Physical Treatments to Control Clostridium botulinum Hazards in Food
Abstract
:1. Introduction
2. Clostridium botulinum Cells, Spores, Toxins, and the Disease
2.1. The Bacterium
2.2. Spores
2.3. BoNTs
2.4. Botulism
Types of Botulism | Incubation | Clinical Overview |
---|---|---|
Foodborne and inhalation botulism |
|
|
Infant botulism |
|
|
Wound botulism |
|
|
2.5. Stability of C. botulinum, and Their Spores and Toxins
3. Thermal Treatments against Botulinum Hazard
4. Ionizing Radiations to Inactivate C. botulinum
5. Using High Hydrostatic Pressure (HHP) for C. botulinum Inactivation
6. Emerging Non-Thermal Technologies and Their Potential Application to Reduce C. botulinum Hazard
6.1. Pulsed Electric Fields (PEF)
6.2. Intense Light Pulses (ILP)
6.3. Cold Plasma (CP)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Botulism. Available online: https://www.who.int/news-room/fact-sheets/detail/botulism (accessed on 20 January 2023).
- Le Bouquin, S.; Lucas, C.; Souillard, R.; Le Maréchal, C.; Petit, K.; Kooh, P.; Jourdan-Da Silva, N.; Meurens, F.; Guillier, L.; Mazuet, C. Human and Animal Botulism Surveillance in France from 2008 to 2019. Front. Public Health 2022, 10, 1003917. [Google Scholar] [CrossRef] [PubMed]
- ANSES. Clostridium botulinum: Mise à Jour Des Connaissances Sur Les Différentes Formes Des Types C, D, Mosaïque C/D et D/C et E; (Saisines 2019-SA-0112 à 2019-SA-0115); ANSES: Maisons-Alfort, France, 2021; 170p. [Google Scholar]
- Munir, M.T.; Federighi, M. Control of Foodborne Biological Hazards by Ionizing Radiations. Foods 2020, 9, 878. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, P.K.; Udompijitkul, P.; Hossain, A.; Sarker, M.R. Inactivation Strategies for Clostridium Perfringens Spores and Vegetative Cells. Appl. Environ. Microbiol. 2016, 83, e02731-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutra, M.P.; de Cássia Aleixo, G.; Ramos, A.D.L.S.; Silva, M.H.L.; Pereira, M.T.; Piccoli, R.H.; Ramos, E.M. Use of Gamma Radiation on Control of Clostridium botulinum in Mortadella Formulated with Different Nitrite Levels. Radiat. Phys. Chem. 2016, 119, 125–129. [Google Scholar] [CrossRef]
- Bai, J.; Kim, Y.-T.; Ryu, S.; Lee, J.-H. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins. Front. Microbiol. 2016, 7, 474. [Google Scholar] [CrossRef]
- Cho, J.-H.; Kwon, J.-G.; O’Sullivan, D.J.; Ryu, S.; Lee, J.-H. Development of an Endolysin Enzyme and Its Cell Wall-Binding Domain Protein and Their Applications for Biocontrol and Rapid Detection of Clostridium perfringens in Food. Food Chem. 2021, 345, 128562. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Re-Evaluation of Potassium Nitrite (E 249) and Sodium Nitrite (E 250) as Food Additives. EFSA J. 2017, 15, e04786. [Google Scholar] [CrossRef]
- Codex. Codex Alimentarius Commission; Thirteenth Session; Rome, Italy, 3–14 December 1979. Available online: https://www.fao.org/input/download/report/359/al79_18e.pdf (accessed on 1 March 2023).
- Morehouse, K.M.; Komolprasert, V. Overview of Irradiation of Food and Packaging. ACS Symp. Ser. 2020, 875, 1–11. [Google Scholar]
- Maier, M.B.; Schweiger, T.; Lenz, C.A.; Vogel, R.F. Inactivation of Non-Proteolytic Clostridium botulinum Type E in Low-Acid Foods and Phosphate Buffer by Heat and Pressure. PLoS ONE 2018, 13, e0200102. [Google Scholar] [CrossRef] [Green Version]
- Ishimori, T.; Takahashi, K.; Goto, M.; Nakagawa, S.; Kasai, Y.; Konagaya, Y.; Batori, H.; Kobayashi, A.; Urakami, H. Synergistic Effects of High Hydrostatic Pressure, Mild Heating, and Amino Acids on Germination and Inactivation of Clostridium sporogenes Spores. Appl. Environ. Microbiol. 2012, 78, 8202–8207. [Google Scholar] [CrossRef] [Green Version]
- Crawford, Y.J.; Murano, E.A.; Olson, D.G.; Shenoy, K. Use of High Hydrostatic Pressure and Irradiation To Eliminate Clostridium sporogenes Spores in Chicken Breast. J. Food Prot. 1996, 59, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.K.; Olivier, S.A.; van Diepenbeek, R.J.; Kormelink, F.; Chapman, B. Synergistic Inactivation of Spores of Proteolytic Clostridium botulinum Strains by High Pressure and Heat Is Strain and Product Dependent. Appl. Environ. Microbiol. 2009, 75, 434–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavenee, W.L. The Combined Effects of Heat and Irradiation on the Survival of the Spores of Clostridium botulinum, Type A5, in Raw Ground Beef. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1961. [Google Scholar]
- Licciardello, J.J.; Nickerson, J.T.R. Effect of Radiation Environment on the Thermal Resistance of Irradiated Spores of Clostridium sporogenes P.A. 3679. J. Food Sci. 1962, 27, 211–218. [Google Scholar] [CrossRef]
- Grecz, N.; Walker, A.A.; Anellis, A.; Berkowitz, D. Effect of Irradiation Temperature in the Range −196 to 95C on the Resistance of Spores of Clostridium botulinum 33A in Cooked Beef. Can. J. Microbiol. 1971, 17, 135–142. [Google Scholar] [CrossRef]
- Patazca, E.; Morrissey, T.R.; Loeza, V.; Reddy, N.R.; Skinner, G.E.; Larkin, J.W. Effect of Packaging Systems and Pressure Fluids on Inactivation of Clostridium botulinum Spores by Combined High Pressure and Thermal Processing. J. Food Prot. 2013, 76, 448–455. [Google Scholar] [CrossRef]
- Leung, Y.L.; Burr, S.A. Botulinum Toxin. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 540–542. ISBN 978-0-12-386455-0. [Google Scholar]
- Popoff, M.R. Clostridium botulinum et autres Clostridium producteurs de neurotoxines botuliques. In Risques Microbiologiques Alimentaires; Tec & Doc Lavoisier: Paris, France, 2017; ISBN 978-2-7430-2106-1. [Google Scholar]
- ANSES. Clostridium botulinum, and Neurotoxigenic Clostridia; Data Sheet on Foodborne Microbial Hazards, (Saisine n°2016-SA-0074) December, 2010 (Updated in 2019); ANSES: Maisons-Alfort, France, 2010. [Google Scholar]
- Poulain, B.; Popoff, M.R. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.T.; Peck, M.W. Genomes, Neurotoxins and Biology of Clostridium botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Fillo, S.; Giordani, F.; Tonon, E.; Drigo, I.; Anselmo, A.; Fortunato, A.; Lista, F.; Bano, L. Extensive Genome Exploration of Clostridium botulinum Group III Field Strains. Microorganisms 2021, 9, 2347. [Google Scholar] [CrossRef]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and Characterization of a Novel Botulinum Neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Gregory, K.S.; Acharya, K.R. A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins 2023, 15, 92. [Google Scholar] [CrossRef]
- CDC. Botulism. Available online: https://www.cdc.gov/botulism/index.html (accessed on 20 January 2023).
- Smith, T.J.; Xie, G.; Williamson, C.H.D.; Hill, K.K.; Fernández, R.A.; Sahl, J.W.; Keim, P.; Johnson, S.L. Genomic Characterization of Newly Completed Genomes of Botulinum Neurotoxin-Producing Species from Argentina, Australia, and Africa. Genome Biol. Evol. 2020, 12, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebaihia, M.; Peck, M.W.; Minton, N.P.; Thomson, N.R.; Holden, M.T.G.; Mitchell, W.J.; Carter, A.T.; Bentley, S.D.; Mason, D.R.; Crossman, L.; et al. Genome Sequence of a Proteolytic (Group I) Clostridium botulinum Strain Hall A and Comparative Analysis of the Clostridial Genomes. Genome Res. 2007, 17, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Shen, A.; Edwards, A.N.; Sarker, M.R.; Paredes-Sabja, D. Sporulation and Germination in Clostridial Pathogens. Microbiol. Spectr. 2019, 7, GPP3-0017-2018. [Google Scholar] [CrossRef] [PubMed]
- Portinha, I.M.; Douillard, F.P.; Korkeala, H.; Lindström, M. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. Int. J. Mol. Sci. 2022, 23, 754. [Google Scholar] [CrossRef]
- Brunt, J.; van Vliet, A.H.M.; van den Bos, F.; Carter, A.T.; Peck, M.W. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Front. Microbiol. 2016, 7, 1702. [Google Scholar] [CrossRef] [Green Version]
- Lenz, C.A.; Reineke, K.; Knorr, D.; Vogel, R.F. High Pressure Thermal Inactivation of Clostridium botulinum Type E Endospores—Kinetic Modeling and Mechanistic Insights. Front. Microbiol. 2015, 6, 652. [Google Scholar] [CrossRef] [Green Version]
- ECDC. Facts about Botulism. Available online: https://www.ecdc.europa.eu/en/botulism/facts (accessed on 20 January 2023).
- Popoff, M.R.; Brüggemann, H. Regulatory Networks Controlling Neurotoxin Synthesis in Clostridium botulinum and Clostridium Tetani. Toxins 2022, 14, 364. [Google Scholar] [CrossRef]
- Meurens, F.; Carlin, F.; Federighi, M.; Filippitzi, M.-E.; Fournier, M.; Fravalo, P.; Ganière, J.-P.; Grisot, L.; Guillier, L.; Hilaire, D.; et al. Clostridium botulinum Type C, D, C/D, and D/C: An Update. Front. Microbiol. 2023, 13, 1099184. [Google Scholar] [CrossRef]
- Dressler, D. Chapter 17: Botulinum Toxin Mechanisms of Action. In Supplements to Clinical Neurophysiology; Advances in Clinical Neurophysiology; Hallett, M., Phillips, L.H., Schomer, D.L., Massey, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 57, pp. 159–166. [Google Scholar]
- Dhaked, R.K.; Singh, M.K.; Singh, P.; Gupta, P. Botulinum Toxin: Bioweapon & Magic Drug. Indian J. Med. Res. 2010, 132, 489–503. [Google Scholar]
- ECDC. Botulism—Annual Epidemiological Report for 2020; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- CDC. Botulism|Epidemiological Overview for Clinicians. Available online: https://www.emergency.cdc.gov/agent/botulism/clinicians/epidemiology.asp (accessed on 2 March 2023).
- Woodburn, M.J.; Somers, E.; Rodriguez, J.; Schantz, E.J. Heat Inactivation Rates of Botulinum Toxins A, B, E and F in Some Foods and Buffers. J. Food Sci. 1979, 44, 1658–1661. [Google Scholar] [CrossRef]
- Losikoff, M.E. Establishment of a Heat Inactivation Curve for Clostridium botulinum 62A Toxin in Beef Broth. Appl. Environ. Microbiol. 1978, 36, 386–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolford, A.L.; Schantz, E.J.; Woodburn, M.J. Heat Inactivation of Botulinum Toxin Type A in Some Convenience Foods after Frozen Storage. J. Food Sci. 1978, 43, 622–624. [Google Scholar] [CrossRef]
- Van Asselt, E.D.; Zwietering, M.H. A Systematic Approach to Determine Global Thermal Inactivation Parameters for Various Food Pathogens. Int. J. Food Microbiol. 2006, 107, 73–82. [Google Scholar] [CrossRef]
- Wachnicka, E.; Stringer, S.C.; Barker, G.C.; Peck, M.W. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance. Appl. Environ. Microbiol. 2016, 82, 6019–6029. [Google Scholar] [CrossRef] [Green Version]
- Koukou, I.; Mejlholm, O.; Dalgaard, P. Cardinal Parameter Growth and Growth Boundary Model for Non-Proteolytic Clostridium botulinum—Effect of Eight Environmental Factors. Int. J. Food Microbiol. 2021, 346, 109162. [Google Scholar] [CrossRef]
- Federighi, M.; Friant-Perrot, M. Les Éléments et Facteurs de La Maîtrise de La Sécurité Des Aliments. In Sécurité des Patients, Sécurité des Consommateurs; Presses Universitaires de France: Paris, France, 2009; pp. 147–159. ISBN 2-13-057416-5. [Google Scholar]
- Wang, X.; Zhou, J. Response of Foodborne Pathogens to Thermal Processing. In Stress Responses of Foodborne Pathogens; Ding, T., Liao, X., Feng, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 35–59. ISBN 978-3-030-90578-1. [Google Scholar]
- Cebrián, G.; Condón, S.; Mañas, P. Physiology of the Inactivation of Vegetative Bacteria by Thermal Treatments: Mode of Action, Influence of Environmental Factors and Inactivation Kinetics. Foods 2017, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Bushlaibi, M.; Alrefaei, R.; Ndegwa, E.; Kaseloo, P.; Wynn, C. Influence of Prior PH and Thermal Stresses on Thermal Tolerance of Foodborne Pathogens. Food Sci. Nutr. 2019, 7, 2033–2042. [Google Scholar] [CrossRef]
- Stringer, S.C.; Haque, N.; Peck, M.W. Growth from Spores of Nonproteolytic Clostridium botulinum in Heat-Treated Vegetable Juice. Appl. Environ. Microbiol. 1999, 65, 2136–2142. [Google Scholar] [CrossRef] [Green Version]
- Odlaug, T.E.; Pflug, I.J. Thermal Destruction of Clostridium botulinum Spores Suspended in Tomato Juice in Aluminum Thermal Death Time Tubes. Appl. Environ. Microbiol. 1977, 34, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Selby, K. Growth Temperature Variation and Heat Stress Response of Clostridium botulinum. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Lindström, M.; Kiviniemi, K.; Korkeala, H. Hazard and Control of Group II (Non-Proteolytic) Clostridium botulinum in Modern Food Processing. Int. J. Food Microbiol. 2006, 108, 92–104. [Google Scholar] [CrossRef]
- Peck, M.W. Clostridium botulinum and the Safety of Minimally Heated, Chilled Foods: An Emerging Issue? J. Appl. Microbiol. 2006, 101, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Pernu, N.; Keto-Timonen, R.; Lindström, M.; Korkeala, H. High Prevalence of Clostridium botulinum in Vegetarian Sausages. Food Microbiol. 2020, 91, 103512. [Google Scholar] [CrossRef]
- Sugiyama, H. Studies on Factors Affecting the Heat Resistance of Spores of Clostridium botulinum. J. Bacteriol. 1951, 62, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Lenz, C.A.; Vogel, R.F. Effect of Sporulation Medium and Its Divalent Cation Content on the Heat and High Pressure Resistance of Clostridium botulinum Type E Spores. Food Microbiol. 2014, 44, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.S.; Rowley, D.B.; Anellis, A.; Levinson, H.S. Influence of Postirradiation Incubation Temperature on Recovery of Radiation-Injured Clostridium botulinum 62A Spores. Appl. Environ. Microbiol. 1976, 32, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.M.; Nowaczyk, L.; Morrissey, T.R.; Loeza, V.; Halik, L.A.; Skinner, G.E.; Reddy, N.R.; Fleischman, G.J.; Larkin, J.W. Effect of Sporulation Temperature on the Resistance of Clostridium botulinum Type A Spores to Thermal and High Pressure Processing. J. Food Prot. 2015, 78, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Mah, J.H.; Kang, G.H.; Tang, J. Morphological Study of Heat-Sensitive and Heat-Resistant Spores of Clostridium Sporogenes, Using Transmission Electron Microscopy. J. Food Prot. 2008, 71, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Wells-Bennik, M.H.J.; Eijlander, R.T.; den Besten, H.M.W.; Berendsen, E.M.; Warda, A.K.; Krawczyk, A.O.; Nierop Groot, M.N.; Xiao, Y.; Zwietering, M.H.; Kuipers, O.P.; et al. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annu. Rev. Food Sci. Technol. 2016, 7, 457–482. [Google Scholar] [CrossRef]
- Bradshaw, J.G.; Peeler, J.T.; Twedt, R.M. Thermal Inactivation of Clostridium botulinum Toxins Types a and B in Buffer, and Beef and Mushroom Patties. J. Food Sci. 1979, 44, 1653–1657. [Google Scholar] [CrossRef]
- Rasooly, R.; Do, P.M. Clostridium botulinum Neurotoxin Type B Is Heat-Stable in Milk and Not Inactivated by Pasteurization. J. Agric. Food Chem. 2010, 58, 12557–12561. [Google Scholar] [CrossRef] [PubMed]
- Acute Botulism in German Dairy Herds: Human Cases of Botulism from the Consumption of Milk and Dairy Products Are Very Unlikely: BfR Opinion No. 027/2022 Issued 20 October 2022. BfR—Stellungnahmen 2022, 2022, 12. [CrossRef]
- Abrahamsson, K.; Gullmar, B.; Molin, N. The Effect of Temperature on Toxin Formation and Toxin Stability of Clostridium botulinum Type e in Different Environments. Can. J. Microbiol. 1966, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Skinner, G.E.; Fleischman, G.J.; Balster, F.; Reineke, K.; Reddy, N.R.; Larkin, J.W. Effect of Fill Temperature on Clostridium botulinum Type A Toxin Activity during the Hot Filling of Juice Bottles. J. Food Prot. 2015, 78, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Smart, J.L.; Rush, P.A.J. In-Vitro Heat Denaturation of Clostridium botulinum Toxins Types A, B and C. Int. J. Food Sci. Technol. 1987, 22, 293–298. [Google Scholar] [CrossRef]
- FDA. Food Irradiation: What You Need to Know. Available online: https://www.fda.gov/food/buy-store-serve-safe-food/food-irradiation-what-you-need-know (accessed on 21 January 2023).
- Shahi, S.; Khorvash, R.; Goli, M.; Ranjbaran, S.M.; Najarian, A.; Mohammadi Nafchi, A. Review of proposed different irradiation methods to inactivate food-processing viruses and microorganisms. Food Sci. Nutr. 2021, 9, 5883–5896. [Google Scholar] [CrossRef]
- Fiester, S.E.; Helfinstine, S.L.; Redfearn, J.C.; Uribe, R.M.; Woolverton, C.J. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane. Int. J. Microbiol. 2012, 2012, 579593. [Google Scholar] [CrossRef] [Green Version]
- Anellis, A.; Koch, R.B. Comparative Resistance of Strains of Clostridium botulinum to Gamma Rays. Appl. Microbiol. 1962, 10, 326–330. [Google Scholar] [CrossRef]
- Grecz, N. Theoretical and Applied Aspects of Radiation D-Values for Spores of Clostridium botulinum. In Proceedings of the Food Irradiation: Proceedings of the International Symposium on Food Irradiation, Karlsruhe, Germany, 6–10 June 1966; IAEA-SM--73/67. IAEA: Vienna, Austria, 1966. ISSN 0074-1884. [Google Scholar]
- Wheaton, E.; Pratt, G.B.; Jackson, J.M. Radioresistance of Five Strains of Clostridium botulinum in Selected Food Productsa, b. J. Food Sci. 1961, 26, 345–350. [Google Scholar] [CrossRef]
- Roberts, T.A.; Ingram, M.; Skulberg, A. The Resistance of Spores of Clostridium botulinum Type E to Heat and Radiation. J. Appl. Bacteriol. 1965, 28, 125–141. [Google Scholar] [CrossRef]
- Anellis, A.; Shattuck, E.; Morin, M.; Srisara, B.; Qvale, S.; Rowley, D.B.; Ross, E.W. Cryogenic Gamma Irradiation of Prototype Pork and Chicken and Antagonistic Effect between Clostridium botulinum Types A and B. Appl. Environ. Microbiol. 1977, 34, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Kreiger, R.A.; Snyder, O.P.; Pflug, I.J. Clostridium botulinum Ionizing Radiation D-Value Determination Using a Micro Food Sample System. J. Food Sci. 1983, 48, 141–145. [Google Scholar] [CrossRef]
- Wheaton, E.; Pratt, G.B. Radiation Survival Curves of Clostridium botulinum Spores. J. Food Sci. 1962, 27, 327–334. [Google Scholar] [CrossRef]
- Directive 1999/3/EC Directive 1999/3/EC of the European Parliament and of the Council of 22 February 1999 on the Establishment of a Community List of Foods and Food Ingredients Treated with Ionising Radiation; European Commission: Brussels, Belgium, 1999; Volume 066.
- 21CFR179.26 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=179.26 (accessed on 22 March 2023).
- Lim, Y.H.; Hamdy, M.K.; Toledo, R.T. Combined Effects of Ionizing-Irradiation and Different Environments on Clostridium botulinum Type E Spores. Int. J. Food Microbiol. 2003, 89, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Firstenberg-Eden, R.; Rowley, D.B.; Shattuck, G.E. Factors Affecting Growth and Toxin Production by Clostridium botulinum Type E on Irradiated (0.3 Mrad) Chicken Skins. J. Food Sci. 1982, 47, 867–870. [Google Scholar] [CrossRef]
- Schmidt, C.F.; Nank, W.K. Radiation Sterilization of Food. I. Procedures for the Evaluation of the Radiation Resistance of Spores of Clostridium botulinum in Food Products. J. Food Sci. 1960, 25, 321–327. [Google Scholar] [CrossRef]
- Schmidt, C.F.; Nank, W.K.; Lechowich, R.V. Radiation Sterilization of Food. J. Food Sci. 1962, 27, 77–84. [Google Scholar] [CrossRef]
- Anellis, A.; Grecz, N.; Berkowitz, D. Survival of Clostridium botulinum Spores. Appl. Microbiol. 1965, 13, 397–401. [Google Scholar] [CrossRef]
- Kempe, L.L.; Graikoski, J.T.; Bonventre, P.F. Combined Irradiation-Heat Processing of Canned Foods. III. Cooked Ground Beef Inoculated with Spores of a Putrefactive Anaerobe. Appl. Microbiol. 1959, 7, 131–134. [Google Scholar] [CrossRef]
- Huhtanen, C.N. Gamma Radiation Resistance of Clostridium botulinum 62A and Bacillus Subtilis Spores in Honey. J. Food Prot. 1991, 54, 894–896. [Google Scholar] [CrossRef]
- Postmes, T.; van den Bogaard, A.E.; Hazen, M. The Sterilization of Honey with Cobalt 60 Gamma Radiation: A Study of Honey Spiked with Spores of Clostridium botulinum and Bacillus Subtilis. Experientia 1995, 51, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Kempe, L.L.; Graikoski, J.T. Gamma-Ray Sterilization and Residual Toxicity Studies of Ground Beef Inoculated with Spores of Clostridium botulinum. Appl. Microbiol. 1962, 10, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Denny, C.B.; Bohrer, C.W.; Perkins, W.E.; Townsend, C.T. Destruction of Clostridium botulinum by Ionizing Radiation. Part I. In Neutral Phosphate at Room and Freezing Temperatures. J. Food Sci. 1959, 24, 44–50. [Google Scholar] [CrossRef]
- Nikham; Erlinda, T. Effect of Gamma and Electron Beams Irradiation on Clostridium botulinum and Clostridium Perfringens Spores. J. Biol. Indones. 1997, 1, 64–72. [Google Scholar]
- Barbut, S.; Meske, L.; Thayer, D.W.; Lee, K.; Maurer, A.J. Low Dose Gamma Irradiation Effects on Clostridium botulinum Inoculated Turkey Frankfurters Containing Various Sodium Chloride Levels. Food Microbiol. 1988, 5, 1–7. [Google Scholar] [CrossRef]
- Cann, D.C.; Wilson, B.B.; Shewan, J.M.; Roberts, T.A.; Rhodes, D.N. A Comparison of Toxin Production by Clostridium botulinum Type E in Irradiated and Unirradiated Vacuum Packed Fish. J. Appl. Bacteriol. 1966, 29, 540–548. [Google Scholar] [CrossRef]
- Dezfulian, M.; Bartlett, J.G. Effects of Irradiation on Growth and Toxigenicity of Clostridium botulinum Types A and B Inoculated onto Chicken Skins. Appl. Environ. Microbiol. 1987, 53, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Thayer, D.W.; Glenn, B.; Charles, N.H. Effects of Ionizing Radiation and Anaerobic Refrigerated Storage on Indigenous Microflora, Salmonella, and Clostridium botulinum Types A and B in Vacuum-Canned, Mechanically Deboned Chicken Meat. J. Food Prot. 1995, 58, 752–757. [Google Scholar] [CrossRef]
- Lambert, A.D.; Smith, J.P.; Dodds, K.L. Combined Effect of Modified Atmosphere Packaging and Low-Dose Irradiation on Toxin Production by Clostridium botulinum in Fresh Pork. J. Food Prot. 1991, 54, 94–101. [Google Scholar] [CrossRef]
- Szczawinski, J.; Szczawinska, M.; Szulc, M. Effect of Irradiation on Antibotulinal Efficacy of Nitrite. J. Food Sci. 1989, 54, 1313–1317. [Google Scholar] [CrossRef]
- Rowley, D.B.; Firstenberg-Eden, R.; Powers, E.M.; Shattuck, G.E.; Wasserman, A.E.; Wierbicki, E. Effect of Irradiation on the Inhibition of Clostridium botulinum Toxin Production and the Microbial Flora in Bacon. J. Food Sci. 1983, 48, 1016–1021. [Google Scholar] [CrossRef]
- Huhtanen, C.N.; Shieh, J.; Wierbicki, E.; Zaika, L.; Jenkins, R.K.; Buchanan, R.L.; Thayer, D.W. Effect of Sugar and Low-Dose Irradiation on Toxin Production by Clostridium botulinum in Comminuted Bacon. J. Food Prot. 1986, 49, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Kempe, L.L.; Graikoski, J.T.; Bonventre, P.F. Combined Irradiation-Heat Processing of Canned Foods. II. Raw Ground Beef Inoculated with Spores of Clostridium botulinum. Appl. Microbiol. 1958, 6, 261–263. [Google Scholar] [CrossRef]
- Kempe, L.L.; Graikoski, J.T.; Bonventre, P.F. Combined Irradiation-Heat Processing of Canned Foods: I. Cooked Ground Beef Inoculated with Clostridium botulinum Spores. Appl. Microbiol. 1957, 5, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Graikoski, J.T.; Kempe, L.L. A Study of the Effect of Ionizing Radiation on Resistance, Germination, and Toxin Synthesis of Clostridium botulinum Spores, Types A, B, and E. TID Rep. University of Michigan. 1964, pp. 1–47. Available online: https://hdl.handle.net/2027.42/5195 (accessed on 2 March 2023).
- Durban, E.; Grecz, N. Resistance of Spores of Clostridium botulinum 33A to Combinations of Ultraviolet and Gamma Rays1. Appl. Microbiol. 1969, 18, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.A.; Modi, N.K.; Tranter, H.S.; Bailey, N.E.; Stringer, M.F.; Hambleton, P. Studies on the Irradiation of Toxins of Clostridium botulinum and Staphylococcus Aureus. J. Appl. Bacteriol. 1988, 65, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Costilow, R.N. Fermentative Activities of Control and Radiation-“Killed” Spores of Clostridium botulinum. J. Bacteriol. 1962, 84, 1268–1273. [Google Scholar] [CrossRef] [Green Version]
- Grecz, N.; Lin, C.A.; Tang, T.; So, W.L.; Sehgal, L.R. The Nature of Heat Resistant Toxin in Spores of Clostridium botulinum. Jpn. J. Microbiol. 1967, 11, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, R.A.; Bladel, B.O.; Zingelmann, W.J. Radiation Injury of Clostridium botulinum Spores in Cured Meat. Appl. Microbiol. 1965, 13, 743–748. [Google Scholar] [CrossRef]
- Fernandez, E.; Tang, T.; Grecz, N. Toxicity of Spores of Clostridium botulinum Strain 33 a in Irradiated Ground Beef. Microbiology 1969, 56, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Guillou, S.; Lerasle, M.; Simonin, H.; Federighi, M. High-Pressure Processing of Meat and Meat Products. In Emerging Technologies in Meat Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 37–101. ISBN 978-1-118-35067-6. [Google Scholar]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of High Hydrostatic Pressure Food Processing: Perspectives on Technology and Food Safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef] [PubMed]
- EFSA (BIOHAZ Panel); Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. The Efficacy and Safety of High-Pressure Processing of Food. EFSA J. 2022, 20, e07128. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial Inactivation by High Pressure Processing: Principle, Mechanism and Factors Responsible. Food Sci. Biotechnol. 2020, 30, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Rao, L.; Zhao, L.; Wu, X.; Wang, Y.; Liao, X. High Pressure Processing Combined with Selected Hurdles: Enhancement in the Inactivation of Vegetative Microorganisms. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1800–1828. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.R.; Tetzloff, R.C.; Skinner, G.E. Effect of Media, Additives, and Incubation Conditions on the Recovery of High Pressure and Heat-Injured Clostridium botulinum Spores. Food Microbiol. 2010, 27, 613–617. [Google Scholar] [CrossRef]
- Reddy, N.R.; Solomon, H.M.; Fingerhut, G.A.; Rhodehamel, E.J.; Balasubramaniam, V.M.; Palaniappan, S. Inactivation of Clostridium botulinum Type E Spores by High Pressure Processing. J. Food Saf. 1999, 19, 277–288. [Google Scholar] [CrossRef]
- Reddy, N.R.; Solomon, H.M.; Tetzloff, R.C.; Rhodehamel, E.J. Inactivation of Clostridium botulinum Type A Spores by High-Pressure Processing at Elevated Temperatures. J. Food Prot. 2003, 66, 1402–1407. [Google Scholar] [CrossRef]
- Reddy, N.R.; Tetzloff, R.C.; Solomon, H.M.; Larkin, J.W. Inactivation of Clostridium botulinum Nonproteolytic Type B Spores by High Pressure Processing at Moderate to Elevated High Temperatures. Innov. Food Sci. Emerg. Technol. 2006, 7, 169–175. [Google Scholar] [CrossRef]
- Margosch, D.; Ehrmann, M.A.; Ganzle, M.G.; Vogel, R.F. Comparison of Pressure and Heat Resistance of Clostridium botulinum and Other Endospores in Mashed Carrots. J. Food Prot. 2004, 67, 2530–2537. [Google Scholar] [CrossRef]
- Skinner, G.E.; Morrissey, T.R.; Patazca, E.; Loeza, V.; Halik, L.A.; Schill, K.M.; Reddy, N.R. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F. J. Food Prot. 2018, 81, 261–271. [Google Scholar] [CrossRef]
- Skinner, G.E.; Marshall, K.M.; Morrissey, T.R.; Loeza, V.; Patazca, E.; Reddy, N.R.; Larkin, J.W. Combined High Pressure and Thermal Processing on Inactivation of Type E and Nonproteolytic Type B and F Spores of Clostridium botulinum. J. Food Prot. 2014, 77, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Ramaswamy, H.S.; Bussey, J.; Harris, R.; Austin, J.W. High Pressure Destruction Kinetics of Clostridium botulinum (Group I, Strain PA9508B) Spores in Milk at Elevated Temperatures. LWT 2022, 154, 112671. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Shao, Y.; Bussey, J.; Austin, J. Screening of Twelve Clostridium botulinum (Group I) Spores for High-Pressure Resistance at Elevated-Temperatures. Food Bioprod. Process. 2013, 91, 403–412. [Google Scholar] [CrossRef]
- González-Angulo, M.; Clauwers, C.; Harastani, R.; Tonello, C.; Jaime, I.; Rovira, J.; Michiels, C.W. Evaluation of Factors Influencing the Growth of Non-Toxigenic Clostridium botulinum Type E and Clostridium Sp. in High-Pressure Processed and Conditioned Tender Coconut Water from Thailand. Food Res. Int. 2020, 134, 109278. [Google Scholar] [CrossRef]
- Maggi, A.; Gola, S.; Rovere, P.; Miglioli, L.; Dall’Aglio, G.; Loenneborg, N.G. Effects of Combined High Pressure-Temperature Treatments on Clostridium sporogenes Spores in Liquid Media. Ind. Conserve 1996, 71, 8–14. [Google Scholar]
- Margosch, D.; Ehrmann, M.A.; Buckow, R.; Heinz, V.; Vogel, R.F.; Gänzle, M.G. High-Pressure-Mediated Survival of Clostridium botulinum and Bacillus amyloliquefaciens Endospores at High Temperature. Appl. Environ. Microbiol. 2006, 72, 3476–3481. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.R.; Marshall, K.M.; Morrissey, T.R.; Loeza, V.; Patazca, E.; Skinner, G.E.; Krishanmurthy, K.; Larkin, J.W. Combined High Pressure and Thermal Processing on Inactivation of Type A and Proteolytic Type B Spores of Clostridium botulinum. J. Food Prot. 2013, 76, 1384–1392. [Google Scholar] [CrossRef]
- Reddy, N.R.; Patazca, E.; Morrissey, T.R.; Skinner, G.E.; Loeza, V.; Schill, K.M.; Larkin, J.W. Thermal and Pressure-Assisted Thermal Destruction Kinetics for Spores of Type A Clostridium botulinum and Clostridium Sporogenes PA3679. J. Food Prot. 2016, 79, 253–262. [Google Scholar] [CrossRef]
- Linton, M.; Connolly, M.; Houston, L.; Patterson, M.F. The Control of Clostridium botulinum during Extended Storage of Pressure-Treated, Cooked Chicken. Food Control 2014, 37, 104–108. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-Thermal Technologies for Food Processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef]
- Bhagat, B.; Chakraborty, S. Potential of Pulsed Light Treatment to Pasteurize Pomegranate Juice: Microbial Safety, Enzyme Inactivation, and Phytochemical Retention. LWT 2022, 159, 113215. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Umesh Hebbar, H. Pulsed Light Processing of Foods for Microbial Safety. Food Qual. Saf. 2017, 1, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.J.; Chang, J. Inactivation of Vegetative Cells, Germinated Spores, and Dormant Spores of Bacillus atrophaeus by Pulsed Electric Field with Fixed Energy Input. J. Food Process. Eng. 2022, 45, e13959. [Google Scholar] [CrossRef]
- Qiu, X.; Chang, J.; Jin, Y.; Wu, W.J. Pulsed Electric Field Treatments with Nonlethal Field Strength Alter the Properties of Bacterial Spores. J. Food Prot. 2022, 85, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Pillet, F.; Formosa-Dague, C.; Baaziz, H.; Dague, E.; Rols, M.-P. Cell Wall as a Target for Bacteria Inactivation by Pulsed Electric Fields. Sci. Rep. 2016, 6, 19778. [Google Scholar] [CrossRef] [Green Version]
- Rezaeimotlagh, A.; Resch, M.; Kuchel, R.P.; Biazik, J.; Ziuzina, D.; Bourke, P.; Cullen, P.J.; Trujillo, F.J. Unveiling the Synergistic Effect of Combining Low and High Frequency Electric Fields for Microbiological Safety in Liquid Food Processing. J. Food Eng. 2021, 303, 110588. [Google Scholar] [CrossRef]
- Gomez-Gomez, A.; Brito-de la Fuente, E.; Gallegos, C.; Garcia-Perez, J.V.; Benedito, J. Combined Pulsed Electric Field and High-Power Ultrasound Treatments for Microbial Inactivation in Oil-in-Water Emulsions. Food Control 2021, 130, 108348. [Google Scholar] [CrossRef]
- Soni, A.; Oey, I.; Silcock, P.; Ross, I.K.; Bremer, P.J. Effect of Pulsed Electric Field with Moderate Heat (80 °C) on Inactivation, Thermal Resistance and Differential Gene Expression in B. Cereus Spores. J. Food Process. Preserv. 2020, 44, e14503. [Google Scholar] [CrossRef]
- Siemer, C.; Toepfl, S.; Heinz, V. Inactivation of Bacillus subtilis Spores by Pulsed Electric Fields (PEF) in Combination with Thermal Energy—I. Influence of Process- and Product Parameters. Food Control 2014, 39, 163–171. [Google Scholar] [CrossRef]
- Cheigh, C.-I.; Park, M.-H.; Chung, M.-S.; Shin, J.-K.; Park, Y.-S. Comparison of Intense Pulsed Light- and Ultraviolet (UVC)-Induced Cell Damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control 2012, 25, 654–659. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Kim, G.-A.; Chung, M.-S. Impact of Factors Affecting the Efficacy of Intense Pulsed Light for Reducing Bacillus subtilis Spores. Food Sci. Biotechnol. 2021, 30, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.-L.; Hwang, H.-J.; Chung, M.-S. Inactivation of Bacillus Subtilis Spores at Various Germination and Outgrowth Stages Using Intense Pulsed Light. Food Microbiol. 2019, 82, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Cassar, J.R.; Mills, E.W.; Demirci, A. Characterization of Pulsed Light for Microbial Inactivation. J. Food Eng. 2022, 334, 111152. [Google Scholar] [CrossRef]
- Dittrich, A.J.; Ludewig, M.; Rodewald, S.; Braun, P.G.; Wiacek, C. Pulsed-Light Treatment of Dried Parsley: Reduction of Artificially Inoculated Salmonella and Impact in Given Quality Parameters. J. Food Prot. 2021, 84, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Chen, H. Comparison of Water-Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J. Food Sci. 2019, 84, 1145–1150. [Google Scholar] [CrossRef]
- Buosi, D.T.M.; de Moraes, J.O.; Cheng, Y.; Cheng, R.A.; Moraru, C.I.; Carciofi, B.A.M. Effective Pulsed Light Treatments for Inactivating Salmonella enterica Serotypes. Food Control 2022, 135, 108776. [Google Scholar] [CrossRef]
- Bangar, S.P.; Suri, S.; Nayi, P.; Phimolsiripol, Y. Cold Plasma for Microbial Safety: Principle, Mechanism, and Factors Responsible. J. Food Process. Preserv. 2022, 46, e16850. [Google Scholar] [CrossRef]
- Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef]
- Govaert, M.; Smet, C.; Baka, M.; Ećimović, B.; Walsh, J.L.; Van Impe, J. Resistance of L. monocytogenes and S. typhimurium towards Cold Atmospheric Plasma as Function of Biofilm Age. Appl. Sci. 2018, 8, 2702. [Google Scholar] [CrossRef] [Green Version]
- Umair, M.; Jabbar, S.; Ayub, Z.; Muhammad Aadil, R.; Abid, M.; Zhang, J.; Liqing, Z. Recent Advances in Plasma Technology: Influence of Atmospheric Cold Plasma on Spore Inactivation. Food Rev. Int. 2022, 38, 789–811. [Google Scholar] [CrossRef]
- Zhu, Z.; Bassey, A.P.; Huang, T.; Zhang, Y.; Ali Khan, I.; Huang, M. The Formation, Germination, and Cold Plasma Inactivation of Bacterial Spore. Food Chem. Adv. 2022, 1, 100056. [Google Scholar] [CrossRef]
- Tseng, S.; Abramzon, N.; Jackson, J.O.; Lin, W.-J. Gas Discharge Plasmas Are Effective in Inactivating Bacillus and Clostridium Spores. Appl. Microbiol. Biotechnol. 2012, 93, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, D.; Fridman, G.; Mukhin, Y.V.; Wynosky-Dolfi, M.A.; Rieger, J.; Rest, R.F.; Gutsol, A.F.; Fridman, A. Cold Plasma Inactivation of Bacillus cereus and Bacillus anthracis (Anthrax) Spores. IEEE Trans. Plasma Sci. 2010, 38, 1878–1884. [Google Scholar] [CrossRef]
- Sorto, J.C.F. Inactivation of Bacillus atrophaeus Endospores Using Cold Plasma Treatment. Bachelor’s Thesis, Escuela Agrícola Panamericana, Zamorano, Honduras, 2019. [Google Scholar]
- Liao, X.; Muhammad, A.I.; Chen, S.; Hu, Y.; Ye, X.; Liu, D.; Ding, T. Bacterial Spore Inactivation Induced by Cold Plasma. Crit. Rev. Food Sci. Nutr. 2019, 59, 2562–2572. [Google Scholar] [CrossRef]
- Pina-Perez, M.C.; Martinet, D.; Palacios-Gorba, C.; Ellert, C.; Beyrer, M. Low-Energy Short-Term Cold Atmospheric Plasma: Controlling the Inactivation Efficacy of Bacterial Spores in Powders. Food Res. Int. 2020, 130, 108921. [Google Scholar] [CrossRef] [PubMed]
- Beyrer, M.; Smeu, I.; Martinet, D.; Howling, A.; Pina-Pérez, M.C.; Ellert, C. Cold Atmospheric Plasma Inactivation of Microbial Spores Compared on Reference Surfaces and Powder Particles. Food Bioprocess Technol. 2020, 13, 827–837. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Khomeiri, M.; Sohbatzadeh, F.; Rohani, A. Effects of Gas Type and Cold Plasma Treatment Time on Lecanicillium fungicola Spores Reduction and Changes in Qualitative, Chemical, and Physiological Characteristics of Button Mushroom during Postharvest Storage. J. Food Process. Preserv. 2022, 46, e16901. [Google Scholar] [CrossRef]
Group | I | II | III |
---|---|---|---|
Toxins type | A, B, F | B, E, F | C, D |
Toxins sub-types | A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B5, B6, B7, B8, bivalent B (Ba, Bf, Ab),F1, F2, F3, F4, F5, F8, X | E1, E2, E3, E6, E7, E8, E9, E10, E11, E12, B4 or non-proteolytic B, F6 or non-proteolytic F | C, C/D, D, D/C |
Proteolysis | Yes | No | No |
Toxins genes support | Chromosomic/Plasmidic | Chromosomic/Plasmidic | Bacteriophage |
Related non-toxigenic bacteria | C. sporogenes | C. taeniosporum | C. novyi C. haemolyticum |
Saccharolytic activity | - | + | - |
Characteristic | Environment | Group I | Group II |
---|---|---|---|
Vegetative cell growth | Temperature opt (min-max) °C | 35–40 (10–48) | 18–25 (1.5–45) |
pH opt (min–max) | 7.0 (4.6–9.0) | 7.0 (5.0–9.0) | |
Aw (min) with NaCl | 0.94 | 0.97 | |
Aw (min) with glycerol | 0.93 | 0.94 | |
NaCl % preventing the growth | ≥10 | ≥5 | |
Toxin production | At min temp | Yes | Yes |
At min aw | Yes | Yes | |
Spore resistance | Heat | D 120 °C = 0.04–0.72 | D 80 °C = 0.23–2.63 |
Z ~ 10 °C | |||
Freezing resistance | Yes | Yes | |
Irradiation D-value (T °C ≤ −18) ** | 2.0–4.5 kGy | 1.0–2.0 kGy | |
Toxin stability | Heat | Denatured after 10 min at 100 °C or 30 min at 80 °C | |
Freezing | Stable at freezing even after 3 thawings and refreezings | ||
pH | More stable in stronger acidic conditions *** |
C. botulinum Strain | D-Value (kGy *) | Medium/Substrate | Temperature °C | Reference |
---|---|---|---|---|
Type E Eklund | 1.8 | Sodium phosphate buffers | 24 | [83] |
Type E Beluga | 3 | Vacuum-sealed chicken skins | 5 | [84] |
Type A | 2.7–3.2 (1.8 for green beans) | Chicken parts, beef steak, pork loin, green beans | 30 | [85] |
Type E (VH, Beluga, 8E, 1340E, Iwanai, Alaska) A B | 1.3 (1.28, 1.36, 1.38, 1.31, 1.25, 1.37) 2.8 2.4 | Beef stew | 30 | [86] |
Type A, type B, and non-toxic (102 strains) | 3.3 (resistant strains); 2.4 (intermediate); 1.3 (sensitive) | Phosphate buffer | 30 | [74] |
Type A (strain 33A) | 2.9 | Phosphate buffer, canned ground beef | 0 | [87] |
4.0 | −196 | |||
4.6 | 0 °C | |||
6.8 | −196 | |||
Type A (strain 33A) | 3.3 | Phosphate buffer | −196 | [78] |
3.0 | −140 | |||
2.5 | −80 | |||
2.3 | −30 | |||
2.0 | 5 | |||
Type A (strain 33A) | 5.8 | Ground beef | −196 | [18] |
5.6 | −175 | |||
5.3 | −140 | |||
5.1 | −125 | |||
4.8 | −100 | |||
4.6 | −75 | |||
4.3 | −50 | |||
4.1 | −25 | |||
3.8 | 0 | |||
3.6 | 25 | |||
3.4 | 45 | |||
3.2 | 65 | |||
2.8 | 85 | |||
1.6 | 95 | |||
PA 3679 ** | 3.4 | Cooked, | [88] | |
4.0 | Raw meat | |||
Type A (strain 33A) | 3.8 | Ground cooked meat | 0 | [75] |
Type E (VH, Beluga, 8E, Iwanai, Alaska, 16/63, Minneapolis, 1537/62, 4318/63) | 1.5 (1.4, 1.2, 1.6, 1.2, 1.7, 2, 1.6, 1.5, 1.2) | Aqueous solution | Ambient temperature | [77] |
Type A (strain 62A) | 8–13 | Honey | 0–4 | [89] |
2 | Water | |||
ATCC 19397 | 3.7 | Honey | [90] | |
Type 213B, Type 62A | 3.7, 3.85 | Raw and cooked ground meat | 5 | [91] |
C. botulinum Type | Pressure (MPa) | Time (min) | Temperature (°C) | Log Reduction | Medium | Reference |
---|---|---|---|---|---|---|
Type E (Alaska and Beluga strains) | 827 | 5 | 50–55 | 5 | Phosphate buffer | [117] |
10 | 40 | |||||
Type BS-A and 62-A | 827 | 20 | 75 | 2 and 3 | Phosphate buffer | [118] |
15 | 3.2 and 2.7 | Crabmeat blend | ||||
Nonproteolytic type B (2-B, 17-B, KAP8-B, and KAP9-B) | 827 | 20 | 75 | 6 | Phosphate buffer and crabmeat | [119] |
Proteolytic type B TMW 2.357 | 600 | 60 | 80 | 2 | Mashed carrots | [120] |
Proteolytic type B TMW 2.359 | 4 | |||||
Nonproteolytic type B (ATCC 25765 and TMW 2.518) | <1 | 5 | ||||
Type A–TMW2.299 | 60 | |||||
Type A–ATCC 19397 | 12 | |||||
Proteolytic type F | 60 | |||||
Nonproteolytic type B, F, and E strains | 600 | 6–40 | 80–91 | 5 | N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7.00) | [121] |
750 | 2–7 | |||||
Nonproteolytic type B, F, and E strains | 600 | 7–9 | 80 | 1 * | N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7.00) | [122] |
650 | 3–4 | |||||
700 | 1.8 | |||||
Proteolytic PA9508B | 700 | 21, 3.8, 0.6 | 90, 100, 110 | 1 * | Milk | [123] |
800 | 14, 2.7, 0.5 | |||||
900 | 14, 1.8, 0.4 | |||||
62A | 900 | 0.5/3 ** | 100 | 7/7 | Phosphate buffer (0.1 M) | [124] |
IB1-B | 3.3/7 | |||||
CK2-A | 1/4.5 | |||||
MRB | 2.2/7 | |||||
Langeland | 3.3/7 | |||||
A6 | 1/4.5 | |||||
GA0108BEC | 1/4.5 | |||||
PA9508B | 0/1.6 | |||||
13983B | 1.7/7 | |||||
H461297F | 1.5/6 | |||||
GA0101AJO | 1.1/5 | |||||
HO9504A | 1/3.3 | |||||
Type E TMW 2.990 | 600 | 10 | 90 | 6 * | Green peas with ham | [12] |
15 | Steamed sole | |||||
11 | Braised veal | |||||
10 | Vegetable soup |
Technology | Advantages | Disadvantages |
---|---|---|
Heating |
|
|
Ionizing radiations |
|
|
HPP/HHP |
|
|
Emerging non-thermal technologies |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, M.T.; Mtimet, N.; Guillier, L.; Meurens, F.; Fravalo, P.; Federighi, M.; Kooh, P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023, 12, 1580. https://doi.org/10.3390/foods12081580
Munir MT, Mtimet N, Guillier L, Meurens F, Fravalo P, Federighi M, Kooh P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods. 2023; 12(8):1580. https://doi.org/10.3390/foods12081580
Chicago/Turabian StyleMunir, Muhammad Tanveer, Narjes Mtimet, Laurent Guillier, François Meurens, Phillipe Fravalo, Michel Federighi, and Pauline Kooh. 2023. "Physical Treatments to Control Clostridium botulinum Hazards in Food" Foods 12, no. 8: 1580. https://doi.org/10.3390/foods12081580
APA StyleMunir, M. T., Mtimet, N., Guillier, L., Meurens, F., Fravalo, P., Federighi, M., & Kooh, P. (2023). Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods, 12(8), 1580. https://doi.org/10.3390/foods12081580