Analysis of Fatty Acid Composition in Sprouted Grains
Abstract
:1. Introduction
2. Sprouted Grains and Health Benefits
3. Germination
3.1. Germination Process
3.2. Germination Conditions
4. Analytical Methods for Determination of Fats in Grains
4.1. Crude Fat Determination
4.2. Fatty Acid Determination
5. Effects of Sprouting on the Fat Content of Grains
5.1. Lipase Activity
5.2. Lipid Content of Sprouted Grains
5.3. Fatty Acids in Sprouted Grains
5.3.1. Wheat
5.3.2. Buckwheat
5.3.3. Quinoa
5.3.4. Barley
5.3.5. Oat
5.3.6. Summary of Findings on Grains
6. Storage Stability of Grains
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Develaraja, S.; Reddy, A.; Yadav, M.; Jain, S.; Yadav, H. Whole grains in amelioration of metabolic derangements. J. Nutr. Health Food Sci. 2016, 4, 1–11. [Google Scholar]
- Rico, D.; Peñas, E.; Garcia, M.C.; Martinez-Villaluenga, C.; Rai, D.K.; Birsan, R.I. Sprouted barley flour as a nutritious and functional ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Cereals and Grains Association. 2022. Available online: https://www.cerealsgrains.org/about/Pages/default.aspx (accessed on 19 August 2022).
- Peňaranda, J.D.; Bueno, M.; Alvarez, F.; Pérez, P.D.; Perezábad, L. Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. Int. J. Gastron. Food Sci. 2021, 25, 100375. [Google Scholar] [CrossRef]
- Nachay, K. Grains: Bakery and beyond. Food Tech. 2016, 70, 53. [Google Scholar]
- Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Hussain, M.; Anjum, F.M. Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Sci. Nutr. 2021, 9, 4617–4628. [Google Scholar] [CrossRef]
- Miyahara, R.F.; Lopes, J.O.; Antunes, A.E.C. The use of sprouts to improve the nutritional value of food products: A brief review. Plant Foods Hum. Nutr. 2021, 76, 143–152. [Google Scholar] [CrossRef]
- Pagand, J.; Heirbaut, P.; Pierre, A.; Pareyt, B. The magic and challenges of sprouted grains. Cereal Food World 2017, 62, 221–226. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.-A.; Van den Broeck, H.C.; Brouns, F.J.P.H.; Brier, N.D.; et al. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Compr. Rev. Food Sci. Food Saf. 2018, 18, 305–328. [Google Scholar] [CrossRef]
- Hlinkova, A.; Bednárova, A.; Havrlentová, M.; Šupová, J.; Čičová, I. Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia 2013, 68, 641–650. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Slama, A.; Cherif, A.; Boukhchina, S. Importance of new edible oil extracted from seeds of seven cereals species. J. Food Qual. 2021, 2021, 5531414. [Google Scholar] [CrossRef]
- Iso, H.; Sato, S.; Umemura, U.; Kudo, M.; Koike, K.; Kitamura, A.; Imano, H.; Okamura, T.; Naito, Y.; Shimamoto, T. Linoleic acid, other fatty acids, and the risk of stroke. Stroke 2002, 33, 2086–2093. [Google Scholar] [CrossRef]
- Narducci, V.; Finotti, E.; Galli, V.; Carcea, M. Lipids and fatty acids in Italian durum wheat (Triticum durum Desf.) cultivars. Foods 2019, 8, 223. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathal, M. Germinated grains: A superior whole grain functional food? Can. J. Physiol. Pharmacol. 2013, 91, 429–441. [Google Scholar] [CrossRef]
- Dhillon, B.; Choudhary, G.; Sodhi, N.S. A study on physiochemical, antioxidant and microbial properties of germinated wheat flour and its utilization in breads. J. Food Sci. Technol. 2020, 57, 2800–2808. [Google Scholar] [CrossRef]
- Márton, M.; Mándoki, Z.; Csapό-Kiss, Z.; Csapό, J. The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae Aliment. 2010, 3, 81–117. [Google Scholar]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of diet and essential fatty acids. In Fatty Acids and Lipids—New Findings; Hamazaki, T., Okuyama, H., Eds.; Karger: Basel, Switzerland, 2001; Volume 88, pp. 18–27. [Google Scholar]
- Simopoulos, A.P. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease. Nutrients 2013, 5, 2901–2923. [Google Scholar] [CrossRef]
- Kromhaut, D.; de Goede, J. Update on cardiometabolic health effects of ω-3 fatty acids. Curr. Opin. Lipidol. 2014, 25, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Peñas, E.; Martinez-Villaluenga, C. Advances in production, properties and applications of sprouted seeds. Foods 2020, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Marti, A.; Cardone, G.; Pagani, M.A. Sprouted cereal grains and products. In Innovative Processing Technologies for Healthy Grains (Chapter 6); Pojic, M., Tiwari, U., Eds.; John Wiley & Sons, Inc., Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 113–141. [Google Scholar]
- Finnie, S.; Brovelli, V.; Nelson, D. Sprouted grains as a food ingredient. In Sprouted Grains: Nutritional Value, Production and Applications; Feng, H., Nemzer, B., DeVries, J.W., Eds.; AACC International Press: Washington, DC, USA, 2019; pp. 113–142. [Google Scholar]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Cardone, G.; D’Inceco, P.; Pagani, M.A.; Marti, A. Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). J. Sci. Food Agric. 2020, 100, 2453–2459. [Google Scholar] [CrossRef]
- Ding, J.; Feng, H. Controlled germination for enhancing the nutritional value of sprouted grains. In Sprouted Grains: Nutritional Value, Production and Applications; Feng, H., Nemzer, B., DeVries, J.W., Eds.; AACC International Press: Washington, DC, USA, 2019; pp. 91–112. [Google Scholar]
- AOAC. Official Method 948.22. Fat (crude) in nuts and nut products. Gravimetric methods. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- AOAC. Official Method 2003.05. Crude fat in feeds, cereal grains, and forages. Randall/Soxtec/diethyl ether extraction-submersion method. In Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- AOAC. Official Method 2003.06. Crude fat in feeds, cereal grains, and forages. Randall/Soxtec/hexanes extraction-submersion method. In Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- AOCS. Official Method Am 5-04. Rapid determination of oil/fat utilizing high-temperature solvent extraction. In Official Methods and Recommended Practices of the AOCS, 6th ed.; Firestone, D., Ed.; AOCS Press: Urbana, IL, USA, 2013. [Google Scholar]
- AOAC. Official Method 983.23, Fat in Foods. Chloroform-Methanol extraction. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Srigley, C.T.; Mossoba, M.M. Current Analytical Techniques for Food Lipids. Food and Drug Administration Papers. 7. 2017. Available online: http://digitalcommons.unl.edu/usfda/7 (accessed on 10 October 2022).
- Asperger, A.; Engewald, W.; Fabian, G. Thermally assisted hydrolysis and methylation—A simple and rapid online derivatization method for the gas chromatographic analysis of natural waxes. J. Anal. App. Pyrol. 2001, 61, 91–109. [Google Scholar] [CrossRef]
- AOAC. Official Method 996.01. Fat (Total, Saturated, Unsaturated, and Monounsaturated) in Cereal Products. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- House, S.D.; Larson, P.A.; Johnson, R.R.; DeVries, J.W.; Martin, D.L. Gas chromatographic determination of total fat extracted from food samples using hydrolysis in the presence of antioxidant. J. AOAC Int. 1993, 77, 960. [Google Scholar] [CrossRef]
- Ali, L.; Angyal, G.; Weaver, C.; Rader, J. Comparison of capillary column gas chromatographic and AOAC gravimetric procedures for total fat and distribution of fatty acids in foods. Food Chem. 1997, 58, 149. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Sawada, T.; Hatayama, K.; Ohyagi, A.; Tsukuda, Y.; Namekawa, K.; Ito, R.; Saito, K.; Nakazawa, H. Separation technique for the determination of highly polar metabolites in biological samples. Metabolites 2012, 2, 496–515. [Google Scholar] [CrossRef]
- AOAC. Official Method 996.06. Fat (Total, Saturated, and Unsaturated) in Foods. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Graham, I.A. Seed storage oil mobilization. Annu. Rev. Plant Biol. 2008, 59, 115–142. [Google Scholar] [CrossRef]
- Kubicka, E.; Grabska, J.; Jedrychowski, L.; Czyk, B. Changes of specific activity of lipase and lipoxygenase during germination of wheat and barley. Int. J. Food Sci. Nutr. 2011, 51, 301–304. [Google Scholar]
- Aparicio-Garcia, N.; Martinez-Villaluenga, C.; Frias, J.; Penas, E. Sprouted oat as potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem. 2021, 338, 127972. [Google Scholar] [CrossRef]
- Dong, L.; Piao, Y.; Zhang, X.; Zhang, C.; Hou, Y.; Shi, Z. Analysis of volatile compounds from a malting process using headspace solid-phase micro-extraction and GC-MS. Food Res. Int. 2013, 51, 783–789. [Google Scholar] [CrossRef]
- Heiniö, R.-L.; Oksman-Caldentey, K.-M.; Latva-Kala, K.; Lehtinen, P.; Poutanen, K. Effect of drying treatment conditions on the sensory profile of germinated oat. Cereal Chem. 2001, 6, 707–714. [Google Scholar] [CrossRef]
- Wu, F.; Yang, N.; Chen, H.; Jin, Z.; Xu, X. Effect of germination on flavor volatiles of cooked brown rice. Cereal Chem. 2011, 88, 497–503. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Arendt, E.K. Oat malt as a baking ingredient—A comparative study of the impact of oat, barley and wheat malts on bread and dough properties. J. Cereal Sci. 2012, 56, 747–753. [Google Scholar] [CrossRef]
- Leonova, S.; Grimberg, A.; Marttila, S.; Stymine, S.; Carlsson, A.S. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil. J. Exp. Bot. 2010, 61, 3089–3099. [Google Scholar] [CrossRef]
- Aparicio-Garcia, N.; Martinez-Villaluenga, C.; Frias, J.; Penas, E. Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained from hulled and dehulled oat varieties as affected by germination conditions. LWT 2020, 134, 109955. [Google Scholar] [CrossRef]
- Hosseini, E.; Kadivar, M.; Shahedi, M. Optimization of enzymatic activities in malting of oat. World Acad. Sci. Eng. Technol. 2010, 67, 766–771. [Google Scholar]
- Damazo-Lima, M.; Rosas-Perez, G.; Reynoso-Camacho, R.; Perez-Ramirez, I.F.; Rocha-Guzman, N.E.; de los Rios, E.; Ramos-Gomez, M. Chemopreventive effect of the germinated oat and its phenolic-AVA extract in azoxymethane/dextran sulfate sodium (AOM/DSS) model of colon carcinogenesis in mice. Foods 2020, 9, 169. [Google Scholar] [CrossRef]
- Suma, P.F.; Urooj, A. Influence of germination on bioaccessible iron and calcium in pearl millet (Pennisetum typhoideum). J. Food Sci. Technol. 2014, 51, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Márton, M.; Mándoki, Z.S.; Csapo, J. Evaluation of biological value of sprouts. I. Fat content, fatty acid composition. Acta Univ. Sapientiae Aliment. 2010, 3, 53–65. [Google Scholar]
- Farooqui, A.S.; Syed, H.M.; Talpade, N.N.; Sontakke, M.D.; Ghatge, P.U. Influence of germination on chemical and nutritional properties of Barley flour. J. Pharmacogn. Phytochem. 2018, 7, 3855–3858. [Google Scholar]
- Ortiz, L.T.; Velasco, S.; Treviňo, J.; Jiménez, B.; Rebolé, A. Changes in the nutrient composition of barley grain (Hordeum vulgare L.) and of morphological fractions of sprouts. Scientifica 2021, 2021, 9968864. [Google Scholar] [CrossRef] [PubMed]
- Molska, M.; Regula, J.; Rudziñska, M.; Świeca, M. Fatty acid profile, atherogenic and thrombogenic health lipid indices of lyophilized buckwheat sprouts modified with the addition of Saccharomyces cerevisae var. Boulardii. Acta Sci. Pol. Technol. Aliment. 2020, 19, 483–490. [Google Scholar]
- Jiménez, D.; Lobo, M.; Irigaray, B.; Grompone, M.A.; Sammán, N. Oxidative stability of baby dehydrated purees formulated with different oils and germinated grain flours of quinoa and amaranth. LWT—Food Sci. Technol. 2020, 127, 109229. [Google Scholar] [CrossRef]
- Inyang, C.U.; Zakari, U.M. Effect of germination and fermentation of pearl millet on proximate chemical and sensory properties of instant “Fura”—A Nigerian cereal food. Pakistan J. Nutr. 2008, 7, 9–12. [Google Scholar] [CrossRef]
- Van Hung, P.; Maeda, T.; Yamamoto, S.; Morita, N. Effects of germination on nutritional composition of waxy wheat. J. Sci. Food Agric. 2011, 92, 667–672. [Google Scholar] [CrossRef]
- Mohan, B.H.; Malleshi, N.G.; Koseki, T. Physico-chemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts. Food Sci. Technol. 2010, 43, 784–791. [Google Scholar] [CrossRef]
- Watanabe, M.; Maeda, T.; Tsukahara, K.; Kayahara, H.; Morita, N. Application of pregerminated brown rice for breadmaking. Cereal Chem. 2014, 81, 450–455. [Google Scholar] [CrossRef]
- Pîrvulescu, P.; Botău, D.; Ciulca, S.; Madosa, E.; Alexa, E. Researches regarding the quality of some sprouted grain flours. J. Hortic. For. Biotech. 2014, 18, 83–88. [Google Scholar]
- Bhathal, S.; Kaur, N.; Gill, J. Effect of processing on the nutritional composition of quinoa (Chenopodium quinoa Willd). Agric. Res. J. 2017, 54, 90–93. [Google Scholar] [CrossRef]
- Mezzatesta, P.; Farah, S.; di Fabio, A.; Emilia, R. Variation of the nutritional composition of quinoa according to the processing used. Proceedings 2020, 53, 4. [Google Scholar]
- Nowak, V.; Du, J.; Charrondiére, U.R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Kavitha, S.; Parimalavalli, R. Effect of processing methods on proximate composition of cereal and legume flours. J. Hum. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Characterization of amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- Devi, C.; Kushwaha, A.; Kumar, A. Sprouting, characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J. Food Sci. Technol. 2015, 52, 6821–6827. [Google Scholar] [CrossRef]
- Jan, R.; Saxena, D.D.; Singh, S. Physio-chemical, textural, sensory and anti-oxidant characteristics of gluten-free cookies made from raw and germinated Chenopodium (Chenopodium album) flours. Lebensm.-Wissenchaft Und Technol.—Food Sci. Technol. 2016, 71, 281–287. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Cui, L.; Zhou, X.; Tang, W.; Song, X. Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chem. 2015, 186, 244–248. [Google Scholar]
- Kim, S.L.; Kim, S.K.; Park, C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 2004, 37, 319–327. [Google Scholar] [CrossRef]
- Ozturk, I.; Sagdic, O.; Hayta, M.; Yetim, H. Alteration in α-tocopherol, some minerals, and fatty acid contents of wheat through sprouting. Chem. Nat. Compd. 2012, 47, 876–879. [Google Scholar] [CrossRef]
- Oldways Whole Grains Council. Buckwheat—December Grain of the Month. Available online: https://wholegrainscouncil.org/whole-grains-101/grain-month-calendar/buckwheat-december-grain-month (accessed on 26 September 2022).
- Bojanic, A. Quinoa: An Ancient Crop to Contribute to World Food Security; Technical Report; Food and Agriculture Organization: Rome, Italy, 2011; Available online: https://www.fao.org/3/aq287e/aq287e.pdf (accessed on 27 September 2022).
- Park, S.A.; Morita, N. Changes in bound lipids and composition of fatty acids in germination of quinoa seeds. Food Sci. Technol. Res. 2004, 10, 303–306. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Tassone, S. Fatty acid profile and nutritive value quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Anim. Feed Sci. Technol. 2013, 183, 56–61. [Google Scholar] [CrossRef]
- Alvares-Jubete, L.; Auty, M.; Arendt, A.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 2010, 230, 437–445. [Google Scholar] [CrossRef]
- Madakemohekar, A.; Prosad, L.C.; Pal, J.P.; Prasad, R. Estimation of combining abilityand heterosis for yield contributing traits in exotic and indigenous crosses of barley (Hordeum vulgare L.). Res. Crop. 2018, 19, 264–270. [Google Scholar] [CrossRef]
- Martinez, M.; Motilva, M.J.; de las Hazas, M.C.L.; Romero, M.P.; Vaculova, K.; Ludwig, I.A. Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production. Food Chem. 2018, 245, 61–70. [Google Scholar] [CrossRef]
- Butt, M.S.; Tahir-Nadeem, M.; Khan, M.K.I.; Shabir, R.; Butt, M.S. Oat: Unique among the cereals. Eur. J. Nutr. 2008, 47, 68–79. [Google Scholar] [CrossRef]
- Alconada, T.M.; Moure, M.C. Deterioration of lipids in stored wheat grains by environmental conditions and fungal infection—A review. J. Stored Prod. Res. 2022, 95, 101914. [Google Scholar] [CrossRef]
- Lehtinen, P.; Kiiliainen, K.; Lehtomäki, I.; Laakso, S. Effect of heat treatment on lipid stability in processed oats. J. Cereal Sci. 2002, 37, 215–221. [Google Scholar] [CrossRef]
- Heiniö, R.; Lehtinen, P.; Oksman-Caldentey, K.-M.; Poutanen, K. Differences between sensory profiles and development of rancidity during long-term storage of native and processed oat. Cereal Chem. 2002, 79, 367–375. [Google Scholar] [CrossRef]
Grains | Non-Germinated | Germinated | References |
---|---|---|---|
Oat | 4.41 ± 0.20% | 5.55 ± 0.01% | [53] |
Wheat | 1.92 ± 0.66% | 1.43 ± 0.26% | [68] |
1.7% | 1.7% | [55] | |
2.39 ± 0.44% | 2.25 ± 0.29% | [17] | |
Maize | 4.36 ± 0.36% | 4.28 ± 0.67% | [68] |
Millet | 4.8 ± 0.70% | 3.1 ± 0.10% | [54] |
5.4 ± 0.20% | 4.6 ± 0.70% | [54] | |
Barley | 2.45% | 3.68% | [57] |
2.75% | 2.10% | [56] | |
Buckwheat | 1.62% | 2.42% | [58] |
Quinoa | 7.48% | 6.52% | [59] |
Amaranth | 7.00% | 6.66% | [59] |
Grains | Fatty Acid | Germination Conditions | Results before Sprouting | Results after Sprouting | References |
---|---|---|---|---|---|
Quinoa | C16:0 Palmitic acid | 22–24 °C/24 h | 8.84% | 7.08% | [59] |
C18:1cis Oleic acid | 22–24 °C/24 h | 20.88% | 23.37% | [59] | |
C18:2cis Linoleic acid (Omega-6) | 22–24 °C/24 h | 50.55% | 52.32% | [59] | |
C18:3n-3 Linolenic acid (Omega-3) | 22–24 °C/24 h | 9.65% | 11.49% | [59] | |
C20:1 Eicosenoic acid | 22–24 °C/24 h | 1.83% | 1.82% | [59] | |
C22:1 cis Erucic acid | 22–24 °C/24 h | 1.86% | 2.24% | [59] | |
Saturated fatty acids | 22–24 °C/24 h | 10.58% | 8.59% | [59] | |
Polyunsaturated fatty acids | 22–24 °C/24 h | 61.53% | 65.52% | [59] | |
ω-6/ω-3 | 5.24 | 4.55 | [59] | ||
Barley | C16:0 Palmitic acid | 20 °C/6 days | 20.14 ± 0.150% | 19.97 ± 0.388% | [57] |
C18:0 Stearic acid | 20 °C/6 days | 1.65 ± 0.379% | 2.05 ± 0.086% | [57] | |
C18:1 cis Oleic acid | 20 °C/6 days | 15.10 ± 0.380% | 14.16 ± 0.415% | [57] | |
C18:2 cis Linoleic acid (Omega-6) | 20 °C/6 days | 56.65 ± 0.316% | 56.50 ± 0.804% | [57] | |
C18:3n-3 Linolenic acid (Omega-3) | 20 °C/6 days | 4.52 ± 0.015% | 6.73 ± 0.428% | [57] | |
C20:1 | 20 °C/6 days | 0.65 ± 0.303% | 0.45 ± 0.041% | [57] | |
ω-6/ω-3 | 12.53 | 8.39 | [57] | ||
Buckwheat | C16:0 Palmitic acid | 37 °C/7 days | 14.6% | 15.8% | [72] |
25 °C/8 days | 17.7 ± 1.9% | 14.6 ± 0.8% | [73] | ||
30 °C/3 days | 16.56 ± 0.03% | 13.90 ± 0.01% | [58] | ||
C18:0 Stearic acid | 37 °C/7 days | 2.6% | 6.7% | [72] | |
25 °C/8 days | 1.8 ± 0.1% | 1.5 ± 0.2% | [73] | ||
30 °C/3 days | 2.24 ± 0.02% | 1.64 ± 0.02% | [58] | ||
C18:1 cis Oleic acid | 37 °C/7 days | 53.8% | 61.4% | [72] | |
25 °C/8 days | 36.8 ± 2.1% | 15.4 ± 1.4% | [73] | ||
30 °C/3 days | 39.95 ± 0.1% | 36.18 ± 0.09% | [58] | ||
C18:2 cis Linoleic acid (Omega-6) | 37 °C/7 days | 27.9% | 14.9% | [72] | |
25 °C/8 days | 38.1 ± 2.5% | 51.1 ± 3.0% | [73] | ||
30 °C/3 days | 32.16 ± 0.11% | 40.19 ± 0.15% | [58] | ||
C18:3n-3 Linolenic acid (Omega-3) | 25 °C/8 days | 2.7 ± 0.1% | 18.9 ± 0.8% | [73] | |
30 °C/3 days | 1.64 ± 0.05% | 2.84 ± 0.02% | [58] | ||
C20:0 Arachidic acid | 25 °C/8 days | 1.1 ± 0.3% | — | [73] | |
30 °C/3 days | 1.87 ± 0.01% | 1.12 ± 0.01% | [58] | ||
C20:1 Eicosenoic acid | 30 °C/3 days | 4.18 ± 0.02% | 3.10 ± 0.01% | [58] | |
Saturated fatty acids | 30 °C/3 days | 21.2 ± 0.06% | 16.84 ± 0% | [58] | |
Monounsaturated fatty acids | 30 °C/3 days | 44.68 ± 0.16% | 40.05 ± 0.03% | [58] | |
Polyunsaturated fatty acids | 30 °C/3 days | 33.8 ± 0.16% | 42.96 ± 0.08% | [58] | |
ω-6/ω-3 | - | - | [72] | ||
ω-6/ω-3 | 14.1 | 2.7 | [73] | ||
ω-6/ω-3 | 19.6 | 14.15 | [58] | ||
Wheat | C11:0 Undecanoic acid | 20 °C/3 days | 1.7% | 1.7% | [55] |
C16:0 Palmitic acid | 30 °C/2 days | 19.0% | 19.0% | [61] | |
17 °C/9 days | 18.22 ± 0.46% | 18.35 ± 2.10% | [74] | ||
18.76 ± 0.51% | 18.77 ± 3.40% | ||||
20 °C/3 days | 31.2% | 33.5% | [55] | ||
C18:0 Stearic acid | 30 °C/2 days | 1.0% | 1.1% | [61] | |
17 °C/9 days | 1.3 ± 0.35% | 1.25 ± 0.15% | [74] | ||
2.44 ± 0.35% | 4.13 ± 3.71% | ||||
20 °C/3 days | 1.9% | 1.2% | [55] | ||
C18:1 cis Oleic acid | 30 °C/2 days | 14.4% | 14.1% | [61] | |
17 °C/9 days | 15.90 ± 0.23% | 8.56 ± 0% | [74] | ||
18.56 ± 0.19% | 14.35 ± 5.04% | ||||
20 °C/3 days | 10.7% | 7.8% | [55] | ||
C18:2 cis Linoleic acid (Omega-6) | 30 °C/2 days | 59.9% | 59.9% | [61] | |
17 °C/9 days | 59.09 ± 1.67% | 53.90 ± 3.40% | [74] | ||
52.22 ± 1.66% | 47.44 ± 14.55% | ||||
20 °C/3 days | 25.6% | 27.3% | [55] | ||
C18:3n-3 Linolenic acid (Omega-3) | 30 °C/2 days | 4.0% | 4.2% | [61] | |
17 °C/9 days | 4.04 ± 0.16% | 16.08 ± 1.50% | [74] | ||
3.93 ± 0.12% | 12.26 ± 1.36% | ||||
20 °C/3 days | 2.0% | 2.5% | [55] | ||
C22:0 Behenic acid | 20 °C/3 days | 1.2% | 1.2% | [55] | |
C20:3n-6 Eicosatrienoic acid | 20 °C/3 days | 1.4% | 1.5% | [55] | |
C20:3n-3 Eicosatrienoic acid | 20 °C/3 days | 2.3% | 0.2% | [55] | |
Saturated fatty acids | 30 °C/2 days | 20.3% | 20.4% | [61] | |
Polyunsaturated fatty acids | 30 °C/2 days | 64.0% | 64.1% | [61] | |
ω-6/ω-3 | 14 | 14 | [61] | ||
ω-6/ω-3 | 14.62 | 3.35 | [74] | ||
ω-6/ω-3 | 13.29 | 3.87 | [74] | ||
ω-6/ω-3 | 12.8 | 10.92 | [55] | ||
Oat | C16:0 Palmitic acid | 18 °C/4 days | 16.53 ± 0.06% | 16.64 ± 0.08% | [45] |
C18:0 Stearic acid | 18 °C/4 days | 34.19 ± 0.08% | 33.09 ± 0.06% | [45] | |
C18:1 cis Oleic acid | 18 °C/4 days | 34.19 ± 0.08% | 33.09 ± 0.06% | [45] | |
C18:2 cis Linoleic acid (Omega-6) | 18 °C/4 days | 43.73 ± 0.21% | 44.36 ± 0.10% | [45] | |
C18:3n-3 Linolenic acid (Omega-3) | 18 °C/4 days | 1.67 ± 0.01% | 1.96 ± 0.01% | [45] | |
Total saturated fatty acids | 18 °C/4 days | 18.19 ± 0.12% | 18.30 ± 0.13% | [45] | |
Total monounsaturated fatty acids | 18 °C/4 days | 36.29 ± 0.12% | 35.26 ± 0.05% | [45] | |
Total polyunsaturated fatty acids | 18 °C/4 days | 45.52 ± 0.22% | 46.44 ± 0.10% | [45] | |
ω-6/ω-3 | 26.2 | 22.6 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemzer, B.; Al-Taher, F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods 2023, 12, 1853. https://doi.org/10.3390/foods12091853
Nemzer B, Al-Taher F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods. 2023; 12(9):1853. https://doi.org/10.3390/foods12091853
Chicago/Turabian StyleNemzer, Boris, and Fadwa Al-Taher. 2023. "Analysis of Fatty Acid Composition in Sprouted Grains" Foods 12, no. 9: 1853. https://doi.org/10.3390/foods12091853
APA StyleNemzer, B., & Al-Taher, F. (2023). Analysis of Fatty Acid Composition in Sprouted Grains. Foods, 12(9), 1853. https://doi.org/10.3390/foods12091853