Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Yeast Screening
2.2.1. Yeast Separation and Purification
2.2.2. Determination of Fermentation Performance of Yeast
2.3. Persimmon Winemaking
2.4. Optimization of Mopan Persimmon Wine Fermentation
2.5. Determination of Physicochemical Parameters
2.6. Analysis of Ethanol with GC-FID
2.7. Total Phenolic Content Measurement
2.8. Pectin Content Analysis
2.9. SEM Analysis of the Pulp during Fermentation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Yeast Strain Screening
3.2. Optimal Fermentation Conditions for Mopan Persimmon Wine
3.2.1. Yeast Addition
3.2.2. Sucrose Addition
3.2.3. Pectinase Addition
3.2.4. Fermentation Temperature Optimization
3.3. Mechanism Analysis of the Pectinase Effect on Fermentation
3.3.1. Soluble Solids Changes with Pectinase Treatment
3.3.2. Effect of Pectinase Treatment on Yeast Growth and Oenological Properties
3.3.3. Effect of Pectinase Treatment on Pectin, Total Phenolic, and Titratable Acid Content
3.4. SEM Analysis of the Persimmon Fermentation
3.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martineli, M.; Alves, A.A.R.; Figueiredo, G.M.D. Caqui cv.‘Mikado’: Análise de compostos voláteis em frutos adstringentes e destanizados. Ciência Rural 2013, 43, 1516–1521. [Google Scholar] [CrossRef] [Green Version]
- Del Bubba, M.; Giordani, E.; Pippucci, L.; Cincinelli, A.; Checchini, L.; Galvan, P. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 2009, 22, 668–677. [Google Scholar] [CrossRef]
- John, J.; Kaimal, K.K.S.; Smith, M.L.; Rahman, P.; Chellam, P.V. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int. J. Biol. Macromol. 2020, 162, 1086–1099. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Jurhar, J.; Mikulic-Petkovsek, M.; Stampar, F.; Schmitzer, V. Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chem. 2010, 119, 477–483. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, C.; Lozano-Sanchez, J.; Marti, N.; Saura, D.; Valero, M.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Characterization of polyphenols, sugars, and other polar compounds in persimmon juices produced under different technologies and their assessment in terms of compositional variations. Food Chem. 2015, 182, 282–291. [Google Scholar] [CrossRef]
- Nugraheri, M.; Windarwati; Rahmawati, F. Potencial of Yospirus Khaki beverage as sources of natural antioxidant. Pak. J. Nutr. 2013, 12, 620–627. [Google Scholar] [CrossRef] [Green Version]
- An, X.W.; Wang, Z.J.; Li, J.M.; Nie, X.Y.; Liu, K.X.; Zhang, Y.F.; Zhao, Z.H.; Chitrakar, B.; Ao, C.W. Analysis of flavor-related compounds in fermented persimmon beverages stored at different temperatures. LWT-Food Sci. Technol. 2022, 163, 15. [Google Scholar] [CrossRef]
- Kou, J.J.; Wei, C.Q.; Zhao, Z.H.; Guan, J.F.; Wang, W.J. Effects of ethylene and 1-methylcyclopropene treatments on physiological changes and ripening-related gene expression of ‘Mopan’ persimmon fruit during storage. Postharvest Biol. Technol. 2020, 166, 9. [Google Scholar] [CrossRef]
- Igual, M.; Castello, M.L.; Ortola, M.D.; Andres, A. Some quality aspects of persimmon jam manufactured by osmotic dehydration without thermal treatment. Int. J. Food Eng. 2011, 7, 17. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.Q.; Lv, J.W.; Ma, Y.L.; Guan, X.L. Changes in the physicochemical components, polyphenol profile, and flavor of persimmon wine during spontaneous and inoculated fermentation. Food Sci. Nutr. 2020, 8, 2728–2738. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-W.; Lee, S.-C. Effect of heat treatment condition on the antioxidant and several physiological activities of non-astringent persimmon fruit juice. Food Sci. Biotechnol. 2012, 21, 815–822. [Google Scholar] [CrossRef]
- Karaman, S.; Toker, O.S.; Cam, M.; Hayta, M.; Dogan, M.; Kayacier, A. Bioactive and physicochemical properties of persimmon as affected by drying methods. Dry. Technol. 2014, 32, 258–267. [Google Scholar] [CrossRef]
- Moon, Y.J.; Choi, D.S.; Oh, S.H.; Song, Y.S.; Cha, Y.S. Effects of persimmon-vinegar on lipid and carnitine profiles in mice. Food Sci. Biotechnol. 2010, 19, 343–348. [Google Scholar] [CrossRef]
- Ma, C.-L.; Liu, X.-F.; Luo, H.-X.; Qu, A.-L.; Wang, H.-H.; Jia, H.-L. Research progress in persimmon wine. Liquor-Mak. Sci. Technol. 2016, 5, 96–98. [Google Scholar]
- Tian, T.T.; Yang, H.; Yang, F.; Li, B.W.; Sun, J.Y.; Wu, D.H.; Lu, J. Optimization of fermentation conditions and comparison of flavor compounds for three fermented greengage wines. LWT-Food Sci. Technol. 2018, 89, 542–550. [Google Scholar] [CrossRef]
- Panesar, P.S.; Panesar, R.; Singh, B. Application of response surface methodology in the optimization of process parameters for the production of kinnow wine. Nat. Prod. Rep. 2009, 8, 366–373. [Google Scholar]
- Shen, N.; Xie, M.-H.; Xu, S. Study on processing technology of pomegranate fermented wine. Farm Prod. Process. 2017, 8, 26–27+29. [Google Scholar]
- Liu, M.M.; Yang, K.; Qi, Y.M.; Fan, M.T.; Wei, X.Y. Physicochemical characteristics and antioxidant activity of persimmon wine by technology of pectinase addition and different pre-macerations. J. Food Process. Preserv. 2018, 42, 9. [Google Scholar] [CrossRef]
- Jiang, X.H.; Lu, Y.Y.; Liu, S.Q. Effects of pectinase treatment on the physicochemical and oenological properties of red dragon fruit wine fermented with Torulaspora delbrueckii. LWT-Food Sci. Technol. 2020, 132, 9. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Umsakul, K. Processing of banana-based wine product using pectinase and α-amylase. J. Food Process Eng. 2008, 31, 78–90. [Google Scholar] [CrossRef]
- Ducasse, M.A.; Canal-Llauberes, R.M.; de Lumley, M.; Williams, P.; Souquet, J.M.; Fulcrand, H.; Doco, T.; Cheynier, V. Effect of macerating enzyme treatment on the polyphenol and polysaccharide composition of red wines. Food Chem. 2010, 118, 369–376. [Google Scholar] [CrossRef]
- Mantovani, C.F.; Geimba, M.P.; Brandelli, A. Enzymatic clarification of fruit juices by fungal pectin lyase. Food Biotechnol. 2005, 19, 173–181. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W.; Lv, Z.; Liu, H.; Zhang, C.; Jiao, Z. Effects of different pretreatments on physicochemical properties and phenolic compounds of hawthorn wine. CyTA-J. Food 2020, 18, 518–526. [Google Scholar] [CrossRef]
- Liu, G.M.; Sun, J.; He, X.M.; Tang, Y.Y.; Li, J.M.; Ling, D.N.; Li, C.B.; Li, L.; Zheng, F.J.; Sheng, J.F.; et al. Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine. Food Chem. 2018, 256, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gao, W.G.; Li, N.; Zhang, B.; Wang, B. The fermentation process optimization of persimmon wine and aroma components. J. Yuncheng Univ. 2015, 33, 57–60. [Google Scholar] [CrossRef]
- Yuan, L.; Li, G.F.; Yan, N.; Wu, J.H.; Due, J.J. Optimization of fermentation conditions for fermented green jujube wine and its quality analysis during winemaking. J. Food Sci. Technol.-Mysore 2022, 59, 288–299. [Google Scholar] [CrossRef]
- Loosova, G.; Jindrak, L.; Kopacek, P. Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina: Argasidae). Folia Parasitol. 2001, 48, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Chaira, N.; Ferchichi, A.; Mrabet, A.; Sghairoun, M. Chemical composition of the flesh and the pit of date palm fruit and radical scavenging activity of their extracts. Pak. J. Biol. Sci. PJBS 2007, 10, 2202–2207. [Google Scholar] [CrossRef] [Green Version]
- Jensdottir, T.; Bardow, A.; Holbrook, P. Properties and modification of soft drinks in relation to their erosive potential in vitro. J. Dent. 2005, 33, 569–575. [Google Scholar] [CrossRef]
- Costa, C.L.D.; Ramos, D.P.; da Silva, J.B. Multivariate optimization and validation of a procedure to direct determine acetonitrile and ethanol in radiopharmaceuticals by GC-FID. Microchem. J. 2019, 147, 654–659. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- McCready, R.; McComb, E.J.A.C. Extraction and determination of total pectic materials in fruits. Anal. Chem. 1952, 24, 1986–1988. [Google Scholar] [CrossRef]
- Hongpattarakere, T.; Rattanaubon, P.; Buntin, N. Improvement of freeze-dried Lactobacillus plantarum survival using water extracts and crude fibers from food crops. Food Bioprocess Technol. 2013, 6, 1885–1896. [Google Scholar] [CrossRef]
- Liu, Y.B.; Wei, Y.F.; Li, H.D.; Li, F.F.; Song, M.J.; Li, Z.H.; Zhang, T.T.; Han, S.A.; Pan, C.M. Optimization of fermentation technology for composite fruit and vegetable wine by response surface methodology and analysis of its aroma components. RSC Adv. 2022, 12, 35616–35626. [Google Scholar] [CrossRef]
- Zuo, Y.; Qi, F.; Li, Y. A Research on Mulberry Wine Fermentation Condition Optimization by Means of BBD. Adv. Mater. Res. 2013, 791–793, 84–88. [Google Scholar] [CrossRef]
- Le Quere, J.M.; Husson, F.; Renard, C.; Primault, J. French cider characterization by sensory, technological and chemical evaluations. Lwt-Food Sci. Technol. 2006, 39, 1033–1044. [Google Scholar] [CrossRef]
- Yu, B.; Chen, J.; Zhang, S.-P.; Wang, Z.-H. Fermentation Process Optimization and Antioxidant Property of Crab Apple Wine. China Brew. 2020, 39, 142–145. [Google Scholar]
- Iorizzo, M.; Macciola, V.; Testa, B.; Lombardi, S.J.; De Leonardis, A. Physicochemical and sensory characteristics of red wines from the rediscovered autochthonous Tintilia grapevine grown in the Molise region (Italy). Eur. Food Res. Technol. 2014, 238, 1037–1048. [Google Scholar] [CrossRef]
- Torija, M.J.; Rozes, N.; Poblet, M.; Guillamon, J.M.; Mas, A. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2003, 80, 47–53. [Google Scholar] [CrossRef]
- Puertas, B.; Jimenez-Hierro, M.J.; Cantos-Villar, E.; Marrufo-Curtido, A.; Carbu, M.; Cuevas, F.J.; Moreno-Rojas, J.M.; Gonzalez-Rodriguez, V.E.; Cantoral, J.M.; Ruiz-Moreno, M.J. The influence of yeast on chemical composition and sensory properties of dry white wines. Food Chem. 2018, 253, 227–235. [Google Scholar] [CrossRef]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galan, R.; Medel-Maraboli, M.; Gil, M.; Pena-Neira, A. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, T.; West, S. Industrial Enzymology, 2nd ed.; Stockton Press: New York, NY, USA, 1996. [Google Scholar]
- Englezos, V.; Cravero, F.; Torchio, F.; Rantsiou, K.; Ortiz-Julien, A.; Lambri, M.; Gerbi, V.; Rolle, L.; Cocolin, L. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae. Food Microbiol. 2018, 69, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Woodams, E.E.; Hang, Y.D. Influence of pectinase treatment on fruit spirits from apple mash, juice and pomace. Process Biochem. 2011, 46, 1909–1913. [Google Scholar] [CrossRef]
- Ye, M.Q.; Yue, T.L.; Yuan, Y.H. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Oszmianski, J.; Wojdylo, A.; Kolniak, J. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices. Food Chem. 2011, 127, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xu, Y.H.; Li, F.; Li, D.P.; Huang, Q.R. Pectin extracted from persimmon peel: A physicochemical characterization and emulsifying properties evaluation. Food Hydrocoll. 2020, 101, 10. [Google Scholar] [CrossRef]
Yeast Strain | 0 d | 1 d | 2 d | 3 d | 4 d | 5 d | 6 d | Ethanol (%vol) |
---|---|---|---|---|---|---|---|---|
F1 | 15.42 ± 0.02 a | 12.85 ± 0.04 b | 10.73 ± 0.05 c | 9.34 ± 0.03 a | 8.18 ± 0.07 b | 7.06 ± 0.31 c | 6.94 ± 0.05 a | 5.25 ± 0.08 h |
F2 | 15.43 ± 0.03 a | 12.73 ± 0.13 d | 10.51 ± 0.08 d | 9.10 ± 0.04 d | 7.83 ± 0.03 e | 6.93 ± 0.01 e | 6.77 ± 0.40 e | 5.80 ± 0.09 c |
F3 | 15.40 ± 0.01 a | 11.98 ± 0.05 k | 9.68 ± 0.05 j | 8.99 ± 0.04 f | 7.69 ± 0.08 g | 6.58 ± 0.01 i | 6.46 ± 0.05 i | 5.56 ± 0.16 d |
F4 | 15.43 ± 0.03 a | 12.64 ± 0.21 f | 10.40 ± 0.03 e | 8.95 ± 0.01 g | 7.73 ± 0.18 f | 6.86 ± 0.03 g | 6.73 ± 0.05 f | 5.38 ± 0.02 f |
F5 | 15.42 ± 0.03 a | 12.88 ± 0.08 a | 10.84 ± 0.16 a | 9.24 ± 0.04 b | 8.20 ± 0.12 a | 7.09 ± 0.01 b | 6.85 ± 0.29 d | 5.25 ± 0.05 h |
F6 | 15.41 ± 0.00 a | 12.00 ± 0.04 j | 9.74 ± 0.05 i | 8.07 ± 0.09 i | 7.54 ± 0.06 h | 6.90 ± 0.19 f | 6.90 ± 0.06 b | 5.31 ± 0.05 g |
F7 | 15.43 ± 0.03 a | 12.61 ± 0.09 g | 10.79 ± 0.08 b | 8.94 ± 0.14 h | 7.99 ± 0.10 d | 6.84 ± 0.12 h | 6.53 ± 0.07 h | 5.56 ± 0.11 d |
F8 | 15.44 ± 0.03 a | 12.75 ± 0.05 c | 10.40 ± 0.05 e | 9.22 ± 0.14 c | 8.03 ± 0.03 c | 7.18 ± 0.06 a | 6.86 ± 0.05 c | 5.31 ± 0.08 g |
F9 | 15.44 ± 0.02 a | 12.10 ± 0.14 h | 9.97 ± 0.05 g | 7.97 ± 0.09 j | 6.68 ± 0.02 i | 6.03 ± 0.03 j | 5.92 ± 0.12 j | 5.98 ± 0.09 b |
F10 | 15.43 ± 0.01 a | 12.67 ± 0.09 e | 10.33 ± 0.24 f | 9.02 ± 0.09 e | 8.03 ± 0.03 c | 6.98 ± 0.18 d | 6.70 ± 0.05 g | 5.44 ± 0.05 e |
Temperature/°C | 20 | 24 | 28 | 32 | 36 |
---|---|---|---|---|---|
Soluble solids (°Brix) | 12.17 ± 0.05 b | 9.03 ± 0.05 d | 8.23 ± 0.29 e | 11.46 ± 0.14 c | 14.47 ± 0.08 a |
Ethanol (%vol) | 10.55 ± 0.02 c | 12.15 ± 0.03 b | 12.75 ± 0.02 a | 10.40 ± 0.04 d | 8.20 ± 0.04 e |
Reducing sugar (g/100 mL) | 1.16 ± 0.36 b | 0.94 ± 0.20 c | 0.53 ± 0.53 d | 1.19 ± 0.07 b | 1.85 ± 0.20 a |
Total sugar (g/100 mL) | 2.01 ± 0.10 d | 2.89 ± 0.58 b | 1.87 ± 0.39 e | 2.05 ± 0.20 c | 3.29 ± 0.26 a |
Titratable acid (g/L) | 7.97 ± 0.28 d | 8.06 ± 0.09 c | 8.25 ± 0.19 b | 8.06 ± 0.19 c | 12.19 ± 0.09 a |
Viscosity | Dissolved Oxygen | Yeast Growth | Residual Sugar | Ethanol | Pectin | Total Phenolic | |
---|---|---|---|---|---|---|---|
Viscosity | 1 | ||||||
Dissolved oxygen | −0.691 | 1 | |||||
Yeast growth | 0.190 | 0.150 | 1 | ||||
Residual sugar | 0.724 | −0.865 * | −0.073 | 1 | |||
Ethanol | −0.854 * | 0.953 ** | 0.109 | −0.915 ** | 1 | ||
Pectin | 0.996 ** | −0.683 | 0.136 | 0.698 | −0.852 * | 1 | |
Total phenolic | −0.473 | 0.884 * | 0.345 | −0.921 ** | 0.837 * | −0.456 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hao, Q.; An, X.; Chitrakar, B.; Li, J.; Zhao, Z.; Ao, C.; Sun, J. Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action. Foods 2023, 12, 1246. https://doi.org/10.3390/foods12061246
Wang Z, Hao Q, An X, Chitrakar B, Li J, Zhao Z, Ao C, Sun J. Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action. Foods. 2023; 12(6):1246. https://doi.org/10.3390/foods12061246
Chicago/Turabian StyleWang, Zijuan, Qinghong Hao, Xiaowen An, Bimal Chitrakar, Jiamin Li, Zhihui Zhao, Changwei Ao, and Jinxu Sun. 2023. "Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action" Foods 12, no. 6: 1246. https://doi.org/10.3390/foods12061246
APA StyleWang, Z., Hao, Q., An, X., Chitrakar, B., Li, J., Zhao, Z., Ao, C., & Sun, J. (2023). Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action. Foods, 12(6), 1246. https://doi.org/10.3390/foods12061246