Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. High-Calorie and Low-Calorie Diets
2.3. Proximate Chemical Composition of Low and High-Calorie Diets
2.4. Preparation of Decocted Salicornia arabica Extract
2.5. In Vitro Antioxidant Properties of Decocted Salicornia arabica Extract
2.5.1. Determination of Total Phenols Content
2.5.2. Determination of Total Flavonoids Content
2.5.3. Determination of In Vitro Antioxidant Radical Scavenging Activities
2.6. Animals
2.7. Experimental Design
- -
- Control group: received the natural vegetable diet of P. obesus, which is considered in this work as a natural low–calorie diet (LCD)
- -
- HCD group: received the high-calorie diet, rich in carbohydrates and fat
- -
- On the 90th day, each group of animals (LCD and HCD) was divided into two groups each, as follows:
- -
- LCD: used as a negative control: received the natural low-calorie vegetable diet
- -
- LCD + SADE: used as positive control: received Chenopodiaceae with oral administration of a dose of 300 mg SADE/kg per day
- -
- HCD: fed with HCD without administration of SADE
- -
- HCD + SADE: fed with HCD with oral administration of a dose of 300 mg SADE/kg per day.
2.8. Blood Sampling and Serum Biochemical Parameters Analyses
2.9. Animal Sacrifice and Organs Sampling
2.10. Animal Welfare and Ethics Statement
2.11. Histological Observation of the Liver
2.12. Statistical Analysis
3. Results and Discussion
3.1. Proximate Chemical Composition and Energetic Values of Low and High-Calorie Diets
3.2. Phenols, Flavonoid Contents, and In Vitro Radical Scavenging Activities of SADE
3.3. Effects of SADE on Energy, Food Intake, Energy Efficiency, Body Weight Change and Body Mass Index
3.3.1. Effects of SADE on Food, Energy Intakes and Energy Efficiency
3.3.2. Effects of SADE on Body Weight Change
3.3.3. Effects of SADE on Body Mass Index
3.4. Effects of SADE on the Relative Weight of Liver and Kidney and Adiposity Index Changes
3.5. Effects of SADE on Blood Glucose and Serum Lipids Parameters
3.5.1. Effects of SADE on Blood Glucose Level
3.5.2. Effects of SADE on Serum Lipid Profile
3.6. Effects of SADE on Liver Enzyme Markers and Liver Histology
3.7. Principal Components Analysis of Biochemical Parameters, Body Weight Gain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, K.; Zhu, X.; Chen, T.; Peng, B.; Lu, M.; Zheng, H.; Huang, Q.; Ho, C.-T.; Chen, Y.; Cao, Y. Prevention of obesity and hyperlipidemia by heptamethoxyflavone in high-fat diet-induced rats. J. Agric. Food Chem. 2019, 67, 2476–2489. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, N.; Hussain, A.I.; Chatha, S.A.S.; Sultana, N.; Rathore, H.A. Effects of polyphenol-rich traditional herbal teas on obesity and oxidative stress in rats fed a high-fat–sugar diet. Food Sci. Nutr. 2022, 10, 698–711. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; et al. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization and World Health Statistics. Monitoring Health for the SDGs, Sustainable Development Goals. 2022. Available online: https://www.who.int/publications-detail-redirect/9789240051157 (accessed on 19 May 2022).
- Chinchu, J.; Mohan, M.C.; Kumar, B.P. Anti-obesity and lipid lowering effects of Varanadikashayam (decoction) on high fat diet induced obese rats. Obes. Med. 2020, 17, 100–170. [Google Scholar] [CrossRef]
- Dharmalingam, M.; Yamasandhi, P.G. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J. EndocrinolMetab. 2018, 22, 421. [Google Scholar] [CrossRef]
- Hannon, B.A.; Khan, N.A.; Teran-Garcia, M. Nutrigenetic contributions to dyslipidemia: A focus on physiologically relevant pathways of lipid and lipoprotein metabolism. Nutrients 2018, 10, 1404. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.D.; Blüher, M.; Tschöp, M.H.; DiMarchi, R.D. Anti-obesity drug discovery: Advances and challenges. Nat. Rev. Drug Discov. 2022, 21, 201–223. [Google Scholar] [CrossRef]
- Kim, N.Y.; Thomas, S.S.; Hwang, D.I.; Lee, J.H.; Kim, K.A.; Cha, Y.S. Anti-obesity effects of Morus alba L. and Aronia melanocarpa in a high-fat diet-induced obese C57BL/6J mouse model. Foods 2021, 10, 1914. [Google Scholar] [CrossRef]
- Goyal, A.; Kaur, R.; Sharma, D.; Sharma, M. Protective effect of Betula utilis bark extract on high fat diet induced obesity in Wistar rats. Obes. Med. 2019, 15, 100123. [Google Scholar] [CrossRef]
- Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric. 2014, 94, 2972–2977. [Google Scholar] [CrossRef]
- Aissaoui, A.; Zizi, S.; Israili, Z.H.; Lyoussi, B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacolo. 2011, 137, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Yen, G.C. Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br. J. Nut. 2007, 98, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Charradi, K.; Elkahoui, S.; Limam, F.; Aouani, E. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: Prevention by grape seed and skin extract. J. Physiol. Sci. 2013, 63, 445–455. [Google Scholar] [CrossRef]
- Tijjani, H.; Banbilbwa Joel, E.; Luka, C.D. Modulatory effects of some Fruit juices on lipid profile in rats fed with high lipid diet. Asian J. Biochem. Genet. Mol. Biol. 2020, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Gu, W.; Cheng, H.; Guo, H.; Li, D.; Xie, Z. Huangshan Maofeng Green Tea Extracts Prevent Obesity-Associated Metabolic Disorders by Maintaining Homeostasis of Gut Microbiota and Hepatic Lipid Classes in Leptin Receptor Knockout Rats. Foods 2022, 11, 2939. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.A.; Ibrahim, S.R.; Elkhayat, E.S.; El Dine, R.S. Natural anti-obesity agents. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Farhat, M.B.; Beji-Serairi, R.; Selmi, S.; Saidani-Tounsi, M.; Abdelly, C. Salicornia fruticosa L. and Portulacaoleracea L. antioxidants as affected by domestic cooking processes. Int. J. Gastron. Food Sci. 2022, 27, 100462. [Google Scholar] [CrossRef]
- Lopes, M.; Sanches-Silva, A.; Castilho, M.; Cavaleiro, C.; Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 2021, 1–24. [Google Scholar] [CrossRef]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech. 2016, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, M.; Altay, V.; Orçen, N.; Yaprak, A.E.; Tuğ, G.N.; Güvensen, A. A little-known and a little-consumed natural resource: Salicornia. Glob. Perspect. Underutilized Crops 2018, 83–108. [Google Scholar] [CrossRef]
- Alfheeaid, H.A.; Raheem, D.; Ahmed, F.; Alhodieb, F.S.; Alsharari, Z.D.; Alhaji, J.H.; Bin Mowyna, M.N.; Saraiva, A.; Raposo, A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022, 11, 3402. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-H.; Choi, D.; Kim, S.-M.; Piao, Y.; Choi, O.-Y.; Lim, G.-S.; Chang, Y.-C.; Cho, H. Hypolipidemic and antioxidant effects on hypercholesterolemic rats of polysaccharide from Salicornia bigelovii seed. Korean J. Chem. Eng. 2017, 34, 787–796. [Google Scholar] [CrossRef]
- Pichiah, P.T.; Cha, Y.S. Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. J. Sci. Food Agric. 2015, 95, 3150–3159. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, M.; Magné, C.; Dauvergne, X.; Ksouri, R.; El Feki, A.; Metges, M.-A.G.; Talarmin, H. Cytoprotective and antioxidant effects of the edible halophyte Sarcocorniaperennis L.(swampfire) against lead-induced toxicity in renal cells. Ecotoxicol. Environ. Saf. 2013, 95, 44–51. [Google Scholar] [CrossRef]
- Hammami, N.; Gara, A.B.; Bargougui, K.; Ayedi, H.; Abdalleh, F.B.; Belghith, K. Improved in vitro antioxidant and antimicrobial capacities of polysaccharides isolated from Salicornia arabica. Int. J. BiolMacromol. 2018, 120, 2123–2130. [Google Scholar] [CrossRef]
- Hammami, N.; Athmouni, K.; Lahmar, I.; Abdallah, F.B.; Belghith, K. Antioxidant potential of Salicornia arabica lipid extract and their protective effect against cadmium induced oxidative stress in erythrocytes isolated from rats. J. Food Meas. Charact. 2019, 13, 2705–2712. [Google Scholar] [CrossRef]
- Chaudhary, R.; Walder, K.R.; Hagemeyer, C.E.; Kanwar, J.R. Psammomys obesus: A natural diet-controlled model for diabetes and cardiovascular diseases. CurrAtheroscler. Rep. 2018, 20, 46. [Google Scholar] [CrossRef]
- Baccouche, B.; Mbarek, S.; Dellaa, A.; Hammoum, I.; Messina, C.M.; Santulli, A.; Ben Chaouacha-Chekir, R. Protective effect of astaxanthin on primary retinal cells of the gerbil Psammomys obesus cultured in diabetic milieu. J. Food Biochem. 2017, 41, e12274. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical: Washington, DC, USA, 2002. [Google Scholar]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional characterization and changes in quality of Salicornia bigelovii Torr during storage. LWT-Food Sci. Technol. 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Sant’Diniz, Y.; Faine, L.A.; Galhardi, C.M.; Rodrigues, H.G.; Ebaid, G.X.; Burneiko, R.C.; Cicogna, A.C.; Novelli, E.L. Monosodium glutamate in standard and high-fiber diets: Metabolic syndrome and oxidative stress in rats. Nutrition 2005, 21, 749–755. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Process. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Dellaa, A.; Mbarek, S.; Kahloun, R.; Dogui, M.; Khairallah, M.; Hammoum, I.; Rayana-Chekir, N.B.; Charfeddine, R.; Lachapelle, P.; Chaouacha-Chekir, R.B. Functional alterations of retinal neurons and vascular involvement progress simultaneously in the Psammomys obesus model of diabetic retinopathy. J. Comp. Neuro. 2021, 529, 2620–2635. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Kim, M.-J.; Kim, J.-H.; Kim, S.-H.; Go, H.-K.; Kweon, M.-H.; Kim, D.-H. Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharm. Biol. 2018, 56, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Souid, A.; Croce, C.M.D.; Pozzo, L.; Ciardi, M.; Giorgetti, L.; Gervasi, P.G.; Abdelly, C.; Magné, C.; Hamed, K.B.; Longo, V. Antioxidant properties and hepatoprotective effect of the edible halophyte Crithmummaritimum L. against carbon tetrachloride-induced liver injury in rats. Eur. Food Res. Technol. 2020, 246, 1393–1403. [Google Scholar] [CrossRef]
- Gouaref, I.; Detaille, D.; Wiernsperger, N.; Khan, N.A.; Leverve, X.; Koceir, E.-A. The desert gerbil Psammomys obesus as a model for metformin-sensitive nutritional type 2 diabetes to protect hepatocellular metabolic damage: Impact of mitochondrial redox state. PLoS ONE 2017, 12, e0172053. [Google Scholar] [CrossRef] [Green Version]
- Ferron, A.J.T.; Jacobsen, B.B.; Sant’Ana, P.G.; de Campos, D.H.S.; de Tomasi, L.C.; Luvizotto, R.d.A.M.; Cicogna, A.C.; Leopoldo, A.S.; Lima-Leopoldo, A.P. Cardiac dysfunction induced by obesity is not related to β-adrenergic system impairment at the receptor-signalling pathway. PLoS ONE 2015, 10, e0138605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, E.; Diniz, Y.; Galhardi, C.; Ebaid, G.; Rodrigues, H.; Mani, F.; Fernandes, A.A.H.; Cicogna, A.C.; NovelliFilho, J. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, V.d.S.; Claudio, E.R.G.; da Silva, V.L.; Cordeiro, J.P.; Domingos, L.F.; da Cunha, M.R.H.; Mauad, H.; Nascimento, T.B.d.; Lima-Leopoldo, A.P.; Leopoldo, A.S. High-fat diet-induced obesity model does not promote endothelial dysfunction via increasing Leptin/Akt/eNOS signaling. Front. Physiol. 2019, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, N.; Fradj, M.K.B.; Talbi, E.; Bezrati, I.; Feki, M.; Bouassida, A. Association of selected adipokines with metabolic syndrome and cardio-metabolic risk factors in young males. Cytokine 2020, 133, 155170. [Google Scholar] [CrossRef] [PubMed]
- Essaidi, I.; Brahmi, Z.; Snoussi, A.; Koubaier, H.B.H.; Casabianca, H.; Abe, N.; El Omri, A.; Chaabouni, M.M.; Bouzouita, N. Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control. 2013, 32, 125–133. [Google Scholar] [CrossRef]
- Saidi, H.; Bounihi, A.; Bouazza, A.; Hichami, A.; Koceir, E.H.A.; Khan, N.A. Spirulina reduces diet-induced obesity through down regulation of lipogenic genes expression in Psammomys obesus. Arch PhysiolBiochem. 2020, 128, 1001–1009. [Google Scholar] [CrossRef]
- Sahraoui, A.; Dewachter, C.; Vegh, G.; Mc Entree, K.; Naeije, R.; AouichatBouguerra, S.; Dewachter, L. High fat diet altered cardiac metabolic gene profile in Psammomys obesus gerbils. Lipids Health Dis. 2020, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Pismag, R.Y.; Laudouze, M.; Martinez, M.M. Systematic evaluation of the Folin–Ciocalteu and Fast Blue BB reactions during the analysis of total phenolics in legumes, nuts and plant seeds. Food Funct. 2020, 11, 9868–9880. [Google Scholar] [CrossRef]
- Chikhi, I.; Allali, H.; Dib, M.E.A.; Medjdoub, H.; Tabti, B. Antidiabetic activity of aqueous leaf extract of Atriplexhalimus L. (Chenopodiaceae) in streptozotocin–induced diabetic rats. Asian Pac. J. Trop. Dis. 2014, 4, 181–184. [Google Scholar] [CrossRef]
- Kim, J.; Karthivashan, G.; Kweon, M.-H.; Kim, D.-H.; Choi, D.-K. The ameliorative effects of the ethyl acetate extract of Salicornia europaea L. and its bioactive candidate, Irilin B, on LPS-induced microglial inflammation and MPTP-intoxicated PD-Like mouse model. Oxid. Med. Cell. Longev. 2019, 2019, 6764756. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Lucia, P.; Sara, S.; Francesco, S.; Nobile Matteo Alessandro, D.; Amalia, C. Study of the efficacy of two extraction techniques from Crithmummaritimum and Salicornia europaea. J. Food Nutr. Res. 2018, 6, 456–463. [Google Scholar]
- Rodrigues, M.J.; Jekő, J.; Cziáky, Z.; Pereira, C.G.; Custódio, L. The Medicinal Halophyte Frankenialaevis L.(Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells. Plants 2022, 11, 1353. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Miller, A.; Tardugno, R.; Pergolizzi, S. Chemical analysis, biological and therapeutic activities of Oleaeuropaea L. extracts. Nat. Prod. Res. 2022, 36, 2932–2945. [Google Scholar] [CrossRef] [PubMed]
- Zerrouki, S.; Mezhoud, S.; Yaglioglu, A.S.; Bensouici, C.; Atalar, M.N.; Demirtas, I.; Ameddah, S.; Mekkiou, R. Antioxidant, anticancer activities, and HPLC-DAD analyses of the medicinal halophyte Limoniastrumguyonianum Dur. extracts. J. Res. Phar. 2022, 26, 598–608. [Google Scholar]
- Sihali-Beloui, O.; Aroune, D.; Benazouz, F.; Hadji, A.; El-Aoufi, S.; Marco, S. A hypercaloric diet induces hepatic oxidative stress, infiltration of lymphocytes, and mitochondrial reshuffle in Psammomys obesus, a murine model of insulin resistance. C R Biol. 2019, 342, 209–219. [Google Scholar] [CrossRef]
- Hammoum, I.; Mbarek, S.; Dellaa, A.; Dubus, E.; Baccouche, B.; Azaiz, R.; Charfeddine, R.; Picaud, S.; Chaouacha-Chekir, R.B. Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: Merionesshawi. Acta Histochem. 2017, 119, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Mouta, R.; Costa, A.R.; Pereira, A.; e Silva, F.C.; Amado, F.; Antunes, C.M.; Lamy, E. Effects of high-fat diet on salivary α-amylase, serum parameters and food consumption in rats. Arch. Oral Biol. 2015, 60, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Mashmoul, M.; Azlan, A.; Yusof, B.N.M.; Khaza’ai, H.; Mohtarrudin, N.; Boroushaki, M.T. Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J. Funct. Foods. 2014, 8, 180–187. [Google Scholar] [CrossRef]
- Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative study on beneficial effects of hydroxytyrosol-and oleuropein-rich olive leaf extracts on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. Biomed. Res. Int. 2020, 2020, 1315202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Sharif, A.; Hassan, S.U.; Muhammad, F.; Khan, H.M.; Akhtar, B.; Saeed, M. Amelioration of hyperglycaemia and modulation of pro-inflammatory cytokines by Tamarixgallica fractions in alloxan induced diabetic rats. Arch. PhysiolBiochem. 2020, 128, 1666–1675. [Google Scholar] [CrossRef]
- Bora, K.; Pathak, M.S.; Borah, P.; Das, D. Association of decreased high-density lipoprotein cholesterol (HDL-C) with obesity and risk estimates for decreased HDL-C attributable to obesity: Preliminary findings from a hospital-based study in a city from Northeast India. J. Prim. Care Community Health 2017, 8, 26–30. [Google Scholar] [CrossRef]
- Mnafgui, K.; Derbali, A.; Sayadi, S.; Gharsallah, N.; Elfeki, A.; Allouche, N. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet-induced obese rats. J. Food Sci. Technol. 2015, 52, 4369–4377. [Google Scholar] [CrossRef] [Green Version]
- Gargouri, M.; Hamed, H.; Akrouti, A.; Dauvergne, X.; Magné, C.; El Feki, A. Effects of Spirulina platensis on lipid peroxidation, antioxidant defenses, and tissue damage in kidney of alloxan-induced diabetic rats. Appl. Physiol. Nutr. Metab. 2018, 43, 345–354. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef] [Green Version]
- Sudasinghe, H.P.; Peiris, D.C. Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflorasuberosa L. PeerJ 2018, 6, e4389. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Lee, S.-K.; Jo, J.-R.; Kim, M.-E.; So, H.-A.; Cho, C.-W.; Seo, Y.-W.; Kim, J.-I. Hypolipidemic effect of Salicornia herbacea in animal model of type 2 diabetes mellitus. Nutr. Res. Pract. 2007, 1, 371. [Google Scholar] [CrossRef] [Green Version]
- Gargouri, M.; Hamed, H.; Akrouti, A.; Christian, M.; Ksouri, R.; El Feki, A. Immunomodulatory and antioxidant protective effect of Sarcocornia perennis L. (swampfire) in lead intoxicated rat. Toxicol. Mech. Methods 2017, 27, 697–706. [Google Scholar] [CrossRef]
- Kong, C.-S.; Seo, Y. Antiadipogenic activity of isohamnetin 3-O-β-D-glucopyranoside from Salicornia herbacea. Immunopharmacol. Immunotoxicol. 2012, 34, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Ben Lamine, J.; Boujbiha, M.A.; Dahane, S.; Cherifa, A.B.; Khlifi, A.; Chahdoura, H.; Yakoubi, M.T.; Ferchichi, S.; El Ayeb, N.; Achour, L. α-Amylase and α-glucosidase inhibitor effects and pancreatic response to diabetes mellitus on Wistar rats of Ephedra alata areal part decoction with immunohistochemical analyses. Environ. Sci. Pollut. Res. 2019, 26, 9739–9754. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Hammami, M.; Arch, J.R.; Hislop, D.C.; Eze, D.A.; Wargent, E.T.; Kępczyńska, M.A.; Zaibi, M.S. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation, in high fat diet-induced-obesity mice model. PeerJ Prepr. 2018, 5, e3086. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Yan, J.; Bak, J.; Park, J.; Lee, H.; Kim, H. Sargassum thunbergii Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Modulating AMPK Activation and the Gut Microbiota. Foods 2022, 11, 2529. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, F.M.; Abbady, E.A.; Baghdadi, H.H. Oxidative stress modulation by Rosmarinus officinalis in creosote-induced hepatotoxicity. Environ. Toxicol. 2016, 31, 85–92. [Google Scholar] [CrossRef]
- Spolding, B.; Connor, T.; Wittmer, C.; Abreu, L.L.; Kaspi, A.; Ziemann, M.; Kaur, G.; Cooper, A.; Morrison, S.; Lee, S. Rapid development of non-alcoholic steatohepatitis in Psammomys obesus (Israeli sand rat). PLoS ONE 2014, 9, e92656. [Google Scholar] [CrossRef] [Green Version]
- Yi, R.-K.; Song, J.-L.; Lim, Y.-I.; Kim, Y.-K.; Park, K.-Y. Preventive effect of the Korean traditional health drink (Taemyeongcheong) on acetaminophen-induced hepatic damage in ICR Mice. Prev. Nutr. Food Sci. 2015, 20, 52. [Google Scholar] [CrossRef] [Green Version]
Diets | ||
---|---|---|
Components | LCD | HCD |
Moisture | 81.63 ± 0.69 a | 9.11 ± 0.38 b |
Fat | 0.48 ± 0.08 b | 18.91 ± 0.08 a |
Ash | 8.42 ± 0.15 a | 2.83 ± 0.23 b |
Proteins | 3.09 ± 0.22 b | 10.82 ± 0.82 a |
Carbohydrates | 6.38 ± 0.41 b | 58.33 ± 1.32 a |
Energetic value § | 0.42 ± 0.03 b | 4.50 ± 0.02 a |
Parameters | TPC | TFC | DPPH | ABTS |
---|---|---|---|---|
SADE | 20.50 ± 0.30 | 18.20 ± 0.20 | 3.20 ± 0.10 | 17.31 ± 0.65 |
Day | Glycaemia (mg/dL) | |||
---|---|---|---|---|
LCD | LCD + SADE | HCD | HCD + SADE | |
0 | 72 ± 10 aAB | 67 ± 15 aA | 82 ± 3 aB | 86 ± 5 aAB |
15 | 76 ± 5 aAB | 68 ± 7 aA | 89 ± 17 aB | 82 ± 14 aAB |
30 | 73 ± 15 aAB | 58 ± 11 aA | 75 ± 5 aB | 76 ± 9 aB |
45 | 78 ± 2 bcAB | 63 ± 4 cA | 93 ± 7 abB | 99 ± 7 aA |
60 | 90 ± 8 aA | 70 ± 10 aA | 93 ± 13 aB | 85 ± 8 aAB |
75 | 73 ± 7 bAB | 66 ± 6 bA | 96 ± 7 aB | 81 ± 10 aA |
90 | 73 ± 8 aAB | 74 ± 10 aA | 89 ± 17 aB | 96 ± 8 aA |
100 | 61 ± 1 cB | 62 ± 2 cA | 96 ± 1 aB | 72 ± 2 bB |
110 | 73 ± 5 bAB | 60 ± 5 bA | 109 ± 23 aAB | 70 ± 2 bB |
120 | 81 ± 4 bAB | 65 ± 5 cA | 140 ± 5 aA | 73 ± 7 bcB |
Variables | % Pi | AtI | LDL | HDL | TG | TC | ASAT | ALAT |
---|---|---|---|---|---|---|---|---|
% Pi | 1 | 0.913 | 0.928 | 0.383 | 0.978 | 0.980 | 0.897 | 0.836 |
AtI | - | 1 | 0.864 | 0.096 | 0.892 | 0.904 | 0.934 | 0.809 |
LDL | - | - | 1 | 0.466 | 0.927 | 0.979 | 0.921 | 0.847 |
HDL | - | - | - | 1 | 0.364 | 0.417 | 0.297 | 0.476 |
TG | - | - | - | - | 1 | 0.974 | 0.841 | 0.806 |
TC | - | - | - | - | - | 1 | 0.916 | 0.844 |
ASAT | - | - | - | - | - | - | 1 | 0.888 |
ALAT | - | - | - | - | - | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrigui, S.; Hadj Taieb, S.; Jemai, H.; Mbarek, S.; Benlarbi, M.; Feki, M.; Haouas, Z.; Zemmel, A.; Chaouacha-Chekir, R.B.; Boudhrioua, N. Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet. Foods 2023, 12, 1185. https://doi.org/10.3390/foods12061185
Chrigui S, Hadj Taieb S, Jemai H, Mbarek S, Benlarbi M, Feki M, Haouas Z, Zemmel A, Chaouacha-Chekir RB, Boudhrioua N. Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet. Foods. 2023; 12(6):1185. https://doi.org/10.3390/foods12061185
Chicago/Turabian StyleChrigui, Souhaieb, Sameh Hadj Taieb, Hedya Jemai, Sihem Mbarek, Maha Benlarbi, Monssef Feki, Zohra Haouas, Ayachi Zemmel, Rafika Ben Chaouacha-Chekir, and Nourhène Boudhrioua. 2023. "Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet" Foods 12, no. 6: 1185. https://doi.org/10.3390/foods12061185
APA StyleChrigui, S., Hadj Taieb, S., Jemai, H., Mbarek, S., Benlarbi, M., Feki, M., Haouas, Z., Zemmel, A., Chaouacha-Chekir, R. B., & Boudhrioua, N. (2023). Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet. Foods, 12(6), 1185. https://doi.org/10.3390/foods12061185