Performance of a Handheld Near-Infrared Spectroscopy Device to Predict Pork Primal Belly Fat Iodine Value and Loin Lean Intramuscular Fat Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Tellspec Food Sensor Spectral Analysis
2.3. Fatty Acid Analysis—Gas Chromatography and IV
2.4. Chemical Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Calibration and Validation Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evaluation of the International Pork Marketing Fund (IPMF). Agriculture and Agri-Food Canada. 2015. Available online: https://publications.gc.ca/collections/collection_2015/aac-aafc/A29-2-10-2014-eng.pdf (accessed on 21 September 2022).
- Ubilava, D.; Foster, K. Quality certification vs. product traceability: Consumer preferences for informational attributes of pork in Georgia. Food Policy 2009, 34, 305–310. [Google Scholar] [CrossRef]
- Soladoye, P.; López Campos, Ó.; Aalhus, J.L.; Gariépy, C.; Shand, P.; Juárez, M. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations. Meat Sci. 2016, 121, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Fortin, A.; Robertson, W.M.; Tong, A.K.W. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005, 69, 267–305. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.D.; Mapiye, C.; Aalhus, J.L.; Beaulieu, A.D.; Patience, J.F.; Zijlstra, R.T.; Dugan, M.E.R. Flaxseed fed pork: N-3 fatty acid enrichment and contribution to dietary recommendations. Meat Sci. 2014, 96, 541–547. [Google Scholar] [CrossRef] [PubMed]
- American Oil Chemical Society (AOCS). Recommended practice Cd 1c-85. In Official Methods and Recommended Practices of the American Oil Chemical Society, 5th ed.; AOCS Press: Champaign, IL, USA, 1998. [Google Scholar]
- Uttaro, B.; Zawadski, S.; Larsen, I.; Juarez, M. An image analysis approach to identification and measurement of marbling in the intact pork loin. Meat Sci. 2021, 179, 108549. [Google Scholar] [CrossRef] [PubMed]
- Redifer, J.D.; Beever, J.E.; Stahl, C.A.; Boler, D.D.; Dilger, A.C. Characterizing the amount and variability of intramuscular fat deposition throughout pork loins using barrows and gilts from two sire lines. J. Anim. Sci. 2020, 98, 9. [Google Scholar] [CrossRef]
- Lam, S.; Uttaro, B.; Bohrer, B.M.; Duarte, M.; Juárez, M. Can in-line iodine value predictions (NitFomTM) be used for early classification of pork belly firmness? Foods 2022, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Kucha, C.T.; Liu, L.; Ngadi, M.; Claude, G. Hyperspectral imaging and chemometrics as a non-invasive tool to discriminate and analyze iodine value of pork fat. Food Control 2021, 127, 108145. [Google Scholar] [CrossRef]
- Harris, E.K.; Mellencamp, M.A.; Johnston, L.J.; Cox, R.B.; Shurson, G.C. Effectiveness of different corn dried distillers grains with solubles feeding strategies and increasing the time intervals between the second Improvest dose and slaughter of immunologically castrated pigs on belly and pork fat quality. Meat Sci. 2018, 135, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Dashti, A.; Muller-Maatsch, J.; Weesepol, Y.; Parastar, H.; Kobarfard, F.; Daraei, B.; AliAbadi, M.H.S.; Yazdanpanah, H. The feasibility of two handheld spectrometers for meat speciation combined with chemometric methods and its application for halal certification. Foods 2022, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Kartakoullis, A.; Comaposada, J.; Cruz-Carrión, A.; Serra, X.; Gou, P. Feasibility study of smartphone-based Near Infrared Spectroscopy (NIRS) for salted minced meat composition diagnostics at different temperatures. Food Chem. 2019, 278, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazar, G.; Kovacs, Z.; Hoffmann, I. Detection of beef aging combined with the differentiation of tenderloin and sirloin using a handheld NIR scanner. In Proceedings of the Optical Characterization of Materials 3rd International Conference, Karlsruhe, Germany, 22–23 March 2017; pp. 25–32. [Google Scholar]
- Prieto, N.; Dugan, M.E.R.; Juárez, M.; López-Campos, Ó.; Zijlstra, R.T.; Aalhus, J.L. Using portable near-infrared spectroscopy to predict pig subcutaneous fat composition and iodine value. Canadian. J. Anim. Sci. 2017, 98, 221–229. [Google Scholar]
- Prieto, N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhus, J.L. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl. Spectrosc. 2017, 71, 1403–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Kawano, S.; Iwamoto, M. Near infrared spectral patterns of fatty acid analysis from fats and oils. Am. Oil Chem. Soc. 1991, 68, 827–833. [Google Scholar] [CrossRef]
- Bohrer, B.M.; Boler, D.D. Subjective pork quality evaluation may not be indicative of instrumental pork quality measurements on a study-to-study basis. Prof. Anim. Sci. 2017, 33, 530–540. [Google Scholar] [CrossRef]
- National Pork Producers Council (NPPC). Official Color and Marbling Standards; Pork Producers Council: Des Moines, IA, USA, 1999. [Google Scholar]
- Huang, H.; Liu, L.; Ngadi, M.O. Assessment of intramuscular fat content of pork using NIR hyperspectral images of rib end. J. Food Eng. 2017, 193, 29–41. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. R. Soc. Chem. 2014, 4, 8200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beć, K.B.; Grabska, J.; Huck, C.W. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Huck, C.W.; Beć, K.B.; Grabska, J. Near infrared spectroscopy in natural product research. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Meyers, R.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–29. [Google Scholar]
Belly Fat | Chop Lean | |||||||
---|---|---|---|---|---|---|---|---|
SFA | MUFA | PUFA | n-3 | n-6 | IV | Moisture | Fat | |
Derivative | SG1st | SG1st | SG1st | SG1st | SG1st | SG1st | Original | Original |
Minfac | 7 | 8 | 7 | 6 | 7 | 7 | 8 | 7 |
PRESS | 0.36 | 0.49 | 0.60 | 0.69 | 0.59 | 0.39 | 0.65 | 0.80 |
RMSECV | 1.38 | 1.86 | 1.47 | 0.08 | 1.39 | 1.68 | 0.82 | 0.72 |
RPDCV | 3.01 | 2.44 | 1.95 | 1.61 | 1.96 | 2.76 | 1.53 | 1.26 |
SD | 4.17 | 4.54 | 2.86 | 0.13 | 2.73 | 4.66 | 1.26 | 0.91 |
R2 calibration | 90.6 | 86.1 | 77.7 | 66.3 | 78.0 | 88.9 | 60.0 | 40.4 |
R2 validation | 77.2 | 53.7 | 58.7 | 51.6 | 58.8 | 87.1 | 58.6 | 34.3 |
Belly Fat | Chop Lean | |||||||
---|---|---|---|---|---|---|---|---|
SFA | MUFA | PUFA | n-3 | n-6 | IV | Moisture % | Fat % | |
Calibration Set | ||||||||
n | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 279 |
Mean | 37.6 | 43.8 | 18.6 | 0.92 | 17.7 | 19.3 | 68.0 | 73.4 |
SD | 30.3 | 34.0 | 10.4 | 0.50 | 9.91 | 17.1 | 57.6 | 70.1 |
Min | 4.17 | 4.54 | 2.86 | 0.13 | 2.73 | 0.93 | 4.66 | 0.91 |
Max | 45.9 | 50.3 | 25.1 | 1.23 | 23.9 | 22.3 | 79.4 | 75.4 |
CV | 11.1 | 10.4 | 15.3 | 14.5 | 15.4 | 4.82 | 6.85 | 1.24 |
Validation Set | ||||||||
n | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 139 |
Mean | 37.6 | 44.2 | 18.2 | 0.89 | 17.3 | 19.4 | 67.6 | 73.4 |
SD | 31.4 | 35.8 | 11.9 | 0.58 | 11.3 | 17.7 | 61.3 | 70.7 |
Min | 3.97 | 4.37 | 3.01 | 0.15 | 2.87 | 0.91 | 4.67 | 0.88 |
Max | 44.6 | 51.5 | 25.0 | 1.25 | 23.7 | 22.4 | 78.4 | 75.2 |
CV | 10.5 | 9.89 | 16.6 | 16.4 | 16.6 | 4.72 | 6.91 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, S.; Rolland, D.; Zawadski, S.; Wei, X.; Uttaro, B.; Juárez, M. Performance of a Handheld Near-Infrared Spectroscopy Device to Predict Pork Primal Belly Fat Iodine Value and Loin Lean Intramuscular Fat Content. Foods 2023, 12, 1629. https://doi.org/10.3390/foods12081629
Lam S, Rolland D, Zawadski S, Wei X, Uttaro B, Juárez M. Performance of a Handheld Near-Infrared Spectroscopy Device to Predict Pork Primal Belly Fat Iodine Value and Loin Lean Intramuscular Fat Content. Foods. 2023; 12(8):1629. https://doi.org/10.3390/foods12081629
Chicago/Turabian StyleLam, Stephanie, David Rolland, Sophie Zawadski, Xinyi Wei, Bethany Uttaro, and Manuel Juárez. 2023. "Performance of a Handheld Near-Infrared Spectroscopy Device to Predict Pork Primal Belly Fat Iodine Value and Loin Lean Intramuscular Fat Content" Foods 12, no. 8: 1629. https://doi.org/10.3390/foods12081629
APA StyleLam, S., Rolland, D., Zawadski, S., Wei, X., Uttaro, B., & Juárez, M. (2023). Performance of a Handheld Near-Infrared Spectroscopy Device to Predict Pork Primal Belly Fat Iodine Value and Loin Lean Intramuscular Fat Content. Foods, 12(8), 1629. https://doi.org/10.3390/foods12081629