.A. Screening of Lactic Acid Bacteria Strains Isolated from Some Nigerian Fermented Foods for EPS Production Antmicrobial Activity of Biomolecules View Project Probiotic Pineapple Juice View Project Screening of Lactic Acid Bacteria Strains Isolated from Some Nigerian Fermented Foods for EPS Production. World Appl. Sci. J. 2008, 4, 741–747. [Google Scholar]
- Ali, K.; Mehmood, M.H.; Iqbal, M.A.; Masud, T.; Qazalbash, M.; Saleem, S.; Ahmed, S.; Tariq, M.R.; Safdar, W.; Nasir, M.A.; et al. Isolation and Characterization of Exopolysaccharide-producing Strains of Lactobacillus Bulgaricus from Curd. Food Sci. Nutr. 2019, 7, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, X.; Pan, W.; Shen, X.; He, Y.; Yin, H.; Zhou, K.; Zou, L.; Chen, S.; Liu, S. Exopolysaccharides Produced by Yogurt-Texture Improving Lactobacillus Plantarum RS20D and the Immunoregulatory Activity. Int. J. Biol. Macromol. 2019, 121, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Shene, C.; Bravo, S. Whey Fermentation by Lactobacillus Delbrueckii Subsp. Bulgaricus for Exopolysaccharide Production in Continuous Culture. Enzym. Microb. Technol. 2007, 40, 1578–1584. [Google Scholar] [CrossRef]
- Bancalari, E.; Gatti, M.; Bottari, B.; Mora, D.; Arioli, S. Disclosing Lactobacillus Delbrueckii Subsp. Bulgaricus Intraspecific Diversity in Exopolysaccharides Production. Food Microbiol. 2022, 102, 103924. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, Y.; Yue, F.; Liu, L.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria: Structures, Physiochemical Functions and Applications in the Food Industry. Food Hydrocoll. 2019, 94, 475–499. [Google Scholar] [CrossRef]
- Ahmed, N.H.; el Soda, M.; Hassan, A.N.; Frank, J. Improving the Textural Properties of an Acid-Coagulated (Karish) Cheese Using Exopolysaccharide Producing Cultures. LWT Food Sci. Technol. 2005, 38, 843–847. [Google Scholar] [CrossRef]
- Saleem, M.; Malik, S.; Mehwish, H.M.; Ali, M.W.; Hussain, N.; Khurshid, M.; Rajoka, M.S.R.; Chen, Y. Isolation and Functional Characterization of Exopolysaccharide Produced by Lactobacillus Plantarum S123 Isolated from Traditional Chinese Cheese. Arch. Microbiol. 2021, 203, 3061–3070. [Google Scholar] [CrossRef] [PubMed]
- Karasu, N.; Şimşek, Ö.; Çon, A.H. Technological and Probiotic Characteristics of Lactobacillus Plantarum Strains Isolated from Traditionally Produced Fermented Vegetables. Ann. Microbiol. 2010, 60, 227–234. [Google Scholar] [CrossRef]
- Júnior, W.L.G.A.; Ferrari, I.S.; Souza, J.V.; Silva, C.D.A.; Costa, M.M.; Dias, F.S. Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control 2015, 53, 96–103. [Google Scholar] [CrossRef]
- Georgieva, R.; Iliev, I.; Haertlé, T.; Chobert, J.-M.; Ivanova, I.; Danova, S. Technological Properties of Candidate Probiotic Lactobacillus Plantarum Strains. Int. Dairy J. 2009, 19, 696–702. [Google Scholar] [CrossRef]
- Beresford, T.P.; Fitzsimons, N.A.; Brennan, N.L.; Cogan, T.M. Recent Advances in Cheese Microbiology. Int. Dairy J. 2001, 11, 259–274. [Google Scholar] [CrossRef]
- Hadef, S.; Idoui, T.; Sifour, M.; Genay, M.; Dary-Mourot, A. Screening of Wild Lactic Acid Bacteria from Algerian Traditional Cheeses and Goat Butter to Develop a New Probiotic Starter Culture. Probiotics Antimicrob. Proteins 2022. [Google Scholar] [CrossRef]
- Perez, G.; Cardell, E.; Zarate, V. Technological Characterization of Lactic Acid Bacteria from Tenerife Cheese. Int. J. Food Sci. Technol. 2003, 38, 537–546. [Google Scholar] [CrossRef]
- Scatassa, M.L.; Gaglio, R.; Macaluso, G.; Francesca, N.; Randazzo, W.; Cardamone, C.; di Grigoli, A.; Moschetti, G.; Settanni, L. Transfer, Composition and Technological Characterization of the Lactic Acid Bacterial Populations of the Wooden Vats Used to Produce Traditional Stretched Cheeses. Food Microbiol. 2015, 52, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Morea, M.; Matarante, A.; di Cagno, R.; Baruzzi, F.; Minervini, F. Contribution of Autochthonous Non-Starter Lactobacilli to Proteolysis in Caciocavallo Pugliese Cheese. Int. Dairy J. 2007, 17, 525–534. [Google Scholar] [CrossRef]
- González, L.; Sacristán, N.; Arenas, R.; Fresno, J.M.; Eugenia Tornadijo, M. Enzymatic Activity of Lactic Acid Bacteria (with Antimicrobial Properties) Isolated from a Traditional Spanish Cheese. Food Microbiol. 2010, 27, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.E.; Dudley, E.G.; Pederson, J.A.; Steele, J.L. Peptidases and Amino Acid Catabolism in Lactic Acid Bacteria. Antonie Van Leeuwenhoek 1999, 76, 217–246. [Google Scholar] [CrossRef]
- Moslehishad, M.; Ehsani, M.R.; Salami, M.; Mirdamadi, S.; Ezzatpanah, H.; Naslaji, A.N.; Moosavi-Movahedi, A.A. The Comparative Assessment of ACE-Inhibitory and Antioxidant Activities of Peptide Fractions Obtained from Fermented Camel and Bovine Milk by Lactobacillus Rhamnosus PTCC 1637. Int. Dairy J. 2013, 29, 82–87. [Google Scholar] [CrossRef]
- Psoni, L.; Kotzamanidis, C.; Yiangou, M.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Genotypic and Phenotypic Diversity of Lactococcus Lactis Isolates from Batzos, a Greek PDO Raw Goat Milk Cheese. Int. J. Food Microbiol. 2007, 114, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Vlieg, J.E.T.; Dijkstra, A.; Smit, B.A.; Engels, W.J.M.; Rijnen, L.; Starrenburg, M.J.C.; Smit, G.; Wouters, J.A. Exploiting Natural Microbial Diversity for Development of Flavour Starters. Dev. Food Sci. 2006, 43, 61–64. [Google Scholar]
- Stressler, T.; Eisele, T.; Schlayer, M.; Lutz-Wahl, S.; Fischer, L. Characterization of the Recombinant Exopeptidases PepX and PepN from Lactobacillus Helveticus ATCC 12046 Important for Food Protein Hydrolysis. PLoS ONE 2013, 8, e70055. [Google Scholar] [CrossRef]
- Habibi-Najafi, M.B.; Lee, B.H.; Law, B. Bitterness in Cheese: A Review. Crit. Rev. Food Sci. Nutr. 1996, 36, 397–411. [Google Scholar] [CrossRef]
Isolate | Isolation Source | Species Attribution | Proteolysis * | Lipolysis * | Diacetyl ** | EPS * |
---|---|---|---|---|---|---|
P7, P9 | Pecorino Cheese | L. delbrueckii | + | - | ++ | - |
P10 | Pecorino Cheese | L. delbrueckii | + | - | ++ | + |
P11, P12, P13, P39 | Ragusano Cheese | L. delbrueckii | + | - | +++ | - |
P14 | Ragusano Cheese | L. delbrueckii | + | - | - | + |
P15, P33, P40 | Ragusano Cheese | L. delbrueckii | + | - | - | - |
P37 | Ragusano Cheese | L. delbrueckii | + | - | + | - |
P36 | Ragusano Cheese | L. delbrueckii | + | - | ++ | - |
P38 | Ragusano Cheese | L. delbrueckii | + | - | + | + |
P50 | Ragusano Cheese | L. rhamnosus | + | - | + | - |
Q5C9, Q6C4 | Marajó Cheese | L. plantarum | + | - | ++ | - |
Q1C6, Q3C4 | Marajó Cheese | L. plantarum | - | - | + | - |
Q1C8, Q6C5, Q22C2 | Marajó Cheese | P. acidilactici | + | - | + | - |
Q3C1 | Marajó Cheese | P. acidilactici | + | - | +++ | - |
Q3C3, Q6C1 | Marajó Cheese | P. acidilactici | + | - | - | - |
Q5C6 | Pará Cheese | L. lactis | + | - | ++ | - |
Isolates | 2% | 6% | 10% |
---|---|---|---|
P14, P38, P50, Q3C4 | + | + | + |
P9, P10, P11, P13, P36, P37, P39, Q1C6, Q1C8, Q3C1, Q6C4, Q6C5, Q5C6 | + | + | - |
P7, P12, P15, P33, P40, Q3C3, Q5C9, Q6C1, Q22C2 | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicosia, F.D.; Pino, A.; Maciel, G.L.R.; Sanfilippo, R.R.; Caggia, C.; de Carvalho, A.F.; Randazzo, C.L. Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods 2023, 12, 1154. https://doi.org/10.3390/foods12061154
Nicosia FD, Pino A, Maciel GLR, Sanfilippo RR, Caggia C, de Carvalho AF, Randazzo CL. Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods. 2023; 12(6):1154. https://doi.org/10.3390/foods12061154
Chicago/Turabian StyleNicosia, Fabrizio Domenico, Alessandra Pino, Guilherme Lembi Ramalho Maciel, Rosamaria Roberta Sanfilippo, Cinzia Caggia, Antonio Fernandes de Carvalho, and Cinzia Lucia Randazzo. 2023. "Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture" Foods 12, no. 6: 1154. https://doi.org/10.3390/foods12061154
APA StyleNicosia, F. D., Pino, A., Maciel, G. L. R., Sanfilippo, R. R., Caggia, C., de Carvalho, A. F., & Randazzo, C. L. (2023). Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods, 12(6), 1154. https://doi.org/10.3390/foods12061154