Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Participants
2.3. Online Questionnaire
2.4. Sensory Test
2.5. Qualitative and Quantitative Analysis of Sugars and Organic acids with GC-FID
2.6. Data Analysis
3. Results
3.1. Online Questionnaire on Liking, Familiarity, and Consumption Frequency
3.2. Impact of GHI, FNS, Attitudes for Alcoholic Drinks, and Attitudes for Sweetness
3.3. Sugars and Organic Acids in Fruit Wines
3.4. Sensory Characterization of Fruit Wines
3.5. Liking of Fruit Wines in the Sensory Experiment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, K.; Thach, M.L.; Olsen, J. Wine and health perceptions: Exploring the impact of gender, age and ethnicity on consumer perceptions of wine and health. Wine Econ. Policy 2016, 5, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Rao, Y.; Tao, T.; Dong, S.; Jia, A.L.; Ma, H. A review of plant breeders’ rights application and granting for fruit trees in China from 2000 to 2019. Sci. Hortic. 2021, 276, 109749. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. Food Rev. Int. 2021, 39, 2075–2106. [Google Scholar] [CrossRef]
- Joshi, V.K.; Sharma, S.; Thakur, A.D. Subchapter 7.3 Berry and other fruit wines. In Science and Technology of Fruit Wine Pro-duction; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Jagtap, U.B.; Bapat, V.A. Wines from fruits other than grapes: Current status and future prospectus. Food Biosci. 2015, 9, 80–96. [Google Scholar] [CrossRef]
- Mora, M.; Urdaneta, E.; Chaya, C. Emotional response to wine: Sensory properties, age and gender as drivers of consumers’ preferences. Food Qual. Prefer. 2018, 66, 19–28. [Google Scholar] [CrossRef]
- Mora, M.; de Matos, A.D.; Vázquez-Araújo, L.; Puente, V.; Hernando, J.; Chaya, C. Exploring young consumers’ attitudes and emotions to sensory and physicochemical properties of different red wines. Food Res. Int. 2021, 143, 110303. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Reynolds, D. Wine: Intrinsic attributes and consumers’ drinking frequency, experience, and involvement. Int. J. Hosp. Manag. 2015, 44, 1–11. [Google Scholar] [CrossRef]
- Dias, D.R.; Duarte, W.F.; Schwan, R.F. Chapter 5—Methods of Evaluation of Fruit Wines. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 227–252. [Google Scholar]
- Lin, Y.; Liu, Y.; Liu, S.; Kortesniemi, M.; Liu, J.; Zhu, B.; Laaksonen, O. Sensory and chemical characterization of Chinese bog bilberry wines using Check-all-that-apply method and GC-Quadrupole-MS and GC-Orbitrap-MS analyses. Food Res. Int. 2022, 151, 110809. [Google Scholar] [CrossRef]
- Asquieri, E.R.; Rabêlo, A.M.D.S.; Silva, A.G.D.M.E. Fermentado de jaca: Estudo das características físico-químicas e sensoriais. Food Sci. Technol. 2008, 28, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Duarte, W.F.; Dias, D.R.; de Melo Pereira, G.V.; Gervásio, I.M.; Schwan, R.F. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 2009, 36, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Pantoja, L.; Duarte, W.; Collela, C.; Valarelli, L.; Schwan, R.; Dias, D. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Res. Int. 2011, 44, 2391–2400. [Google Scholar] [CrossRef]
- Masson, J.; Aurier, P.; D’Hauteville, F. Effects of non-sensory cues on perceived quality: The case of low-alcohol wine. Int. J. Wine Bus. Res. 2008, 20, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Bucher, T.; Frey, E.; Wilczynska, M.; Deroover, K.; Dohle, S. Consumer perception and behaviour related to low-alcohol wine: Do people overcompensate? Public Health Nutr. 2020, 23, 1939–1947. [Google Scholar] [CrossRef]
- Merlino, V.M.; Fracassetti, D.; Di Canito, A.; Pizzi, S.; Borra, D.; Giuggioli, N.R.; Vigentini, I. Is the Consumer Ready for Innovative Fruit Wines? Perception and Acceptability of Young Consumers. Foods 2021, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Čakar, U.; Petrović, A.; Pejin, B.; Čakar, M.; Živković, M.; Vajs, V.; Đorđević, B. Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Sci. Hortic. 2019, 244, 42–49. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H.; Teh, S.S.; Wang, C.W.; Zhang, Y.; Hayford, F.; Wang, L.; Ma, T.; Dong, Z.; Zhang, Y.; et al. Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action. Oxidative Med. Cell. Longev. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Parpinello, G.P.; Versari, A.; Chinnici, F.; Galassi, S. Relationship among sensory descriptors, consumer preference and color parameters of Italian Novello red wines. Food Res. Int. 2009, 42, 1389–1395. [Google Scholar] [CrossRef]
- Lawless, L.J.R.; Threlfall, R.T.; Meullenet, J.-F.; Howard, L.R. Consumer-Based Optimization of Blackberry, Blueberry and Concord Juice Blends. J. Sens. Stud. 2012, 27, 439–450. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Francis, I.; Williamson, P. Application of consumer sensory science in wine research. Aust. J. Grape Wine Res. 2015, 21, 554–567. [Google Scholar] [CrossRef]
- Risvik, E.; McEwan, J.A.; Colwill, J.S.; Rogers, R.; Lyon, D.H. Projective mapping: A tool for sensory analysis and consumer research. Food Qual. Prefer. 1994, 5, 263–269. [Google Scholar] [CrossRef]
- Smith, A.M.; McSweeney, M.B. Partial projective mapping and ultra-flash profile with and without red light: A case study with white wine. J. Sens. Stud. 2019, 34, e12528. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- Roininen, K.; Lähteenmäki, L.; Tuorila, H. Quantification of Consumer Attitudes to Health and Hedonic Characteristics of Foods. Appetite 1999, 33, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Esmerino, E.A.; Ferraz, J.P.; Filho, E.R.T.; Pinto, L.P.; Freitas, M.Q.; Cruz, A.G.; Bolini, H.M. Consumers’ perceptions toward 3 different fermented dairy products: Insights from focus groups, word association, and projective mapping. J. Dairy Sci. 2017, 100, 8849–8860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelanne, N.; Laaksonen, O.; Seppälä, T.; Yang, W.; Tuukkanen, K.; Loponen, J.; Yang, B. Impact of cyclodextrin treatment on composition and sensory properties of lingonberry (Vaccinium vitis-idaea) juice. LWT 2019, 113, 108295. [Google Scholar] [CrossRef]
- Barton, A.; Hayward, L.; Richardson, C.D.; McSweeney, M.B. Use of different panellists (experienced, trained, consumers and experts) and the projective mapping task to evaluate white wine. Food Qual. Prefer. 2020, 83, 103900. [Google Scholar] [CrossRef]
- Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Computing 2009, 14, 12–21. [Google Scholar]
- Lu, J.; Li, H.; Quan, J.; An, W.; Zhao, J.; Xi, W. Identification of characteristic aroma volatiles of Ningxia goji berries (Lycium barbarum L.) and their developmental changes. Int. J. Food Prop. 2017, 20, S214–S227. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. Comparison of Quantitative Descriptive Analysis to the Napping methodology with and without product training. J. Sens. Stud. 2018, 33, e12331. [Google Scholar] [CrossRef]
- Liu, H.; McCarthy, B. Chapter 8—Wine Purchasing Behaviour in China. In The Wine Value Chain in China; Capitello, R., Charters, S., Menival, D., Yuan, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 117–130. [Google Scholar]
- Laaksonen, O.; Knaapila, A.; Niva, T.; Deegan, K.C.; Sandell, M. Sensory properties and consumer characteristics contributing to liking of berries. Food Qual. Prefer. 2016, 53, 117–126. [Google Scholar] [CrossRef]
- Ristic, R.; Johnson, T.E.; Meiselman, H.L.; Hoek, A.C.; Bastian, S.E. Towards development of a Wine Neophobia Scale (WNS): Measuring consumer wine neophobia using an adaptation of The Food Neophobia Scale (FNS). Food Qual. Prefer. 2016, 49, 161–167. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Consumer Perception of Red Wine by the Degree of Familiarity Using Consumer-Based Methodology. Foods 2021, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, P.; Zamora, M.C.; Chambers, E.; Carbonell-Barrachina, A.; Hough, G. Convenience Sampling for Acceptability and CATA Measurements May Provide Inaccurate Results: A Case Study with Fruit-Flavored Powdered beverages Tested in Argentina, Spain and U.S.A. J. Sens. Stud. 2015, 30, 295–304. [Google Scholar] [CrossRef]
- Marcano, J.; Ares, G.; Fiszman, S. Comparison of partial and global projective mapping with consumers: A case study with satiating cheese pies. Food Res. Int. 2015, 67, 323–330. [Google Scholar] [CrossRef]
- Torri, L.; Dinnella, C.; Recchia, A.; Naes, T.; Tuorila, H.; Monteleone, E. Projective Mapping for interpreting wine aroma differences as perceived by naïve and experienced assessors. Food Qual. Prefer. 2013, 29, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, I.; Branchini, E.; Torquati, S.; Fermani, A.; Capitani, E.; Barnaba, V.; Savardi, U.; Burro, R. Non experts’ understanding of terms frequently used by experts to describe the sensory properties of wine: An investigation based on opposites. Food Qual. Prefer. 2021, 92, 104215. [Google Scholar] [CrossRef]
- Morin, M.; Hayward, L.; McSweeney, M.B. Use of experienced panelists and the projective mapping task in comparison to trained panelists and naïve consumers. J. Sens. Stud. 2018, 33, e12463. [Google Scholar] [CrossRef]
- Hopfer, H.; Heymann, H. A summary of projective mapping observations—The effect of replicates and shape, and individual performance measurements. Food Qual. Prefer. 2013, 28, 164–181. [Google Scholar] [CrossRef]
- Moss, R.; Healey, K.; Hayward, L.; McSweeney, M.B. Projective mapping and ultra-flash profile studies should include a list of descriptors and definitions: An investigation into descriptors used by untrained panelists. J. Sens. Stud. 2021, 36, e12688. [Google Scholar] [CrossRef]
- Moss, R.; McSweeney, M.B. Projective mapping as a versatile sensory profiling tool: A review of recent studies on different food products. J. Sens. Stud. 2022, 37, e12743. [Google Scholar] [CrossRef]
- Esmerino, E.A.; Filho, E.R.T.; Carr, B.T.; Ferraz, J.P.; Silva, H.L.; Pinto, L.P.; Freitas, M.Q.; da Cruz, A.G.; Bolini, H.M. Consumer-based product characterization using Pivot Profile, Projective Mapping and Check-all-that-apply (CATA): A comparative case with Greek yogurt samples. Food Res. Int. 2017, 99, 375–384. [Google Scholar] [CrossRef]
- Blackman, J.; Saliba, A.; Schmidtke, L. Sweetness acceptance of novices, experienced consumers and winemakers in Hunter Valley Semillon wines. Food Qual. Prefer. 2010, 21, 679–683. [Google Scholar] [CrossRef]
- Bindon, K.; Holt, H.; Williamson, P.O.; Varela, C.; Herderich, M.; Francis, L. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference. Food Chem. 2014, 154, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, O.; Ahola, J.; Sandell, M. Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype. Appetite 2013, 61, 85–96. [Google Scholar] [CrossRef] [PubMed]
- de Ovalle, S.; Brena, B.; González-Pombo, P. Influence of beta glucosidases from native yeast on the aroma of Muscat and Tannat wines. Food Chem. 2021, 346, 128899. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G.; Hieke, S.; Juhl, H.J. Consumer wants and use of ingredient and nutrition information for alcoholic drinks: A cross-cultural study in six EU countries. Food Qual. Prefer. 2018, 63, 107–118. [Google Scholar] [CrossRef]
- Golia, S.; Brentari, E.; Carpita, M. Causal reasoning applied to sensory analysis: The case of the Italian wine. Food Qual. Prefer. 2017, 59, 97–108. [Google Scholar] [CrossRef]
- Honoré-Chedozeau, C.; Chollet, S.; Lelièvre-Desmas, M.; Ballester, J.; Valentin, D. From perceptual to conceptual categorization of wines: What is the effect of expertise? Food Qual. Prefer. 2019, 80, 103806. [Google Scholar] [CrossRef]
- Goerlitz, C.D.; Delwiche, J.F. Impact of Label Information on Consumer Assessment of Soy-enhanced Tomato Juice. J. Food Sci. 2006, 69, S376–S379. [Google Scholar] [CrossRef]
- Niimi, J.; Danner, L.; Li, L.; Bossan, H.; Bastian, S.E. Wine consumers’ subjective responses to wine mouthfeel and understanding of wine body. Food Res. Int. 2017, 99, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Sáenz-Navajas, M.-P.; Avizcuri, J.-M.; Ferrero-Del-Teso, S.; Valentin, D.; Ferreira, V.; Fernández-Zurbano, P. Chemo-sensory characterization of fractions driving different mouthfeel properties in red wines. Food Res. Int. 2017, 94, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Pohjanheimo, T.; Sandell, M. Explaining the liking for drinking yoghurt: The role of sensory quality, food choice motives, health concern and product information. Int. Dairy J. 2009, 19, 459–466. [Google Scholar] [CrossRef]
Liking (1–5) | Familiarity (1–5) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fruit Wine type | Users (n = 89) | Non- Users (n = 145) | Significance | t | Overall Participants (n = 234) | Users (n = 89) | Non-Users (n = 145) | Significance | t | Overall Participants (n = 234) |
Grape | 3.91 ± 0.83 | 3.47 ± 0.87 | *** | 3.83 | 3.64 ± 0.80 | 3.87 ± 0.88 | 3.35 ± 1.03 | *** | 4.05 | 3.55 ± 1.01 |
Blueberry | 3.93 ± 0.69 | 3.42 ± 0.85 | *** | 5.05 | 3.62 ± 0.83 | 3.25 ± 0.82 | 2.38 ± 0.96 | ** | 7.39 | 2.71 ± 1.00 |
Hawthorn | 3.60 ± 0.95 | 3.20 ± 0.95 | ** | 3.10 | 3.35 ± 0.97 | 3.11 ± 0.98 | 2.23 ± 0.95 | *** | 6.84 | 2.56 ± 1.05 |
Goji berry | 3.10 ± 1.00 | 2.84 ± 0.91 | * | 2.04 | 2.94 ± 0.95 | 3.09 ± 0.97 | 2.19 ± 0.97 | *** | 6.90 | 2.53 ± 1.07 |
Rosa roxburghii | 3.26 ± 0.89 | 2.88 ± 0.79 | *** | 3.43 | 3.02 ± 0.85 | 2.33 ± 0.90 | 1.81 ± 0.70 | *** | 4.58 | 2.01 ± 0.82 |
Apricot | 3.43 ± 0.78 | 2.97 ± 0.84 | *** | 4.20 | 3.14 ± 0.84 | 2.42 ± 0.90 | 1.88 ± 0.73 | *** | 4.76 | 2.08 ± 0.84 |
General Health Interest (GHI) | Food Neophobia Scale (FNS) | Attitudes for Alcoholic Drinks | Attitudes for Sweetness | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Liking | Familiarity | Usage | Liking | Familiarity | Usage | Liking | Familiarity | Usage | Liking | Familiarity | Usage | |||||
Grape | G1 | 3.58 ± 0.91 | 3.48 ± 1.03 | 2.15 ± 0.67 | F1 | 3.68 ± 0.82 | 3.63 ± 0.88 | 2.25 ± 0.74 | A1 | 3.26 ± 0.82 b | 3.29 ± 1.11 b | 1.93 ± 0.48 b | S1 | 3.96 ± 0.84 a | 3.79 ± 0.81 a | 2.38 ± 0.71 |
G2 | 3.70 ± 0.85 | 3.63 ± 0.97 | 2.31 ± 0.68 | F2 | 3.63 ± 0.96 | 3.46 ± 1.08 | 2.24 ± 0.67 | A2 | 3.71 ± 0.86 a | 3.53 ± 0.92 b | 2.16 ± 0.64 b | S2 | 3.51 ± 0.89 b | 3.40 ± 1.03 b | 2.13 ± 0.67 | |
F3 | 3.63 ± 0.86 | 3.52 ± 1.06 | 2.16 ± 0.59 | A3 | 3.88 ± 0.84 a | 3.77 ± 0.94 a | 2.53 ± 0.72 a | S3 | 3.46 ± 0.82 b | 3.46 ± 1.10 b | 2.16 ± 0.61 | |||||
Blueberry | G1 | 3.50 ± 0.83 b | 2.56 ± 0.98 b | 1.52 ± 0.56 b | F1 | 3.63 ± 0.70 | 2.63 ± 0.97 | 1.52 ± 0.56 | A1 | 3.45 ± 0.82 | 2.60 ± 1.02 | 1.45 ± 0.52 b | S1 | 3.72 ± 0.83 | 2.78 ± 0.94 | 1.57 ± 0.62 |
G2 | 3.75 ± 0.81 a | 2.89 ± 0.99 a | 1.69 ± 0.64 a | F2 | 3.54 ± 0.93 | 2.72 ± 1.00 | 1.72 ± 0.64 | A2 | 3.68 ± 0.88 | 2.80 ± 1.04 | 1.63 ± 0.62 b | S2 | 3.56 ± 0.88 | 2.67 ± 0.95 | 1.60 ± 0.58 | |
F3 | 3.66 ± 0.84 | 2.78 ± 1.02 | 1.55 ± 0.57 | A3 | 3.68 ± 0.76 | 2.71 ± 0.93 | 1.68 ± 0.62 a | S3 | 3.57 ± 0.75 | 2.67 ± 1.09 | 1.61 ± 0.61 | |||||
Hawthorn | G1 | 3.21 ± 1.00 b | 2.51 ± 1.09 | 1.44 ± 0.59 | F1 | 3.30 ± 0.90 | 2.45 ± 1.01 | 1.42 ± 0.52 | A1 | 3.22 ± 0.97 | 2.53 ± 1.08 | 1.40 ± 0.52 | S1 | 3.43 ± 0.88 | 2.69 ± 1.02 | 1.41 ± 0.52 |
G2 | 3.51 ± 0.90 a | 2.63 ± 1.01 | 1.46 ± 0.59 | F2 | 3.33 ± 1.01 | 2.64 ± 0.99 | 1.57 ± 0.68 | A2 | 3.42 ± 0.99 | 2.65 ± 0.99 | 1.52 ± 0.63 | S2 | 3.32 ± 0.97 | 2.41 ± 1.00 | 1.44 ± 0.58 | |
F3 | 3.41 ± 0.93 | 2.60 ± 1.14 | 1.36 ± 0.53 | A3 | 3.38 ± 0.93 | 2.50 ± 1.08 | 1.42 ± 0.58 | S3 | 3.29 ± 1.04 | 2.59 ± 1.11 | 1.50 ± 0.64 | |||||
Goji berry | G1 | 2.83 ± 0.88 b | 2.40 ± 1.03 | 1.33 ± 0.52 | F1 | 3.03 ± 0.95 | 2.47 ± 1.10 | 1.40 ± 0.65 | A1 | 2.73 ± 0.91 | 2.53 ± 1.06 | 1.22 ± 0.42 b | S1 | 3.19 ± 0.92 a | 2.78 ± 1.03 a | 1.41 ± 0.52 |
G2 | 3.07 ± 1.02 a | 2.68 ± 1.09 | 1.47 ± 0.66 | F2 | 3.00 ± 0.98 | 2.58 ± 0.94 | 1.48 ± 0.60 | A2 | 3.03 ± 0.96 | 2.58 ± 1.04 | 1.46 ± 0.63 a | S2 | 2.82 ± 0.94 b | 2.34 ± 0.91 b | 1.36 ± 0.65 | |
F3 | 2.77 ± 0.90 | 2.54 ± 1.13 | 1.31 ± 0.49 | A3 | 3.02 ± 0.96 | 2.47 ± 1.09 | 1.48 ± 0.65 a | S3 | 2.83 ± 0.95 b | 2.49 ± 1.21 b | 1.41 ± 0.59 | |||||
Apricot | G1 | 3.01 ± 0.87 b | 2.04 ± 0.85 | 1.25 ± 0.50 | F1 | 3.17 ± 0.80 | 1.96 ± 0.77 | 1.25 ± 0.46 | A1 | 2.94 ± 0.79 b | 1.87 ± 0.73 b | 1.14 ± 0.35 b | S1 | 3.23 ± 0.85 | 2.08 ± 0.81 | 1.17 ± 0.42 b |
G2 | 3.30 ± 0.79 a | 2.13 ± 0.83 | 1.31 ± 0.52 | F2 | 3.13 ± 0.85 | 2.16 ± 0.82 | 1.30 ± 0.56 | A2 | 3.08 ± 0.81 b | 2.10 ± 0.83 b | 1.27 ± 0.53 a | S2 | 3.01 ± 0.81 | 2.03 ± 0.73 | 1.26 ± 0.49 a | |
F3 | 3.17 ± 0.88 | 2.13 ± 0.92 | 1.25 ± 0.49 | A3 | 3.36 ± 0.87 a | 2.24 ± 0.90 a | 1.38 ± 0.30 a | S3 | 3.19 ± 0.85 | 2.13 ± 0.97 | 1.37 ± 0.58 a | |||||
Rosa roxburghii | G1 | 2.94 ± 0.84 | 1.92 ± 0.82 | 1.19 ± 0.41 | F1 | 3.01 ± 0.79 | 1.87 ± 0.76 | 1.16 ± 0.40 | A1 | 2.78 ± 0.77 b | 1.80 ± 0.64 | 1.09 ± 0.51 | S1 | 3.08 ± 0.81 | 2.01 ± 0.75 | 1.12 ± 0.37 |
G2 | 3.12 ± 0.85 | 2.11 ± 0.81 | 1.23 ± 0.49 | F2 | 3.12 ± 0.82 | 2.13 ± 0.81 | 1.28 ± 0.50 | A2 | 3.08 ± 0.86 b | 2.10 ± 0.83 | 1.25 ± 0.51 | S2 | 2.98 ± 0.87 | 2.06 ± 0.81 | 1.25 ± 0.48 | |
F3 | 2.93 ± 0.91 | 2.04 ± 0.86 | 1.18 ± 0.42 | A3 | 3.15 ± 0.86 a | 2.09 ± 0.90 | 1.26 ± 0.41 | S3 | 3.00 ± 0.85 | 1.94 ± 0.88 | 1.24 ± 0.46 |
Blueberry Wines | Apricot Wine | Hawthorn Wines | Rosa roxburghii Wine | Goji Berry Wine | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Samples | B1 | B2 | B3 | B4 | A | H1 | H2 | H3 | R | G |
Glycerol | 6.9 ± 0.08 b,c | 5.9 ± 0.93 a,b,c | 14.4 ± 0.18 d | 1.2 ± 0.01 a,b | 7.5 ± 0.12 c | n/d | 4.2 ± 3.67 a,b,c | 3.5 ± 2.31 a,b,c | 5.8 ± 3.17 a,b,c | 3.8 ± 3.36 a,b,c |
Fructose | 12.1 ± 0.10 b | 27.3 ± 0.14 c | 1.5 ± 0.05 a | 0.2 ± 0.02 a | 50.0 ± 0.51 e | 163.2 ± 6.27 f | 4.5 ± 0.03 a | 28.5 ± 0.37 c | 43.6 ± 1.54 d | 1.6 ± 0.03 a |
Glucose | 7.8 ± 0.16 a,b | 24.1 ± 0.13 c | n/d | n/d | 21.1 ± 0.17 cd | 154.1 ± 8.37 d | 3.6 ± 0.03 a | 25.5 ± 0.16 c | 13.9 ± 0.41 b,c | 1.3 ± 0.02 a |
Sorbitol | n/d | n/d | n/d | n/d | 2.1 ± 0.02 a | 10.6 ± 0.58 c | 6.5 ± 0.02 b | n/d | n/d | n/d |
Sucrose | 1.6 ± 0.02 c | 3.5 ± 0.03 e | n/d | n/d | 0.4 ± 0.01 a | 1.2 ± 0.07 b | 13.4 ± 0.03 g | 4.2 ± 0.06 f | n/d | 1.8 ± 0.00 d |
Total sugars | 28.4 ± 0.03 c,d | 60.8 ± 0.93 e | 15.9 ± 0.13 b,c | 1.4 ± 0.03 a | 81.2 ± 0.43 f | 329.1 ± 13.45 g | 32.3 ± 3.63 d | 61.8 ± 2.42 e | 63.3 ± 2.04 e | 8.5 ± 3.32 a,b |
Succinic acid | 0.6 ± 0.03 c | 0.5 ± 0.03 b | 0.6 ± 0.01 d,e | 0.6 ± 0.01 e | 0.5 ± 0.03 b | 0.5 ± 0.01 b | 0.5 ± 0.01 b | 0.2 ± 0.03 a | 0.6 ± 0.02 c,d | 0.4 ± 0.02 b |
Malic acid | 1.7 ± 0.00 f | 1.4 ± 0.02 e | 0.6 ± 0.00 d | 0.2 ± 0.01 b | 2.1 ± 0.02 g | 4.1 ± 0.05 h | 0.4 ± 0.02 c | 0.5 ± 0.01 d | 0.6 ± 0.01 d | n/d |
Citric acid | 3.3 ± 0.07 d | 2.4 ± 0.03 c | 3.5 ± 0.02 d | 3.2 ± 0.04 d | 0.3 ± 0.17 a | 5.0 ± 0.49 e | 2.6 ± 0.01 c | 3.4 ± 0.06 d | 5.0 ± 0.11 e | 1.7 ± 0.03 b |
Quinic acid | 8.6 ± 0.09 g | 7.1 ± 0.05 f | 2.7 ± 0.02 d | 0.7 ± 0.05 b | 7.0 ± 0.06 f | n/d | 1.4 ± 0.00 c | 4.8 ± 0.04 e | 1.3 ± 0.70 b,c | n/d |
Galacturonic acid | 0.7 ± 0.04 a,b | n/d | n/d | 1.3 ± 0.11 a,b | n/d | 0.3 ± 0.23 a,b | 2.0 ± 1.24 b | 1.1 ± 1.39 a,b | 0.4 ± 0.09 a,b | 0.2 ± 0.16 a,b |
Ascorbic acid | n/d | n/d | n/d | n/d | n/d | n/d | n/d | n/d | 1.7 ± 0.01 b | n/d |
Total acids | 14.9 ± 0.05 d | 11.3 ± 0.06 c | 7.4 ± 0.04 b | 6.1 ± 0.10 b | 9.9 ± 0.22 c | 9.8 ± 0.28 c | 7.0 ± 1.22 b | 10.0 ± 1.39 c | 9.6 ± 0.69 c | 2.4 ± 0.19 a |
Sugar/acid ratio | 1.9 ± 0.00 a,b | 5.4 ± 0.09 d,e | 2.1 ± 0.02 b | 0.2 ± 0.01 a | 8.2 ± 0.14 f | 33.5 ± 1.31 g | 4.7 ± 0.34 c,d | 6.2 ± 0.58 d,e | 6.6 ± 0.28 e,f | 3.5 ± 1.07 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Su, Q.; Jiao, J.; Kelanne, N.; Kortesniemi, M.; Xu, X.; Zhu, B.; Laaksonen, O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods 2023, 12, 1844. https://doi.org/10.3390/foods12091844
Zhu Y, Su Q, Jiao J, Kelanne N, Kortesniemi M, Xu X, Zhu B, Laaksonen O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods. 2023; 12(9):1844. https://doi.org/10.3390/foods12091844
Chicago/Turabian StyleZhu, Yuxuan, Qingyu Su, Jingfang Jiao, Niina Kelanne, Maaria Kortesniemi, Xiaoqing Xu, Baoqing Zhu, and Oskar Laaksonen. 2023. "Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping" Foods 12, no. 9: 1844. https://doi.org/10.3390/foods12091844
APA StyleZhu, Y., Su, Q., Jiao, J., Kelanne, N., Kortesniemi, M., Xu, X., Zhu, B., & Laaksonen, O. (2023). Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods, 12(9), 1844. https://doi.org/10.3390/foods12091844