Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Antifungal Agents and Chemicals
2.3. Minimum Inhibitory Concentration
2.4. Gas Chromatography/Mass Spectrometry Analysis
2.5. Effects on Spore Germination and Mycelial Growth
2.6. Calorimetric Measurements
2.7. Statistical Analysis
3. Results
3.1. Antifungal Activity
3.2. Effects of Daito-Gettou EO on Mycelial Growth
3.3. Growth Thermogram of A. brasiliensis in the Presence of Daito-Gettou EO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Arambewela, L.S.R.; Arawwawala, L.D.A.M.; Athauda, N. Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes. J. Ayurveda Integr. Med. 2010, 1, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Shin, S. Antifungal and antioxidant activities of the essential oil from Angelica koreana Nakai. Evid.-Based Complement. Alternat. Med. 2014, 2014, 398503. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Katiraee, F.; Ahmadi, A.S.; Rahimi, P.S.F.; Shokri, H. In vitro antifungal activity of essential oils extracted from plants against fluconazole-susceptible and -resistant Candida albicans. Curr. Med. Mycol. 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Thang, T.D.; Luu, T.N.; Doan, V.D. An overview of the chemical composition and biological activities of essential oils from Alpinia genus (Zingiberaceae). RSC Adv. 2021, 11, 37767–37783. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.; Tang, G.; Li, H. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Ninomiya, K.; Maruyama, N.; Inoue, S.; Ishibashi, H.; Takazawa, T.; Oshima, H.; Abe, S. The essential oil of Melaleuca alternifolia (Tea tree oil) and its main component, terpinen-4-ol protect mice from experimental oral candidiasis. Biol. Pharm. Bull. 2012, 35, 861–865. [Google Scholar] [CrossRef]
- Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Salgueiro, L.; Goncalves, M.J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.D.; Kemmelmeier, C.; Arroteia, C.C.; Costa, C.L.; Mallmann, C.A.; Janeiro, V.; Ferreira, F.M.D.; Mossini, S.A.G.; Silva, E.L.; Machinski, M., Jr. Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link. Food Chem. 2013, 136, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Suraci, F.; Postorino, S.; Serra, D.; Roccotelli, A.; Agosteo, G.E. Essential oil chemical composition and antifungal effects on Sclerotium cepivorum of Thymus capitatus wild populations from Calabria, southern Italy. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2013, 23, 239–248. [Google Scholar] [CrossRef]
- Mota, K.S.L.; Pereira, F.O.; Oliveira, W.A.; Lima, I.O.; Lima, E.O. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433. [Google Scholar] [CrossRef] [PubMed]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Fekry, M.; Yahya, G.; Osman, A.; Al-Rabia, M.W.; Mostafa, I.; Abbas, H.A. GC-MS analysis and microbiological evaluation of caraway essential oil as a virulence attenuating agent against Pseudomonas aeruginosa. Molecules 2022, 27, 8532. [Google Scholar] [CrossRef]
- Rozman, N.A.S.; Yenn, T.W.; Tan, W.-N.; Ring, L.C.; Yusof, F.A.B.M.; Sulaiman, B. Homalomena pineodora, a novel essential oil bearing plant and its antimicrobial activity against diabetic wound pathogens. J. Essent. Oil Bear. Plants 2018, 21, 963–971. [Google Scholar] [CrossRef]
- Tawata, S.; Fukuta, M.; Xuan, T.D.; Deba, F. Total utilization of tropical plants Leucaena leucocephala and Alpinia zerumbet. J. Pestic. Sci. 2008, 33, 40–43. [Google Scholar] [CrossRef]
- Setsuda, R.; Fukumoto, I.; Kanda, Y. Fabrication of composite material using gettou fiber by injection molding. J. Solid Mech. Mater. Eng. 2012, 6, 154–168. [Google Scholar] [CrossRef]
- Araujo, P.F.V.S.; Souza, A.N.C.; Morais, S.M.; Ferreira, S.C.; Cardoso, J.H.L. Antinociceptive effects of the essential oil of Alpinia zerumbet on mice. Phytomedicine 2005, 12, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, M.A.; Sobeh, M.; Rezq, S.; El-Shazly, A.M.; Mahmoud, M.F.; Wink, M. HPLC-ESI-MS/MS profiling of polyphenolics of a leaf extract from Alpinia zerumbet (Zingiberaceae) and its anti-inflammatory, anti-nociceptive, and antipyretic activities in vivo. Molecules 2018, 23, 3238. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, A.; Yamaguchi, K.; Watanabe, K.; Tanaka, M.; Kobayashi, I.; Nagasawa, Z. Final report from the Committee on Antimicrobial Susceptibility Testing, Japanese Society of Chemotherapy, on the agar dilution method (2007). J. Infect. Chemother. 2008, 14, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Antoce, O.A.; Takahashi, K.; Namolosanu, I. Characterization of ethanol tolerance of yeasts using calorimetoric technique. Vitis 1996, 35, 105–106. [Google Scholar]
- Antoce, O.A.; Antoce, V.; Takahashi, K.; Pomohachi, N.; Namolosanu, I. Calorimetoric determination of inhibitory effect of C1-C4 n-alcohols on growth of some yeast species. Thermochim. Acta 1997, 297, 33–42. [Google Scholar] [CrossRef]
- Antoce, O.A.; Antoce, V.; Takahashi, K.; Pomohachi, N.; Namolosanu, I. A calorimetoric method applied to the study of yeast growth inhibition by alcohols and organic acids. Am. J. Enol. Vitic. 1997, 48, 413–422. [Google Scholar] [CrossRef]
- Terzi, V.; Morcia, C.; Faccioli, P.; Vale, G.; Tacconi, G.; Malnati, M. In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Lett. Appl. Microbiol. 2007, 44, 613–618. [Google Scholar] [CrossRef]
- Roana, J.; Mandras, N.; Scalas, D.; Campagna, P.; Tullio, V. Antifungal activity of Melaleuca alternifolia essential oil (TTO) and its synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules 2021, 26, 461. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.O.; Wanderley, P.A.; Viana, F.A.C.; Lima, R.B.; Sousa, F.B.; Lima, E.O. Growth inhibition and morphological alterations of Trichophyton rubrum induced by essential oil from Cymbopogon winterianus Jowitt ex Bor. Braz. J. Microbiol. 2011, 42, 233–242. [Google Scholar] [CrossRef]
- Klaric, M.S.; Kosalec, I.; Mastelic, J.; Pieckova, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
- Kano, F.; Okouchi, S.; Maruyama, M.; Uchida, H.; Omata, K. Measurement of minimum inhibitory concentration in antifungal agents TBZ and BCM by microbe calorimeter (in Japanese). Ann. Rep. Tokyo Metr. Res. Lab. PH 2000, 51, 234–238. [Google Scholar]
- Kimura, T.; Takahashi, K. Calorimetric studies of soil microbes: Quantitative relation between heat evolution during microbial degradation of glucose and changes in microbial activity in soil. J. Gen. Microbiol. 1985, 131, 3083–3089. [Google Scholar] [CrossRef][Green Version]
- Sakai, T.; Tsuchido, T.; Furuta, M. Inhibitory effect of spice powders on the development of heated and irradiated Bacillus subtilis spores as evaluated by calorimetry. Biocontrol. Sci. 2018, 23, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Okada, F. Simplified, time-saving microbial tests for cosmetics and toiletries (in Japanese). J. Soc. Cosmet. Chem. Jpn. 1998, 32, 131–139. [Google Scholar] [CrossRef]
- Koga, K.; Tamura, T.; Ikemoto, H. Calorimetric evaluations of Bacillus subtilis vegetative and spore cells colonial growth and suppressive effects of sucrose monopalmitate. Biocontrol. Sci. 2008, 13, 111–118. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Uchida, K.; Matsuzaka, A.; Aoki, K.; Yamaguchi, H. In vitro antifungal activity of Itraconazole, a new triazole antifungal agent, against clinical isolates from patients with systemic mycoses (in Japanese). Jpn. J. Antibiot. 1991, 44, 562–570. [Google Scholar] [PubMed]
- Ikeda, F.; Otomo, K.; Nakai, T.; Morishita, Y.; Maki, K.; Tawara, S.; Mutoh, S.; Matsumoto, F.; Kuwahara, S. In vitro activity of a new lipopeptide antifungal agent, micafungin against a variety of clinically important fungi (in Japanese). Jpn. J. Chemother. 2002, 50, 8–19. [Google Scholar]
- Nada, H.G.; Mohsen, R.; Zaki, M.E.; Aly, A.A. Evaluation of chemical composition, antioxidant, antibiofilm and antibacterial potency of essential oil extracted from gamma irradiated clove (Eugenia caryophyllata) buds. J. Food Meas. Charact. 2022, 16, 673–686. [Google Scholar] [CrossRef]
- Murakami, S.; Li, W.; Matsuura, M.; Satou, T.; Hayashi, S.; Koike, K. Composition and seasonal variation of essential oil in Alpinia zerumbet from Okinawa Island. J. Nat. Med. 2009, 63, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.S.; Souza, T.A.; Dias, Y.M.; Oliveira, T.A.L.; Ferreira, J.L.P.; Silva, M.A.M.; Silva, J.R.A.; Amaral, A.C.F. Comparative study on essential oils of Alpinia zerumbet varieties. In Proceedings of the 8th Brazilian Symposium on Essential Oils—International Symposium on Essential Oils, Rio de Janeiro, Brazil, 10–13 November 2015. [Google Scholar]
- Maior, L.F.S.; Maciel, P.P.; Ferreira, V.Y.N.; Dantas, C.L.G.; Lima, J.M.; Castellano, L.R.C.; Batista, A.U.D.; Bonan, P.R.F. Antifungal activity and shore A hardness of a tissue conditioner incorporated with terpinene-4-ol and cinnamaldehyde. Clin. Oral Investig. 2019, 23, 2837–2848. [Google Scholar] [CrossRef]
- Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; Salvatore, G. In vivo activity of terpinene-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect. Dis. 2006, 6, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Aznar, A.; Fernandez, P.S.; Periago, P.M.; Palop, A. Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of Candida lusitaniae. Food Sci. Technol. Int. 2015, 21, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Takahashi, K. Calorimetric characterization of the inhibitory action of antimicrobial drugs and a proposal of bacteriostatic/bactericidal index. Netsu Sokutei 2000, 27, 170–178. [Google Scholar]
- Allen, P.M.; Gottlieb, D. Mechanism of action of the fungicide Thiabendazole, 2-(4′-thiazolyl)benzimidazole. Appl. Microbiol. 1970, 20, 919–926. [Google Scholar] [CrossRef]
- Brajtburg, J.; Powderly, W.G.; Kobayashi, G.S.; Medoff, G. Amphotericin B: Current understanding of mechanisms of action. Antimicrob. Agents Chemother. 1990, 34, 183–188. [Google Scholar] [CrossRef]
- Polec, K.; Wojecik, A.; Flasinski, M.; Wydro, P.; Broniatowski, M.; Hac-Wydro, K. The influence of terpinen-4-ol and eucalyptol—The essential oil components—On fungi and plant sterol monolayers. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-R.; Li, H.-L.; Shi, Q.-S.; Sun, T.-L.; Xie, X.-B.; Song, B.; Huang, X.-M. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl. Microbiol. Biotechnol. 2016, 100, 8865–8875. [Google Scholar] [CrossRef] [PubMed]
Antifungal Agent | MIC * | EO | MIC * | |
---|---|---|---|---|
(μg/mL) | (μmol/L) | (%) | ||
Miconazole (MCZ) | 10 d | 24 | Daito-gettou | 0.40 a |
Itraconazole (ITCZ) | 10 d | 14 | Shima-gettou 1 | 0.50 a |
Voriconazole (VRCZ) | 2.5 e | 7.2 | Shima-gettou 2 | 0.40 a |
Fluconazole (FLCZ) | 200 b | 650 | Shima-gettou 3 | 0.40 a |
5-Fluorocytosine (5-FC) | >400 a | >3100 | Tea tree | 0.20 b |
Amphotericin B (AMPH-B) | 0.50 f | 0.54 | ||
Thiabendazole (TBZ) | 50 c | 250 |
No. | Compound * | Relative % Peak Areas ** | ||||
---|---|---|---|---|---|---|
Daito-gettou | Shima-gettou 1 | Shima-gettou 2 | Shima-gettou 3 | Tea Tree | ||
1 | α-Pinene | 1.2 | 9.6 | 10.7 | 1.7 | 1.4 |
2 | Camphene | 0 | 4.5 | 13.0 | 0 | 0 |
3 | 3-Carene | 15.1 | 0 | 0 | 10.9 | 0 |
4 | β-Pinene | 2.6 | 1.6 | 2.6 | 2.5 | 0 |
5 | α-Phellandrene | 0 | 0 | 1.2 | 0 | 0 |
6 | 2-Carene | 3.6 | 0 | 0 | 8.3 | 0.9 |
7 | p-Cymene | 12.3 | 31.8 | 28.4 | 12.4 | 4.0 |
8 | Limonene | 1.6 | 15.5 | 31.3 | 2.4 | 0 |
9 | β-Phellandrene | 0 | 0 | 4.9 | 0 | 0 |
10 | 1,8-Cineole | 18.9 | 11.1 | 0 | 22.1 | 2.2 |
11 | γ-Terpinene | 22.2 | 0.7 | 0.9 | 29.5 | 22.1 |
12 | 4-Carene | 0 | 0 | 0 | 3.1 | 2.5 |
13 | Terpinen-4-ol | 19.2 | 0 | 0 | 5.6 | 60.1 |
14 | Caryophyllene | 1.6 | 1.1 | 1.8 | 1.4 | 0 |
15 | Humulene | 0 | 3.8 | 0 | 0 | 0 |
16 | Caryophyllene oxide | 1.6 | 4.2 | 0 | 0 | 0 |
17 | Unknown compound | 0 | 9.4 | 0 | 0 | 0 |
Other compounds | 0 | 6.6 | 5.2 | 0 | 6.8 | |
Total | 100 | 100 | 100 | 100 | 100 |
Compound * | MIC ** | |
---|---|---|
(%) | (mmol/L) | |
α-Pinene | 0.60 b | 44 |
Camphene | 0.70 a | 51 |
3-Carene | 0.70 a | 51 |
p-Cymene | 0.70 a | 52 |
Limonene | 0.60 b | 44 |
1,8-Cineole | 0.50 c | 32 |
γ-Terpinene | 0.70 a | 51 |
Terpinen-4-ol | 0.075 d | 4.9 |
Compound | Content * (%) | ||||
---|---|---|---|---|---|
Daito-gettou | Shima-gettou 1 | Shima-gettou 2 | Shima-gettou 3 | Tea Tree | |
p-Cymene | 8.41 | 18.47 | 25.53 | 9.14 | 3.53 |
1,8-Cineole | 13.99 | 9.11 | 0 | 16.91 | 4.85 |
Terpinen-4-ol | 17.24 | 0 | 0 | 8.98 | 47.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okazaki, K.; Sumitani, H.; Takahashi, K.; Isegawa, Y. Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis. Foods 2023, 12, 1298. https://doi.org/10.3390/foods12061298
Okazaki K, Sumitani H, Takahashi K, Isegawa Y. Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis. Foods. 2023; 12(6):1298. https://doi.org/10.3390/foods12061298
Chicago/Turabian StyleOkazaki, Kiyo, Hidenobu Sumitani, Katsutada Takahashi, and Yuji Isegawa. 2023. "Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis" Foods 12, no. 6: 1298. https://doi.org/10.3390/foods12061298
APA StyleOkazaki, K., Sumitani, H., Takahashi, K., & Isegawa, Y. (2023). Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis. Foods, 12(6), 1298. https://doi.org/10.3390/foods12061298