Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Physical Measurements
2.3. Dry Matter
2.4. Sample Preparation
2.5. Ascorbic Acid Extraction and Determination
2.6. Sugar and Organic Acid Extraction and Determination
2.7. Phenolic Extraction and Determination
2.8. Enzyme Activity Measurements
2.8.1. Extraction of Enzymes
2.8.2. POD and PPO Assays
2.9. Statistical Analysis
3. Results and Discussion
3.1. Environmental Conditions
3.2. Physical Parameters
3.3. Ascorbic Acid Content
3.4. Organic Acid Contents
3.5. Sugar Contents
3.6. Sugar/Acid Ratio
3.7. Phenolic Contents
Individual and Total Anthocyanin Contents
3.8. Enzyme Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 June 2022).
- Kader, A.A. Quality and Its Maintenance in Relation to the Postharvest Physiology of Strawberry. In The Strawberry into the 21st Century; Timber Press: Portland, Oregon, 1991; pp. 145–152. [Google Scholar]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; van Buren, L.; Wagner, E.; Wiseman, S.; van de Put, F.; Dacombe, C.; Rice-Evans, C.A. The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects Their Phenolic and Vitamin C Composition. Free Radic. Res. 2009, 36, 217–233. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The Strawberry: Composition, Nutritional Quality, and Impact on Human Health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F. Strawberries, 2nd ed.; Springer: Dordrecht, The Netherlands, 2020; pp. 445–455. ISBN 9781789242270. [Google Scholar]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High Anthocyanin Intake Is Associated with a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Pinto, M.; de Carvalho, J.E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of Antiproliferative, Anti-Type 2 Diabetes, and Antihypertension Potentials of Ellagitannins from Strawberries Fragaria × Ananassa Duch.) Using In Vitro Models. J. Med. Food 2010, 13, 1027–1035. [Google Scholar] [CrossRef]
- Afrin, S.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Reboredo-Rodriguez, P.; Mezzetti, B.; Varela-López, A.; Giampieri, F.; Battino, M. Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. J. Agric. Food Chem. 2016, 64, 4435–4449. [Google Scholar] [CrossRef] [PubMed]
- Mezzetti, B.; Giampieri, F.; Zhang, Y.-T.; Zhong, C.-F. Status of Strawberry Breeding Programs and Cultivation Systems in Europe and the Rest of the World. J. Berry Res. 2018, 8, 205–221. [Google Scholar] [CrossRef]
- van Delm, T.; Melis, P.; Stoffels, K.; Baets, W. The Effect of Long-Day Treatment on Runners and Inflorescences on Everbearing Strawberry Cultivar “Capri”. Acta Hortic. 2016, 1117, 285–289. [Google Scholar] [CrossRef]
- Rivero, R.; Remberg, S.F.; Heide, O.M.; Sønsteby, A. Effect of Temperature and Photoperiod Preconditioning on Flowering and Yield Performance of Three Everbearing Strawberry Cultivars. Horticulturae 2022, 8, 504. [Google Scholar] [CrossRef]
- Šamec, D.; Maretić, M.; Lugarić, I.; Mešić, A.; Salopek-Sondi, B.; Duralija, B. Assessment of the Differences in the Physical, Chemical and Phytochemical Properties of Four Strawberry Cultivars Using Principal Component Analysis. Food Chem. 2016, 194, 828–834. [Google Scholar] [CrossRef]
- Ruan, J.; Lee, Y.H.; Hong, S.J.; Yeoung, Y.R. Sugar and Organic Acid Contents of Day-Neutral and Ever-Bearing Strawberry Cultivars in High-Elevation for Summer and Autumn Fruit Production in Korea. Hortic. Environ. Biotechnol. 2013, 54, 214–222. [Google Scholar] [CrossRef]
- Haffner, K. Postharvest Quality and Processing of Strawberries. Acta Hortic. 2002, 567, 715–722. [Google Scholar] [CrossRef]
- Ariza, M.T.; Martínez-Ferri, E.; Domínguez, P.; Medina, J.J.; Miranda, L.; Soria, C. Effects of Harvest Time on Functional Compounds and Fruit Antioxidant Capacity in Ten Strawberry Cultivars. J. Berry Res. 2015, 5, 71–80. [Google Scholar] [CrossRef]
- Cervantes, L.; Ariza, M.T.; Miranda, L.; Lozano, D.; Medina, J.J.; Soria, C.; Martínez-Ferri, E. Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. Agronomy 2020, 10, 1242. [Google Scholar] [CrossRef]
- Cocco, C.; Magnani, S.; Maltoni, M.L.; Quacquarelli, I.; Cacchi, M.; Corrêa Antunes, L.E.; Filippo D’antuono, L.; Faedi, W.; Baruzzi, G. Effects of Site and Genotype on Strawberry Fruits Quality Traits and Bioactive Compounds. J. Berry Res. 2015, 5, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E.; Josuttis, M.; Nestby, R.; Toldam-Andersen, T.B.; Carlen, C.; Mezzetti, B. Influence of Growing Conditions at Different Latitudes of Europe on Strawberry Growth Performance, Yield and Quality. J. Berry Res. 2012, 2, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, L.; Masuero, D.; Martinatti, P.; Baratto, G.; Martens, S.; Vrhovsek, U. Genotype-by-Environment Effect on Bioactive Compounds in Strawberry (Fragaria x Ananassa Duch.). J. Sci. Food Agric. 2017, 97, 4180–4189. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Camp, M.J. Temperatures after Bloom Affect Plant Growth and Fruit Quality of Strawberry. Sci. Hortic. 2000, 85, 183–199. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, C.; Yang, B.; Kallio, H.; Liu, P.; Ou, S. Regulation of Phytochemicals in Fruits and Berries by Environmental Variation—Sugars and Organic Acids. J. Food Biochem. 2019, 43, e12642. [Google Scholar] [CrossRef]
- Agüero, J.J.; Salazar, S.M.; Kirschbaum, D.S.; Jerez, E.F. Factors Affecting Fruit Quality in Strawberries Grown in a Subtropical Environment. Int. J. Fruit Sci. 2015, 15, 223–234. [Google Scholar] [CrossRef]
- Kannaujia, P.K.; Asrey, R. Effect of Harvesting Season and Cultivars on Storage Behaviour, Nutritional Quality and Consumer Acceptability of Strawberry (Fragaria × Ananassa Duch.) Fruits. Acta Physiol. Plant 2021, 43, 88. [Google Scholar] [CrossRef]
- Pillet, J.; Folta, K.M. Pigments in Strawberry. In Pigments in Fruits and Vegetables; Springer: New York, NY, USA, 2015; pp. 205–216. [Google Scholar]
- Zoratti, L.; Karppinen, K.; Escobar, A.L.; Häggman, H.; Jaakola, L. Light-Controlled Flavonoid Biosynthesis in Fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic Compounds and Related Enzymes as Determinants of Quality in Fruits and Vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Krüger, E.; Will, F.; Kumar, K.; Celejewska, K.; Chartier, P.; Masny, A.; Mott, D.; Petit, A.; Savini, G.; Sønsteby, A. Influence of Post-Flowering Climate Conditions on Anthocyanin Profile of Strawberry Cultivars Grown from North to South Europe. Appl. Sci. 2021, 11, 1326. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W. Effect of Plant Growth Temperature on Antioxidant Capacity in Strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Capri. Available online: https://www.strawberries.eu.com/nl/varieties/19-Capri (accessed on 5 January 2023).
- Mikulic-Petkovsek, M.; Slatnar, A.; Schmitzer, V.; Stampar, F.; Veberic, R.; Koron, D. Chemical Profile of Black Currant Fruit Modified by Different Degree of Infection with Black Currant Leaf Spot. Sci. Hortic. 2013, 150, 399–409. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Koron, D.; Rusjan, D. The Impact of Food Processing on the Phenolic Content in Products Made from Juneberry (Amelanchier Lamarckii) Fruits. J. Food Sci. 2020, 85, 386–393. [Google Scholar] [CrossRef]
- Cebulj, A.; Halbwirth, H.; Mikulic-Petkovsek, M.; Veberic, R.; Slatnar, A. The Impact of Scald Development on Phenylpropanoid Metabolism Based on Phenol Content, Enzyme Activity, and Gene Expression Analysis. Hortic. Environ. Biotechnol. 2020, 61, 849–858. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method for Protein Quantitation. Methods Mol. Biol. 1994, 32, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Mitcham, E.J.; Crisosto, C.H.; Kader, A.A. Recommendations for Maintaining Postharvest Quality. Available online: https://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Fruit_English/?uid=58&ds=798 (accessed on 4 January 2023).
- Menzel, C.M. A Review of Productivity in Strawberries: Marketable Yield Has a Linear, but Inconsistent Relationship with Total Yield, and Cannot Be Predicted from Total Yield. J. Hortic. Sci. Biotechnol. 2021, 96, 135–144. [Google Scholar] [CrossRef]
- UNECE STANDARD. FFV-35 Concerning the Marketing and Commercial Quality Control of Strawberries. Available online: www.unece.org/trade/agr (accessed on 2 February 2022).
- Josuttis, M.; Dietrich, H.; Patz, C.D.; Krüger, E. Effects of Air and Soil Temperatures on the Chemical Composition of Fruit and Agronomic Performance in Strawberry (Fragaria Ananassa Duch.). J. Hortic. Sci. Biotechnol. 2015, 86, 415–421. [Google Scholar] [CrossRef]
- Pyrotis, S.; Abayomi, L.; Rees, D.; Orchard, J. Effect of Temperature and Humidity on Strawberry Firmness at Two Different Sites in the Huelva Region of Spain. Acta Hortic. 2012, 926, 567–570. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Zushi, K.; Suehara, C.; Shirai, M. Effect of Light Intensity and Wavelengths on Ascorbic Acid Content and the Antioxidant System in Tomato Fruit Grown in Vitro. Sci. Hortic. 2020, 274, 109673. [Google Scholar] [CrossRef]
- Smirnoff, N. Ascorbic Acid: Metabolism and Functions of a Multi-Facetted Molecule. Curr. Opin. Plant Biol. 2000, 3, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Davik, J.; Kjersti Bakken, A.; Holte, K.; Blomhoff, R. Effects of Genotype and Environment on Total Anti-Oxidant Capacity and the Content of Sugars and Acids in Strawberries (Fragaria × Ananassa Duch.). J. Hortic. Sci. Biotechnol. 2006, 81, 1057–1063. [Google Scholar] [CrossRef]
- Akšić, M.F.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants 2019, 8, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and Human Health: Effects beyond Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Chen, W.; Tang, G.; Chen, H.; Sun, Z.; Chen, F. Classification of Fresh and Processed Strawberry Cultivars Based on Quality Characteristics by Using Support Vector Machine and Extreme Learning Machine. J. Berry Res. 2018, 8, 81–94. [Google Scholar] [CrossRef]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Warner, R.; Wu, B.-S.; MacPherson, S.; Lefsrud, M. A Review of Strawberry Photobiology and Fruit Flavonoids in Controlled Environments. Front. Plant Sci. 2021, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Gössinger, M.; Mayer, F.; Radocha, N.; Höfler, M.; Boner, A.; Groll, E.; Nosko, E.; Bauer, R.; Berghofer, E. Consumer’s color acceptance of strawberry nectars from puree. J. Sens. Stud. 2009, 24, 78–92. [Google Scholar] [CrossRef]
- Murray, H.; Dietl-Schuller, C.; Lindner, M.; Korntheuer, K.; Halbwirth, H.; Gössinger, M. Prediction of the Potential Colour Stability of Strawberry Nectar by Use of a Stability Prediction Value (SPV). LWT 2023, 173, 114233. [Google Scholar] [CrossRef]
- Hernanz, D.; Recamales, Á.F.; Meléndez-Martínez, A.J.; González-Miret, M.L.; Heredia, F.J. Multivariate Statistical Analysis of the Color—Anthocyanin Relationships in Different Soilless-Grown Strawberry Genotypes. J. Agric. Food Chem. 2008, 56, 2735–2741. [Google Scholar] [CrossRef] [PubMed]
- Chisari, M.; Barbagallo, R.N.; Spagna, G. Characterization of Polyphenol Oxidase and Peroxidase and Influence on Browning of Cold Stored Strawberry Fruit. J. Agric. Food Chem. 2007, 55, 3469–3476. [Google Scholar] [CrossRef]
Collection Date | Diameter (mm) | Length (mm) | Weight (g) | Firmness (N) | TSS (°Bx) | Ripening Index | Colour Parameters | ||
---|---|---|---|---|---|---|---|---|---|
L* | C* | h° | |||||||
23 June | 35.0 ± 1.0 c | 37.1 ± 1.4 de | 21.3 ± 2.7 d | 0.7 ± 0.2 d | 9.1 ± 0.7 ab | 0.27 ± 0.02 b | 29.8 ± 1.3 ab | 36.4 ± 1.8 ac | 30.0 ± 1.6 bc |
7 July | 29.5 ± 0.5 b | 32.9 ± 0.9 bcd | 12.8 ± 0.7 bc | 0.7 ± 0.2 d | 10.7 ± 0.6 b | 0.26 ± 0.04 ab | 28.0 ± 0.4 a | 35.6 ± 1.3 ac | 26.2 ± 0.4 a |
21 July | 27.2 ± 0.6 ab | 30.6 ± 1.0 ac | 10.6 ± 0.9 ab | 0.7 ± 0.2 cd | 9.3 ± 0.8 ab | 0.21 ± 0.04 ab | 30.8 ± 0.7 bc | 41.7 ± 1.4 d | 30.8 ± 0.7 bc |
5 August | 24.8 ± 0.5 a | 28.2 ± 1.7 a | 8.7 ± 0.7 a | 1.5 ± 0.3 ab | 9.2 ± 0.5 ab | 0.26 ± 0.03 ab | 28.0 ± 0.8 a | 34.0 ± 1.1 ab | 28.4 ± 2.1 ab |
17 August | 28.8 ± 0.4 b | 29.0 ± 1.1 ab | 11.8 ± 0.7 ab | 0.8 ± 0.3 cd | 9.5 ± 0.8 ab | 0.23 ± 0.05 ab | 29.3 ± 1.1 ab | 33.4 ± 1.2 a | 30.5 ± 1.2 bc |
2 September | 27.9 ± 0.4 b | 33.3 ± 1.2 bce | 11.7 ± 0.7 ab | 1.1 ± 0.2 bcd | 9.9 ± 0.5 ab | 0.24 ± 0.04 ab | 30.4 ± 0.6 bc | 37.4 ± 1.0 bc | 31.8 ± 1.0 cd |
15 September | 28.2 ± 0.5 b | 32.8 ± 0.9 acd | 13.3 ± 1.0 bc | 1.3 ± 0.2 ac | 9.6 ± 0.4 ab | 0.25 ± 0.04 ab | 29.3 ± 0.5 ab | 37.0 ± 1.2 bc | 31.4 ± 1.1 bd |
28 September | 27.7 ± 0.5 b | 34.9 ± 1.4 ce | 13.1 ± 0.8 bc | 1.0 ± 0.2 bcd | 9.3 ± 0.8 ab | 0.20 ± 0.03 ab | 29.1 ± 0.7 ab | 37.9 ± 1.0 c | 30.0 ± 1.0 bc |
14 October | 29.5 ± 0.8 b | 37.6 ± 3.9 e | 16.1 ± 1.8 c | 1.0 ± 0.2 bcd | 9.0 ± 0.5 a | 0.22 ± 0.03 ab | 32.4 ± 0.8 c | 42.1 ± 1.9 d | 34.5 ± 0.6 d |
28 October | 33.9 ± 1.0 c | 45.2 ± 1.8 f | 20.1 ± 1.2 d | 1.7 ± 0.2 a | 9.9 ± 0.5 ab | 0.18 ± 0.02 a | 30.5 ± 0.9 bc | 42.6 ± 1.2 d | 30.8 ± 1.2 bc |
Correlation | |||||||||
RH | ns | 80.4% ** | 74.9% * | ns | ns | ns | 78.7% * | 81.4% * | ns |
Temperature | ns | −86.2% ** | −79.9% ** | ns | ns | ns | −70.8% * | −77.6% * | −68.3% * |
Sunshine duration | ns | ns | ns | ns | ns | ns | −65.8% * | −78.7% ** | ns |
Ascorbic Acid | Sugars | Organic Acids | Sugar/Acid Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sucrose | Glucose | Fructose | Total | Citric | Malic | Shikimic | Fumaric | Total | |||
RH | −89.6% ** | 77.5% * | −84.4% ** | −85.9% ** | ns | −77.4% * | −74.7% * | −74.8% * | −83.6% ** | −77.2% * | 71.1% * |
Temperature | 84.8% ** | −90.0% ** | 79.4% * | 82.8% ** | ns | 86.6% ** | 89.9% ** | 89.9% ** | 93.6% ** | 86.9% ** | −77.4% * |
Sunshine duration | 83.2% ** | −67.2% * | 76.0% * | 78.2% ** | ns | ns | ns | ns | ns | ns | ns |
Collection Date | Organic Acids (mg/g DW) | ||||
---|---|---|---|---|---|
Citric | Malic | Shikimic | Fumaric | Total * | |
23 June | 97.8 ± 6.8 bc | 58.7 ± 3.4 cde | 0.31 ± 0.03 c | 0.27 ± 0.02 d | 162.8 ± 9.9 c |
7 July | 107.2 ± 5.8 cd | 61.0 ± 3.0 cde | 0.30 ± 0.02 c | 0.27 ± 0.01 d | 172.9 ± 8.6 cd |
21 July | 108.4 ± 4.3 cd | 59.7 ± 1.9 cde | 0.32 ± 0.03 c | 0.19 ± 0.01 c | 172.2 ± 5.9 cd |
5 August | 137.6 ± 3.0 e | 75.7 ± 2.0 f | 0.31 ± 0.02 c | 0.19 ± 0.01 c | 218.0 ± 3.3 e |
17 August | 130.3 ± 9.0 de | 69.4 ± 5.0 ef | 0.31 ± 0.03 c | 0.25 ± 0.02 d | 204.3 ± 13.9 de |
2 September | 108.6 ± 5.0 cd | 64.4 ± 2.9 df | 0.25 ± 0.02 bc | 0.17 ± 0.01 c | 176.7 ± 6.6 cd |
15 September | 95.4 ± 1.9 bc | 52.6 ± 1.7 bd | 0.19 ± 0.01 ab | 0.16 ± 0.01 bc | 152.2 ± 1.7 bc |
28 September | 100.3 ± 3.4 bc | 51.4 ± 2.1 bc | 0.26 ± 0.01 bc | 0.15 ± 0.01 ac | 156.0 ± 4.9 bc |
14 October | 79.5 ± 2.7 bc | 44.5 ± 2.1 ab | 0.17 ± 0.00 ab | 0.10 ± 0.00 ab | 127.3 ± 3.4 b |
28 October | 50.6 ± 3.9 a | 31.7 ± 1.0 a | 0.12 ± 0.01 a | 0.08 ± 0.01 a | 85.1 ± 4.6 a |
Collection Date | Sugars (mg/g DW) | Sugar/Acid Ratio | |||
---|---|---|---|---|---|
Sucrose | Glucose | Fructose | Total | ||
23 June | 173.4 ± 2.7 a | 399.6 ± 9.5 b | 433.3 ± 10.3 d | 1006.3 ± 21.2 a | 6.3 ± 0.4 bc |
7 July | 207.0 ± 12.2 ab | 370.4 ± 19.5 b | 394.5 ± 20.4 cd | 971.9 ± 42.4 a | 5.7 ± 0.4 ac |
21 July | 178.7 ± 15.1 a | 361.8 ± 23.7 b | 382.2 ± 23.5 cd | 922.7 ± 60.5 a | 5.5 ± 0.5 ac |
5 August | 175.1 ± 6.9 a | 331.6 ± 19.1 ab | 352.0 ± 19.4 ad | 858.8 ± 44.6 a | 3.9 ± 0.2 a |
17 August | 158.2 ± 10.5 a | 358.5 ± 32.3 b | 389.9 ± 35.2 cd | 906.5 ± 75.3 a | 4.4 ± 0.2 ab |
2 September | 190.6 ± 15.3 ab | 352.2 ± 9.8 ab | 370.8 ± 9.7 bcd | 913.6 ± 34.0 a | 5.2 ± 0.2 ac |
15 September | 225.9 ± 5.8 ac | 328.6 ± 7.6 ab | 345.3 ± 7.4 ac | 899.8 ± 12.7 a | 5.9 ± 0.0 ac |
28 September | 258.8 ± 17.1 bc | 363.9 ± 11.4 b | 383.4 ± 12.0 cd | 1006.0 ± 30.6 a | 6.5 ± 0.3 bc |
14 October | 283.6 ± 17.0 c | 273.9 ± 7.3 a | 284.0 ± 7.4 a | 841.5 ± 23.8 a | 6.6 ± 0.2 c |
28 October | 292.0 ± 30.2 c | 270.8 ± 16.9 a | 287.1 ± 16.1 ab | 849.9 ± 60.9 a | 10.2 ± 1.1 d |
Collection Date | Phenolics [mg/100 g DW] | |||||
---|---|---|---|---|---|---|
Total Hydroxycinnamic Acid Der. | Total Flavanols | Total Hydroxybenzoic Acid Der. | Total Flavonols | Total Non-AnthocyaninPhenolic Compounds | Total Phenolic Compounds | |
23 June | 76.1 ± 2.7 ab | 32.8 ± 1.8 ce | 47.8 ± 2.9 ab | 29.0 ± 5.4 a | 185.7 ± 11.5 a | 709.2 ± 38.1 ac |
7 July | 94.7 ± 13.0 b | 30.9 ± 3.7 cd | 58.9 ± 7.4 ab | 37.5 ± 7.3 a | 222.1 ± 27.3 ac | 660.0 ± 52.0 ac |
21 July | 69.8 ± 7.0 ab | 27.3 ± 2.7 ac | 67.3 ± 7.0 ab | 31.6 ± 6.4 a | 196.0 ± 19.8 ab | 612.3 ± 67.5 ab |
5 August | 94.1 ± 6.0 b | 43.3 ± 2.1 de | 133.8 ± 17.4 c | 59.3 ± 5.0 ab | 330.5 ± 23.3 c | 875.2 ± 24.7 c |
17 August | 107.0 ± 14.8 b | 46.3 ± 5.5 e | 130.9 ± 13.0 c | 48.9 ± 9.9 ab | 333.1 ± 35.8 c | 869.2 ± 48.9 c |
2 September | 78.0 ± 4.7 ab | 30.4 ± 2.0 bcd | 78.8 ± 11.2 ab | 40.9 ± 7.4 a | 228.2 ± 19.4 ac | 687.3 ± 37.1 ac |
15 September | 98.1 ± 7.8 b | 29.9 ± 2.8 bcd | 64.8 ± 9.9 ab | 53.7 ± 10.1 ab | 246.5 ± 27.5 ac | 792.5 ± 75.3 bc |
28 September | 106.8 ± 7.2 b | 30.0 ± 3.6 bcd | 94.8 ± 17.8 bc | 83.4 ± 18.9 b | 314.9 ± 44.8 bc | 867.6 ± 55.1 c |
14 October | 47.1 ± 4.0 a | 17.0 ± 0.6 ab | 38.9 ± 2.2 a | 28.7 ± 5.0 a | 131.7 ± 3.9 a | 523.0 ± 14.1 a |
28 October | 54.5 ± 3.8 a | 15.1 ± 0.9 a | 31.9 ± 2.6 a | 36.8 ± 2.9 a | 138.3 ± 9.4 a | 494.6 ± 22.6 a |
Pearson Correlation | ||||||
RH | −89.3% ** | −81.7% ** | ns | ns | −76.7% * | −77.2% * |
Temperature | 71.9% * | 86.3% ** | 70.4% * | ns | 69.4% * | ns |
Sunshine duration | 77.5% ** | 76.1% * | ns | ns | ns | 89.2% ** |
Collection Date | Anthocyanins (mg/100 g DW) | ||||||
---|---|---|---|---|---|---|---|
Cyanidin-3-O-Glucoside | Pelargonidin-3-O-Glucoside | Pelargonidin-3-O-Rutinoside | Pelargonidin-3-(6″ Malonyl) Glucoside | 5-Pyranopelargonidin-3-Glucoside | Pelargonidin-3-O-Acetylglucoside | Total Anthocyanin Content | |
23 June | 12.2 ± 1.6 ab | 466.5 ± 28.2 bc | 39.0 ± 2.5 b | 3.6 ± 0.4 b | 0.67 ± 0.10 ab | 1.6 ± 0.2 a | 523.5 ± 30.3 bc |
7 July | 15.1 ± 2.2 ab | 384.3 ± 37.5 ac | 33.6 ± 3.4 b | 2.3 ± 0.3 ab | 0.90 ± 0.10 b | 1.8 ± 0.2 a | 437.9 ± 43.3 ac |
21 July | 11.1 ± 2.4 a | 366.4 ± 43.2 ac | 33.7 ± 2.7 b | 1.9 ± 0.4 ab | 0.95 ± 0.24 b | 2.2 ± 0.3 a | 416.2 ± 49.1 ac |
5 August | 13.6 ± 1.1 ab | 492.9 ± 12.4 bc | 34.5 ± 2.4 b | 1.3 ± 0.2 a | 0.49 ± 0.04 ab | 2.0 ± 0.2 a | 544.7 ± 13.7 bc |
17 August | 11.7 ± 1.9 a | 485.4 ± 22.9 bc | 34.4 ± 3.0 b | 2.1 ± 0.1 ab | 0.50 ± 0.08 ab | 2.0 ± 0.3 a | 536.1 ± 27.0 bc |
2 September | 11.5 ± 1.4 a | 414.5 ± 18.2 ac | 29.1 ± 1.2 ab | 1.1 ± 0.2 a | 0.47 ± 0.03 ab | 2.5 ± 0.1 a | 459.1 ± 20.5 ac |
15 September | 15.1 ± 2.4 ab | 488.4 ± 53.2 bc | 37.7 ± 3.3 b | 1.3 ± 0.2 a | 0.54 ± 0.08 ab | 2.9 ± 0.4 ab | 546.0 ± 59.1 bc |
28 September | 20.8 ± 2.7 b | 495.2 ± 13.1 c | 30.0 ± 0.7 ab | 1.3 ± 0.1 a | 0.65 ± 0.07 ab | 4.6 ± 0.6 bc | 552.7 ± 14.5 c |
14 October | 7.2 ± 0.9 a | 355.4 ± 15.9 ab | 21.1 ± 0.9 a | 1.5 ± 0.9 a | 0.41 ± 0.02 a | 5.8 ± 1.0 cd | 391.3 ± 16.2 ab |
28 October | 11.1 ± 1.1 a | 317.5 ± 12.1 a | 19.6 ± 1.9 a | 0.7 ± 0.2 a | 0.51 ± 0.07 ab | 6.9 ± 0.3 d | 356.4 ± 14.9 a |
Pearson Correlation | |||||||
RH | ns | −71.3% * | −96.4% ** | ns | ns | 87.6% ** | −74.7% * |
Temperature | ns | ns | 86.1% ** | 72.1% * | ns | −92.3% ** | ns |
Sunshine duration | ns | 84.7% ** | 90.8% ** | ns | ns | −71.8% * | 87.1% ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simkova, K.; Veberic, R.; Hudina, M.; Grohar, M.C.; Ivancic, T.; Smrke, T.; Pelacci, M.; Jakopic, J. Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season. Foods 2023, 12, 1349. https://doi.org/10.3390/foods12061349
Simkova K, Veberic R, Hudina M, Grohar MC, Ivancic T, Smrke T, Pelacci M, Jakopic J. Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season. Foods. 2023; 12(6):1349. https://doi.org/10.3390/foods12061349
Chicago/Turabian StyleSimkova, Kristyna, Robert Veberic, Metka Hudina, Mariana Cecilia Grohar, Tea Ivancic, Tina Smrke, Massimiliano Pelacci, and Jerneja Jakopic. 2023. "Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season" Foods 12, no. 6: 1349. https://doi.org/10.3390/foods12061349
APA StyleSimkova, K., Veberic, R., Hudina, M., Grohar, M. C., Ivancic, T., Smrke, T., Pelacci, M., & Jakopic, J. (2023). Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season. Foods, 12(6), 1349. https://doi.org/10.3390/foods12061349