Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fermented Milk
2.2. pH Measurement
2.3. Rheological Analysis
2.4. Microstructural Analysis
2.5. Particle Size Distribution
2.6. Whey Separation
2.7. Exopolysaccharide Production
2.8. Analysis of Aromatic Metabolites
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes in pH during Fermentation
3.2. EPS Concentration
3.3. Microstructure
3.4. Particle Size Distribution and Whey Separation
3.5. Rheological Properties
3.5.1. Viscosity
3.5.2. Flow Behaviour Properties
3.5.3. Structural Breakdown and Recovery
3.6. Volatile Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Ren, M.; Duo, L.; Li, J.; Wang, S.; Sun, Y.; Li, M.; Ren, W.; Hou, Q.; Yu, J.; et al. Fermentation Characteristics of Lactococcus lactis subsp. lactis Isolated From Naturally Fermented Dairy Products and Screening of Potential Starter Isolates. Front. Microbiol. 2020, 11, 1794. [Google Scholar] [CrossRef]
- Zhou, T.; Huo, R.; Kwok, L.-Y.; Li, C.; Ma, Y.; Mi, Z.; Chen, Y. Effects of applying Lactobacillus helveticus H9 as adjunct starter culture in yogurt fermentation and storage. J. Dairy Sci. 2019, 102, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Chelladurai, K.; Ayyash, M.; Turner, M.S.; Kamal-Eldin, A. Lactobacillus helveticus: Health effects, current applications, and future trends in dairy fermentation. Trends Food Sci. Technol. 2023, 136, 159–168. [Google Scholar] [CrossRef]
- Manzano, A.M.; Lu, D.; Hort, J.; Day, L. Chinese consumers’ preferences for fermented dairy products. Food N. Z. 2020, 20, 29–32. [Google Scholar]
- Ağagündüz, D.; Yılmaz, B.; Şahin, T.; Güneşliol, B.E.; Ayten, Ş.; Russo, P.; Spano, G.; Rocha, J.M.; Bartkiene, E.; Özogul, F. Dairy lactic acid bacteria and their potential function in dietetics: The food-gut-health axis. Foods 2021, 10, 3099. [Google Scholar] [CrossRef] [PubMed]
- Ruppitsch, W.; Nisic, A.; Hyden, P.; Cabal, A.; Sucher, J.; Stöger, A.; Allerberger, F.; Martinović, A. Genetic Diversity of Leuconostoc mesenteroides Isolates from Traditional Montenegrin Brine Cheese. Microorganisms 2021, 9, 1612. [Google Scholar] [CrossRef]
- Han, M.; Wu, Y.; Guo, X.; Jiang, L.; Wang, X.; Gai, Z. Milk fermentation by monocultures or co-cultures of Streptococcus thermophilus strains. Front. Bioeng. Biotechnol. 2022, 10, 1097013. [Google Scholar] [CrossRef]
- Wa, Y.; Chanyi, R.M.; Nguyen, H.T.H.; Gu, R.; Day, L.; Altermann, E. Extracellular Polysaccharide Extraction from Streptococcus thermophilus in Fermented Milk. Microbiol. Spectr. 2022, 10, e02280-21. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, H.; Liu, T.; Gong, P.; Wang, Y.; Wang, H.; Tian, X.; Liu, Q.; Cui, Q.; Xie, X.; et al. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. Food Biosci. 2022, 49, 101832. [Google Scholar] [CrossRef]
- Oberg, T.S.; McMahon, D.J.; Culumber, M.D.; McAuliffe, O.; Oberg, C.J. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J. Dairy Sci. 2022, 105, 2750–2770. [Google Scholar] [CrossRef]
- Toropov, V.; Demyanova, E.; Shalaeva, O.; Sitkin, S.; Vakhitov, T. Whole-Genome Sequencing of Lactobacillus helveticus D75 and D76 Confirms Safety and Probiotic Potential. Microorganisms 2020, 8, 329. [Google Scholar] [CrossRef]
- Garbowska, M.; Berthold-Pluta, A.; Stasiak-Różańska, L.; Pluta, A. The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening. Animals 2021, 11, 2699. [Google Scholar] [CrossRef]
- Broadbent, J.R.; Hughes, J.E.; Welker, D.L.; Tompkins, T.A.; Steele, J.L. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct. Genome Announc. 2013, 1, e00590-13. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Xu, D.; Ma, K.; Zhang, C.; Wang, G.; Dong, M.; Li, W. Structural and prebiotic activity analysis of the polysaccharide produced by Lactobacillus helveticus SNA12. Carbohydr. Polym. 2022, 296, 119971. [Google Scholar] [CrossRef]
- Chen, J.; Shen, J.; Ingvar Hellgren, L.; Jensen, P.R.; Solem, C. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci. Rep. 2015, 5, 14199. [Google Scholar] [CrossRef]
- Surber, G.; Schäper, C.; Wefers, D.; Rohm, H.; Jaros, D. Exopolysaccharides from Lactococcus lactis affect manufacture, texture and sensory properties of concentrated acid milk gel suspensions (fresh cheese). Int. Dairy J. 2021, 112, 104854. [Google Scholar] [CrossRef]
- Saleena, L.A.K.; Chandran, D.; Rayirath, G.; Shanavas, A.; Rajalingam, S.; Vishvanathan, M.; Sharun, K.; Dhama, K. Development of Low-calorie Functional Yoghurt by Incorporating Mannitol Producing Lactic Acid Bacteria (Leuconostoc pseudomesenteroides) in the Standard Yoghurt Culture. J. Pure Appl. Microbiol. 2022, 16, 729–736. [Google Scholar] [CrossRef]
- Issa, A.T.; Tahergorabi, R. Chapter 22—Milk Bacteria and Gastrointestinal Tract: Microbial Composition of Milk. In Dietary Interventions in Gastrointestinal Diseases; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 265–275. [Google Scholar] [CrossRef]
- Gumustop, I.; Ortakci, F. Analyzing the genetic diversity and biotechnological potential of Leuconostoc pseudomesenteroides by comparative genomics. Front. Microbiol. 2023, 13, 1074366. [Google Scholar] [CrossRef]
- Özcan, E.; Selvi, S.S.; Nikerel, E.; Teusink, B.; Toksoy Öner, E.; Çakır, T. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Appl. Microbiol. Biotechnol. 2019, 103, 3153–3165. [Google Scholar] [CrossRef]
- Ramos, I.M.; Seseña, S.; Poveda, J.M.; Palop, M.L. Screening of Lactic Acid Bacteria Strains to Improve the Properties of Non-fat Set Yogurt by in situ EPS Production. Food Bioprocess Technol. 2023, 1–18. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Coda, R.; Säde, E.; Tuomainen, P.; Tenkanen, M.; Katina, K. In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. Int. J. Food Microbiol. 2017, 248, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, B.H.; Xu, X.; Der Meister, T., Jr.; Tabač, H.T.; Hwang, F.F.; Liu, Z. Extrusion of dissolved oxygen by exopolysaccharide from Leuconostoc mesenteroides and its implications in relief of the oxygen stress. Front. Microbiol. 2018, 9, 2467. [Google Scholar] [CrossRef] [PubMed]
- Altermann, E.; Chanyi, R.M.; Day, L. Better microbes for fermented foods. Food N. Z. 2021, 21, 36–40. [Google Scholar]
- Nguyen, H.T.H.; Afsar, S.; Day, L. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk. Food Res. Int. 2018, 108, 423–429. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Ong, L.; Lefèvre, C.; Kentish, S.E.; Gras, S.L. The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: A comparison with bovine yoghurt. Food Bioprocess Technol. 2013, 7, 937–953. [Google Scholar] [CrossRef]
- Bourne, M. Chapter 3: Physics and texture. In Food Texture and Viscosoity: Concept and Measurment, 2nd ed.; Bourne, M., Ed.; Elsevier Science & Technology: San Diego, CA, USA, 2002. [Google Scholar]
- Tiwari, S.; Kavitake, D.; Devi, P.B.; Halady Shetty, P. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int. J. Biol. Macromol. 2021, 183, 1585–1595. [Google Scholar] [CrossRef]
- Tian, H.; Shi, Y.; Zhang, Y.; Yu, H.; Mu, H.; Chen, C. Screening of aroma-producing lactic acid bacteria and their application in improving the aromatic profile of yogurt. J. Food Biochem. 2019, 43, e12837. [Google Scholar] [CrossRef]
- Folkenberg, D.M.; Dejmek, P.; Skriver, A.; Ipsen, R. Interactions between EPS-producing Streptococcus thermophilus strains in mixed yoghurt cultures. J. Dairy Res. 2006, 73, 385–393. [Google Scholar] [CrossRef]
- Purwandari, U.; Shah, N.P.; Vasiljevic, T. Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. Int. Dairy J. 2007, 17, 1344–1352. [Google Scholar] [CrossRef]
- Marshall, V.M.; Rawson, H.L. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int. J. Food Sci. Technol. 1999, 34, 137–143. [Google Scholar] [CrossRef]
- Faber, E.J.; Zoon, P.; Kamerling, J.P.; Vliegenthart, J.F.G. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 1998, 310, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Turgeon, S.L. Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocoll. 2021, 121, 106970. [Google Scholar] [CrossRef]
- Hamdy, S.M.; Abdelmontaleb, H.S.; Mabrouk, A.M.; Abbas, K.A. Physicochemical, viability, microstructure, and sensory properties of whole and skimmed buffalo set-yogurts containing different levels of polydextrose during refrigerated storage. J. Food Process. Preserv. 2021, 45, e15643. [Google Scholar] [CrossRef]
- Nguyen, H.; Day, L. Differences in the physicochemical properties of drinkable yoghurts from New Zealand and China. Food N. Z. 2021, 21, 27–30. [Google Scholar]
- Folkenberg, D.M.; Dejmek, P.; Skriver, A.; Skov Guldager, H.; Ipsen, R. Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int. Dairy J. 2006, 16, 111–118. [Google Scholar] [CrossRef]
- McKenna, B.M.; Kilcast, D. Texture in Food. Volume 1: Semi-Solid Foods; Woodhead Publishing Limited: Cambridge, UK, 2003. [Google Scholar]
- Sun-Waterhouse, D.; Zhou, J.; Wadhwa, S.S. Effects of Adding Apple Polyphenols Before and After Fermentation on the Properties of Drinking Yoghurt. Food Bioprocess Technol. 2012, 5, 2674–2686. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Dertli, E.; Toker, O.S.; Tatlisu, N.B.; Sagdic, O.; Arici, M. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: An optimization study based on fermentation kinetics. J. Dairy Sci. 2015, 98, 1604–1624. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Basak, S. Rheology of stirred yoghurt. J. Texture Stud. 1991, 22, 231–234. [Google Scholar] [CrossRef]
- Azarikia, F.; Abbasi, S. On the stabilization mechanism of Doogh (Iranian yoghurt drink) by gum tragacanth. Food Hydrocoll. 2010, 24, 358–363. [Google Scholar] [CrossRef]
- Shirkhani, M.; Madadlou, A.; Khosrowshahi, A. Enzymatic modification to stabilize the fermented milk drink, Doogh. J. Texture Stud. 2015, 46, 22–33. [Google Scholar] [CrossRef]
- Duboc, P.; Mollet, B. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 2001, 11, 759–768. [Google Scholar] [CrossRef]
- Koksoy, A.; Kilic, M. Use of hydrocolloids in textural stabilization of a yoghurt drink, ayran. Food Hydrocoll. 2004, 18, 593–600. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of lactic acid bacteria on the yogurt flavour: A review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Vázquez-Pateiro, I.; Arias-González, U.; Mirás-Avalos, J.M.; Falqué, E. Evolution of the Aroma of Treixadura Wines during Bottle Aging. Foods 2020, 9, 1419. [Google Scholar] [CrossRef]
- Imhof, R.; Glättli, H.; Bosset, J.O. Volatile organic compounds produced by thermophilic and mesophilic single strain dairy starter cultures. LWT Food Sci. Technol. 1995, 28, 78–86. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Hay, C.; de Matos, A.D.; Low, J.; Feng, J.; Lu, D.; Day, L.; Hort, J. Comparing cross-cultural differences in perception of drinkable yoghurt by Chinese and New Zealand European consumers. Int. Dairy J. 2021, 113, 104901. [Google Scholar] [CrossRef]
Sample | EPS Concentration (µg/mL) | Viscosity at 50 s−1 (mPa.s) | Herschel–Bulkley Model | Power-Law Model | Hysteresis Loop Area (mPa.s−1) | Particle Size D[4,3] (µm) | Whey Separation (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Yield Stress σo (mPa) | Consistency Coefficient K (mPa.sn) | Flow Behaviour Index n | Consistency Coefficient K (mPa.sn) | Flow Behaviour Index n | ||||||
YF-L811 | 19.1 ± 3.1 a | 74 ± 11 ab | 335 ± 156 a | 430 ± 70 a | 0.52 ± 0.04 a | 674 ± 103 ab | 0.42 ± 0.01 b | 6648 ± 1411 a | 23.7 ± 0.8 a | 61.5 ± 2.0 a |
CH-1 | 14.1 ± 1.3 b | 59 ± 10 b | 83 ± 84 b | 475 ± 92 a | 0.46 ± 0.02 a | 539 ± 89 bc | 0.43 ± 0.01 ab | 4601 ± 859 ab | 18.6 ± 0.2 b | 58.6 ± 2.6 ab |
ST | 1.8 ± 0.5 d | 31 ± 12 c | 144 ± 68 b | 195 ± 74 b | 0.51 ± 0.02 a | 315 ± 126 c | 0.42 ± 0.01 b | 2701 ± 1259 bc | 21.9 ± 3.0 ab | 57.3 ± 4.7 bc |
LH | 11.2 ± 2.5 b | 91 ± 23 a | 337 ± 246 a | 517 ± 89 a | 0.52 ± 0.04 a | 860 ± 272 a | 0.43 ± 0.02 ab | 4815 ± 1030 ab | 22.7 ± 5.2 ab | 54.4 ± 1.3 c |
BL1 | 6.1 ± 2.1 c | 65 ± 15 b | 119 ± 26 b | 422 ± 69 a | 0.51 ± 0.04 a | 510 ± 76 bc | 0.47 ± 0.04 a | 399 ± 233 c | 9.9 ± 1.5 c | 30.3 ± 4.3 d |
CL3 | 12.0 ± 2.4 b | 61 ± 10 b | 99 ± 60b | 410 ± 106 a | 0.50 ± 0.05 a | 476 ± 78 bc | 0.47 ± 0.02 a | 962 ± 580 bc | 10.2 ± 1.3 c | 37.6 ± 2.8 e |
CL3ST | 6.0 ± 1.9 c | na | na | na | na | na | na | na | na | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.T.H.; Gomes Reis, M.; Wa, Y.; Alfante, R.; Chanyi, R.M.; Altermann, E.; Day, L. Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures. Foods 2023, 12, 1875. https://doi.org/10.3390/foods12091875
Nguyen HTH, Gomes Reis M, Wa Y, Alfante R, Chanyi RM, Altermann E, Day L. Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures. Foods. 2023; 12(9):1875. https://doi.org/10.3390/foods12091875
Chicago/Turabian StyleNguyen, Hanh T. H., Mariza Gomes Reis, Yunchao Wa, Renna Alfante, Ryan M. Chanyi, Eric Altermann, and Li Day. 2023. "Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures" Foods 12, no. 9: 1875. https://doi.org/10.3390/foods12091875
APA StyleNguyen, H. T. H., Gomes Reis, M., Wa, Y., Alfante, R., Chanyi, R. M., Altermann, E., & Day, L. (2023). Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures. Foods, 12(9), 1875. https://doi.org/10.3390/foods12091875