Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses
Abstract
:1. Introduction
2. Listeria monocytogenes—A Virulent, Psychrotrophic Foodborne Pathogen
2.1. Listeria monocytogenes—Virulence Factors
2.2. Listeriosis
2.3. Food-Related Outbreaks Caused by Listeria monocytogenes
Year (Period) | Country (City, State) | Source | No. of Cases | Reported Deaths | Reference | |
---|---|---|---|---|---|---|
Europe | 2009–2012 | Portugal | Cheese | 30 | 11 | [64] |
2015–2018 | Austria, Denmark, Finland, Sweden, the UK | Frozen corn | 41 | 6 | [66] | |
2015 | Denmark, Germany, France | RTE salmon products | 12 | 4 | [65] | |
2014–2019 | Denmark, Estonia, Finland, France, Sweden | Cold-smoked fish products | 22 | 5 | [67] | |
2017–2019 | Netherlands, Belgium | RTE meat products | 21 | 3 | [67] | |
2019 | Spain | Chilled roasted pork meat product | 222 | 3 | [68] | |
USA | 2010–2015 | Four states | Ice cream | 10 | 3 | [71] |
2014 | Multi-states | Mung bean sprouts | 5 | 2 | [70] | |
2014 | Stone fruit | 4 | 0 | [83] | ||
2014–2015 | Twelve states | Caramel apples | 35 | 7 | [69] | |
2015–2016 | Two states | Packaged leafy green salads | 23 | 1 | [84] | |
2015 | 10 | Soft cheeses | 30 | 3 | [75] | |
2016 | 2 | Raw milk | 2 | 1 | [73] | |
2016 | 4 | Frozen vegetables | 9 | 3 | [74] | |
2016 | 9 | Packaged salads | 19 | 1 | [72] | |
2017 | 4 | Soft, raw-milk cheese | 8 | 2 | [76] | |
2019 | 5 | Hard-boiled eggs | 8 | 1 | [77] | |
2020 | 4 | Deli meats | 12 | 1 | [79] | |
2020 | Seventeen states | Enoki mushroom | 36 | 4 | [78] | |
2021 | Two states | Frozen fully cooked chicken products | 3 | 1 | [80] | |
2022 | 11 | Ice cream | 28 | 1 | [81] | |
2022 | 8 | Packaged salads | 10 | 1 | [82] | |
Africa | 2017–2018 | Republic of South Africa | RTE processed meat products | 1024 | 200 | [85] |
Australia | 2018 | Australia (New South Wales, Victoria, Queensland, Tasmania) | Rockmelons | 20 | 7 | [86] |
3. High-Pressure Processing—Potential Food Safety Risks
- The control of surviving microbial spores (e.g., with refrigerated storage or additives) and HPP-induced spore activation (with subsequent conversion to vegetative cells);
- The induction of sub-lethal damage in cells, including the transformation of cells into a viable but non-culturable state (VBNC) (this can lead to the overestimation of HPP efficacy via routine detection methods);
- The induction of pathogenicity (virulence), gene expression (virulence, antibiotic resistance, and others), and cross-resistance to other stresses [91].
3.1. Determinants of the Effect of HPP Treatment on Listeria monocytogenes
3.1.1. HPP Treatment Parameters
3.1.2. Food Matrix
3.1.3. Individual Characteristics of Strains
3.1.4. Addition of Antibacterial Agents
3.2. Recovery of Cells during Storage after HPP
3.2.1. Cell Recovery in the Food Matrix
3.2.2. Cell Recovery in Growth Mediums
3.3. Effect of HPP on Antibiotic Resistance and Antibiotic Resistance Gene Expression
3.4. Effect of HPP on Virulence Factors and Expression of Virulence Genes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-Pressure Processing for Sustainable Food Supply. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Huang, H.W.; Wu, S.Z.; Lu, J.K.; Shyu, Y.T.; Wang, C.Y. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Grossi, A.; Bolumar, T.; Soltoft-Jensen, J.; Orlien, V. High pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. Innov. Food Sci. Emerg. 2014, 22, 11–21. [Google Scholar] [CrossRef]
- Komora, N.; Maciel, C.; Amaral, R.A.; Fernandes, R.; Castro, S.M.; Saraiva, J.A.; Teixeira, P. Innovative hurdle system towards Listeria monocytogenes inactivation in a fermented meat sausage model—High pressure processing assisted by bacteriophage P100 and bacteriocinogenic Pediococcus acidilactici. Food Res. Int. 2021, 148, 110628. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, S.; Yan, T.; Sun, X.; Ma, L.; Meng, X.; Lu, X. Whole transcriptome sequencing analysis of the effect of high hydrostatic pressure on Escherichia coli O157:H7. J. Agric. Food Res. 2021, 4, 100147. [Google Scholar] [CrossRef]
- Huang, H.W.; Hsu, C.P.; Wang, C.Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. JFDA 2020, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, K.; Nabi, B.G.; Arshad, R.N.; Roobab, U.; Yaseen, B.; Ranjha, M.M.A.N.; Aadil, R.M.; Ibrahim, S.A. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrason Sonochem. 2022, 90, 106194. [Google Scholar] [CrossRef]
- Roobab, U.; Inam-Ur-Raheem, M.; Khan, A.W.; Arshad, R.N.; Zeng, X.; Aadil, R.M. Innovations in High-Pressure Technologies for the Development of Clean Label Dairy Products: A Review. Food Rev. Int. 2023, 39, 970–991. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, A.; Delgadillo, I.; Saraiva, J.; Cunha, Â. Susceptibility of Listeria monocytogenes to high pressure processing: A review. Food Rev. Int. 2016, 32, 377–399. [Google Scholar] [CrossRef]
- Duru, I.C.; Andreevskaya, M.; Laine, P.; Rode, T.M.; Ylinen, A.; Løvdal, T.; Bar, N.; Crauwels, P.; Riedel, C.U.; Bucur, F.I.; et al. Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing. BMC Genom. 2020, 21, 455. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Zakrzewski, A.J.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Antimicrobial resistance and virulence characterization of Listeria monocytogenes strains isolated from food and food processing environments. Pathogens 2022, 11, 1099. [Google Scholar] [CrossRef] [PubMed]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive response of Listeria monocytogenes to the stress factors in the food processing environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef] [PubMed]
- Bozoglu, F.; Alpas, H.; Kaletunç, G. Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Microbiol. Immunol. 2004, 40, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Duru, I.C.; Bucur, F.I.; Andreevskaya, M.; Nikparvar, B.; Ylinen, A.; Grigore-Gurgu, L.; Rode, T.M.; Crauwels, P.; Laine, P.; Paulin, L.; et al. High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genom. 2021, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-W.; Chen, Y.-A.; Chang, H.-Y.; Huang, T.-C.; Chen, T.-Y. Combined impact of high-pressure processing and slightly acidic electrolysed water on Listeria monocytogenes proteomes. Food Res. Int. 2021, 147, 110494. [Google Scholar] [CrossRef] [PubMed]
- Simonin, H.; Duranton, F.; de Lamballerie, M. New insights into the highpressure processing of meat and meat products. Compr. Rev. Food Sci. Food Saf. 2012, 11, 285–306. [Google Scholar] [CrossRef]
- Possas, A.; Perez-Rodriguez, F.; Valero, A.; Garcia-Gimeno, R.M. Modelling the inactivation of Listeria monocytogenes by high hydrostatic pressure processing in foods: A review. Trends Food Sci. Technol. 2017, 70, 45–55. [Google Scholar] [CrossRef]
- Meloni, D. High-hydrostatic-pressure (HHP) processing technology as a novel control method for Listeria monocytogenes occurrence in Mediterranean-style dryfermented sausages. Foods 2019, 8, 672. [Google Scholar] [CrossRef]
- Chawla, R.; Patil, G.R.; Singh, A.K. High hydrostatic pressure technology in dairy processing: A review. J. Food Sci. Technol. 2011, 48, 260–268. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.Y.; Mao, Y.; Chen, Y.; Shi, F.; Peng, C.; Chen, J.; Yuan, L.; Bai, C.; Chen, L.; et al. Study on the viable but non-culturable (VBNC) state formation of Staphylococcus aureus and its control in food system. Front. Microbiol. 2020, 11, 599739. [Google Scholar] [CrossRef]
- Wideman, N.E.; Oliver, J.D.; Crandall, P.G.; Jarvis, A.N. Detection and potential virulence of viable but non-culturable (VBNC) Listeria monocytogenes: A review. Microorganisms 2021, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.A.C.; Limeira, C.H.; de Siqueira, I.N.; de Lima, A.C.; de Medeiros, F.J.C.; de Souza, J.G.; Medeiros, N.G.D.A.; Oliveira Filho, A.A.D.; Melo, M.A.D. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res. Vet. Sci. 2022, 145, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Tahir, R.; Rabbani, M.; Ahmad, A.; Tipu, M.Y.; Chaudhary, M.H.; Jayarao, B.M. Study on occurrence of Listeria monocytogenes in soil of Punjab Province and its associated risk factors. J. Anim. Plant Sci. 2022, 32, 45–51. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Listeria Outbreaks. Available online: https://www.cdc.gov/listeria/outbreaks/index.html (accessed on 29 August 2023).
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Mol. Med. 2011, 301, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/en/txt/pdf/?uri=celex:02005r2073-20200308&from=en (accessed on 11 September 2021).
- Bhunia, A.K. Listeria monocytogenes. In Foodborne Microbial Pathogens: Mechanisms and Pathogenesis; Bhunia, A.K., Ed.; Food Science Text Series; Springer: New York, NY, USA, 2018; pp. 229–248. [Google Scholar] [CrossRef]
- Lopes-Luz, L.; Mendonça, M.; Bernardes Fogaça, M.; Kipnis, A.; Bhunia, A.K.; Bührer-Sékula, S. Listeria monocytogenes: Review of pathogenesis and virulence determinants-targeted immunological assays. Crit. Rev. Microbiol. 2021, 47, 647–666. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Pouillot, R.; Dennis, S.; Xian, Z.; Luchansky, J.B. Genetic diversity and profiles of genes associated with virulence and stress resistance among isolates from the 2010–2013 interagency Listeria monocytogenes market basket survey. PLoS ONE 2020, 15, e0231393. [Google Scholar] [CrossRef]
- Cotter, P.D.; Draper, L.A.; Lawton, E.M.; Daly, K.M.; Groeger, D.S.; Casey, P.G.; Ross, R.P.; Hill, C. Listeriolysin S, a novel peptide haemolysin associated with a subset of Lineage I Listeria monocytogenes. PLoS Pathog. 2008, 4, e1000144. [Google Scholar] [CrossRef]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gautier, C.; Roussel, S.; Brisabois, A. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Zhang, J.; Chen, Y.; Zeng, H.; Xue, L.; Lei, T.; Pang, R.; Wu, S.; Wu, H.; et al. Isolation, Potential Virulence, and Population Diversity of Listeria monocytogenes From Meat and Meat Products in China. Front. Microbiol. 2019, 7, 946. [Google Scholar] [CrossRef]
- De Melo Tavares, R.; da Silva, D.A.L.; Camargo, A.C.; Yamatogi, R.S.; Nero, L.A. Interference of the acid stress on the expression of llsX by Listeria monocytogenes pathogenic island 3 (LIPI-3) variants. Food Res. Int. 2020, 132, 109063. [Google Scholar] [CrossRef]
- Disson, O.; Moura, A.; Lecuit, M. Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends Microbiol. 2021, 29, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, J.; Wei, C.; Lin, C.-W.; Ding, T. Current perspectives on viable but nonculturable state in foodborne pathogens. Front. Microbiol. 2017, 8, 580. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Ghosh, R.A. Assessment of bacterial viability: A comprehensive review on recent advances and challenges. Microbiology 2019, 165, 593–610. [Google Scholar] [CrossRef] [PubMed]
- Besnard, V.; Federighi, M.; Declerg, E.; Jugiau, F.; Cappelier, J.M. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet. Res. 2002, 33, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, E.; O’Byrne, C.; Oliver, J.D. Effect of weak acids on Listeria monocytogenes survival: Evidence for a viable but nonculturable state in response to low pH. Food Control 2009, 20, 1141–1144. [Google Scholar] [CrossRef]
- Highmore, C.J.; Warner, J.C.; Rothwell, S.D.; Wilks, S.A.; Keevil, C.W. Viable-but-nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson induced by chlorine stress remain infection. mBio 2018, 9, e00540-18. [Google Scholar] [CrossRef] [PubMed]
- Trinh, N.T.T.; Dumas, E.; Le Thanh, M.; Degraeve, P.; Amara, C.B.; Gharsallaoui, A.; Oulahal, N. Effect of a Vietnamese Cinnamomum cassia essential oil and its major component transcinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua. Can. J. Microbiol. 2015, 61, 263–271. [Google Scholar] [CrossRef]
- Walczycka, M. Metody inaktywacji i hamowania wzrostu Listeria monocytogenes w przetworach mięsnych. Ż. Nauk. Technol. J. 2005, 2, 61–72. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Dortet, L.; Veiga-Chacon, E.; Cossart, P. Listeria monocytogenes. In Encyclopedia of Microbiology; Schaechter, M., Ed.; Institute Pasteur: Paris, France, 2009; pp. 182–198. [Google Scholar]
- Olaimat, A.N.; Al-Holy, M.; Shahbaz, H.M.; Al-Nabulsi, A.A.; Abu Ghoush, M.H.; Osaili, T.M.; Ayyash, M.M.; Holley, R.A. Emergence of Antibiotic Resistance in Listeria monocytogenes Isolated from Food Products: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1277–1292. [Google Scholar] [CrossRef]
- Noll, M.; Kleta, S.; Al Dahouk, S. Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants, and human samples in Germany. J. Infect. Public Health 2018, 11, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Olsen, R.H.; Ye, L.; Wang, W.; Shi, L.; Yan, H.; Meng, H. Characterization of antimicrobial resistance of Listeria monocytogenes strains isolated from a pork processing plant and its respective meat markets in southern China. Foodborne Pathog. Dis. 2016, 13, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Granier, S.A.; Moubareck, C.; Colaneri, C.; Lemire, A.; Roussel, S.; Dao, T.T.; Brisabois, A. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl. Environ. Microbiol. 2011, 77, 2788–2790. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Yap, K.P.; Thong, K.L. Comparative genomics analyses revealed two virulent Listeria monocytogenes strains isolated from ready-to-eat food. Gut Pathog. 2016, 8, 65. [Google Scholar] [CrossRef]
- Wilson, A.; Gray, J.; Chandry, P.S.; Fox, E.M. Phenotypic and genotypic analysis of antimicrobial resistance among Listeria monocytogenes isolated from Australian food production chains. Genes 2018, 9, 80. [Google Scholar] [CrossRef]
- Iwu, C.D.; Okoh, A.I. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS ONE 2020, 15, e0228956. [Google Scholar] [CrossRef]
- Rakic-Martinez, M.; Drevets, D.A.; Dutta, V.; Katic, V.; Kathariou, S. Listeria monocytogenes strains selected on ciprofloxacin, or the disinfectant benzalkonium chloride exhibit reduced susceptibility to ciprofloxacin, gentamicin, benzalkonium chloride, and other toxic compounds. Appl. Environ. Microbiol. 2011, 77, 8714–8721. [Google Scholar] [CrossRef]
- Kovacevic, J.; Sagert, J.; Wozniak, A.; Gilmour, M.W.; Allen, K.J. Antimicrobial resistance and co-selection phenomenon in Listeria spp. recovered from food and food production environments. Food Microbiol. 2013, 34, 319–327. [Google Scholar] [CrossRef]
- Godreuil, S.; Galimand, M.; Gerbaud, G.; Jacquet, C.; Courvalin, P. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob. Agents Chemother. 2003, 47, 704–708. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Wu, Q.; Zhang, J.; Chen, Y.; Xue, L.; Lei, T.; Zeng, H.; Wu, S.; Ye, Q.; et al. Occurrence, antibiotic resistance, and population diversity of Listeria monocytogenes isolated from fresh aquatic products in China. Front. Microbiol. 2018, 9, 2215. [Google Scholar] [CrossRef] [PubMed]
- Maung, A.T.; Mohammadi, T.N.; Nakashima, S.; Liu, P.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Antimicrobial resistance profiles of Listeria monocytogenes isolated from chicken meat in Fukuoka, Japan. Int. J. Food Microbiol. 2019, 2, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hailu, W.; Helmy, Y.A.; Carney-Knisely, G.; Kauffman, M.; Fraga, D.; Rajashekara, G. Prevalence and antimicrobial resistance profiles of foodborne pathogens isolated from dairy cattle and poultry manure amended farms in Northeastern Ohio, the United States. Antibiotics 2021, 10, 1450. [Google Scholar] [CrossRef] [PubMed]
- Kayode, A.J.; Semerjian, L.; Osaili, T.; Olapade, O.; Okoh, A.I. Occurrence of multidrug-resistant Listeria monocytogenes in environmental waters: A menace of environmental and public health concern. Front. Environ. Sci. 2021, 9, 737435. [Google Scholar] [CrossRef]
- Mpondo, L.; Ebomah, K.E.; Okoh, A.I. Multidrug-resistant Listeria species shows abundance in environmental waters of a key district municipality in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 481. [Google Scholar] [CrossRef]
- Park, E.; Ha, J.; Oh, H.; Kim, S.; Choi, Y.; Lee, Y.; Kim, Y.; Seo, Y.; Kang, J.; Yoon, Y. High prevalence of Listeria monocytogenes in smoked duck: Antibiotic and heat resistance, virulence, and genetics of the isolates. Food Sci. Anim. Resour. 2021, 41, 324–334. [Google Scholar]
- Swetha, C.S.; Porteen, K.; Elango, A.; Ronald, B.S.M.; Senthil Kumar, T.M.A.; Milton, A.P.; Sureshkannan, S. Genetic diversity, virulence and distribution of antimicrobial resistance among Listeria monocytogenes isolated from milk, beef, and bovine farm environment. Iran. J. Vet. Res. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Tîrziu, E.; Herman, V.; Nichita, I.; Morar, A.; Imre, M.; Ban-Cucerzan, A.; Bucur, I.; Tîrziu, A.; Mateiu-Petrec, O.C.; Imre, K. Diversity and antibiotic resistance profiles of Listeria monocytogenes serogroups in different food products from the transylvania region of central Romania. J. Food Prot. 2022, 85, 54–59. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Magalhaes, R.; Almeida, G.; Ferreira, V.; Santos, I.; Silva, J.; Mendes, M.M.; Pita, J.; Mariano, G.; Mancio, I.; Sousa, M.M.; et al. Cheese-related listeriosis outbreak, Portugal, March 2009 to February 2012. Eurosurveillance 2012, 20, 21104. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Multicountry Outbreak of Listeria monocytogenes Infections Linked to Consumption of Salmon Products. Available online: https://www.ecdc.europa.eu/en/news-events/multi-country-outbreak-listeria-monocytogenes-infections-linked-consumption-salmon (accessed on 29 August 2023).
- European Centre for Disease Prevention and Control (ECDC). Epidemiological Update: Multi-Country Outbreak of Listeria monocytogenes Serogroup IVb, Multi-Locus Sequence Type 6 Infections. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-multi-country-outbreak-listeria-monocytogenes-serogroup-ivb (accessed on 29 August 2023).
- European Centre for Disease Prevention and Control (ECDC). Multicountry Outbreak of Listeria monocytogenes Clonal Complex 8 Infections Linked to Consumption of Cold-Smoked Fish Products. Available online: https://www.ecdc.europa.eu/en/publications-data/multi-country-outbreak-listeria-monocytogenes-fish-products (accessed on 29 August 2023).
- World Health Organization (WHO). Listeriosis–Spain. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2019-DON256 (accessed on 29 August 2023).
- Centers of Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Commercially Produced, Prepackaged Caramel Apples Made from Bidart Bros. Apples (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/caramel-apples-12-14/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Fresh Produce–Associated Listeriosis Outbreaks, Sources of Concern, Teachable Moments, and Insights. Sprouts and Investigation of Human Listeriosis Cases (Final Update). Available online: http://www.cdc.gov/listeria/outbreaks/bean-sprouts-11-14/index.html (accessed on 29 August 2023).
- Centers of Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Blue Bell Creameries Products (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html (accessed on 30 August 2023).
- Centers of Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Packaged Salads Produced at Springfield, Ohio Dole Processing Facility (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/bagged-salads-01-16/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Raw Milk Produced by Miller’s Organic Farm in Pennsylvania (Final Updonlinee). Available online: https://www.cdc.gov/listeria/outbreaks/raw-milk-03-16/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Frozen Vegetables (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/frozen-vegetables-05-16/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Soft Cheeses Distributed by Karoun Dairies, Inc. (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/soft-cheeses-09-15/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Soft Raw Milk Cheese Made by Vulto Creamery (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/soft-cheese-03-17/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Outbreak of Listeria Infections Linked to Hard-Boiled Eggs. Available online: https://www.cdc.gov/listeria/outbreaks/eggs-12-19/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Outbreak of Listeria Infections Linked to Enoki Mushrooms. Available online: https://www.cdc.gov/listeria/outbreaks/enoki-mushrooms-03-20/index.html (accessed on 12 September 2023).
- Centers of Disease Control and Prevention (CDC). Outbreak of Listeria Infections Linked to Deli Meats. Available online: https://www.cdc.gov/listeria/outbreaks/delimeat-10-20/index.html (accessed on 29 August 2023).
- Centers of Disease Control and Prevention (CDC). Listeria Outbreak Linked to Fully Cooked Chicken. Available online: https://www.cdc.gov/listeria/outbreaks/precooked-chicken-07-21/index.html (accessed on 29 August 2023).
- Centers of Disease Control and Prevention (CDC). Listeria Outbreak Linked to Ice Cream. Available online: https://www.cdc.gov/listeria/outbreaks/monocytogenes-06-22/index.html (accessed on 29 August 2023).
- Centers for Disease Control and Prevention (CDC). Listeria Outbreak Linked to Packaged Salads Produced by Fresh Express. Available online: https://www.cdc.gov/listeria/outbreaks/packaged-salad-12-21-b/index.html (accessed on 29 August 2023).
- Chen, Y.; Burall, L.S.; Luo, Y.; Timme, R.; Melka, D.; Muruvanda, T.; Payne, J.; Wang, C.; Kastanis, G.; Maounounen-Laasri, A.; et al. Listeria monocytogenes in stone fruits linked to a multistate outbreak: Enumeration of cells and whole-genome sequencing. Appl. Environ. Microbiol. 2016, 82, 7030–7040. [Google Scholar] [CrossRef] [PubMed]
- Self, J.L.; Conrad, A.; Stroika, S.; Jackson, A.; Whitlock, L.; Jackson, K.A.; Beal, J.; Wellman, A.; Fatica, M.K.; Bidol, S.; et al. Multistate outbreak of listeriosis associated with packaged leafy green salads, United States and Canada, 2015–2016. Emerg. Infect. Dis. 2019, 8, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Listeriosis—South Africa. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/28-march-2018-listeriosis-south-africa-en (accessed on 29 August 2023).
- Das, A.; Sai Mala, G.; Singh, R.S.; Majumdar, A.; Chatterjee, R.; Chaudhuri, I.; Mahapatra, T. Prelacteal feeding practice and maintenance of exclusive breast feeding in Bihar, India—Identifying key demographic sections for childhood nutrition interventions: A cross-sectional study. Glob. Biosecurity 2019, 1, 1. [Google Scholar] [CrossRef]
- Kaptchouang Tchatchouang, C.D.; Fri, J.; De Santi, M.; Brandi, G.; Schiavano, G.F.; Amagliani, G.; Ateba, C.N. Listeriosis outbreak in South Africa: A comparative analysis with previously reported cases worldwide. Microorganisms 2020, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Forghani, F.; Daliri, B.M.E.; Li, J.; Liao, X.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Microbial response to some nonthermal physical technologies. Trends Food Sci. Technol. 2020, 95, 107–117. [Google Scholar] [CrossRef]
- Silva, F.V.M. Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Appl. Sci. 2023, 13, 1193. [Google Scholar] [CrossRef]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schluter, O.; Schwarzenbolz, U.; Jager, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Alvarez-Ordo’nez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Scientific Opinion on the efficacy and safety of high-pressure processing of food. EFSA J. 2022, 20, 7128–7195. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Muntean, M.V.; Marian, O.; Barbieru, V.; Cătunescu, G.M.; Ranta, O.; Drocas, I.; Terhes, S. High pressure processing in food industry—Characteristics and applications. Agric. Agric. Sci. Procedia 2016, 10, 377–383. [Google Scholar] [CrossRef]
- Woldemariam, H.W.; Emire, S.A. High pressure processing of foods for microbial and Mycotoxins control: Currenttrends and future prospects. Cogent Food Agric. 2019, 5, 1622184. [Google Scholar] [CrossRef]
- Ritz, M.; Tholozan, J.L.; Federighi, M.; Pilet, M.F. Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl. Environ. Microbiol. 2001, 67, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Alpas, H.; Bozoglu, F. Efficiency of high pressure treatment for destruction of Listeria monocytogenes in fruit juices. FEMS Microbiol. Immunol. 2023, 35, 269e273. [Google Scholar] [CrossRef]
- Lopez-Pedemonte, T.; Roig-Sagues, A.; De Lamo, S.; Hernandez-Herrero, M.; Guamis, B. Reduction of counts of Listeria monocytogenes in cheese by means of high hydrostatic pressure. Food Microbiol. 2007, 24, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.F.; Mackle, A.; Linton, M. Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken. Food Microbiol. 2011, 28, 1505e1508. [Google Scholar] [CrossRef] [PubMed]
- Tomasula, P.M.; Renye, J.A.; Van Hekken, D.L.; Tunick, M.H.; Kwoczak, R.; Toht, M.; Leggett, L.N.; Luchansky, J.B.; Porto-Fett, A.C.; Phillips, J.G. Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged queso fresco. J. Dairy Sci. 2014, 97, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, C.; Komora, N.; Castro, S.M.; Saraiva, J.; Ferreira, V.B.; Teixeira, P. High hydrostatic pressure effects on Listeria monocytogenes and L. innocua: Evidence for variability in inactivation behaviour and in resistance to pediocin bacHA-6111-2. Food Microbiol. 2017, 64, 226–231. [Google Scholar] [CrossRef]
- Balamurugan, S.; Inmanee, P.; Souza, J.; Strange, P.; Pirak, T.; Barbut, S. Effects of high pressure processing and hot water pasteurization of cooked sausages on inactivation of inoculated Listeria monocytogenes, natural populations of lactic acid bacteria, Pseudomonas spp., and coliforms and their recovery during storage at 4 and 10 °C. J. Food Prot. 2018, 81, 1245–1251. [Google Scholar] [CrossRef]
- Evert-Arriagada, K.; Trujillo, A.; Amador-Espejo, G.; Hernández-Herrero, M. High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese. Food Microbiol. 2018, 76, 481–486. [Google Scholar] [CrossRef]
- Misiou, O.; van Nassau, T.J.; Lenz, C.A.; Vogel, R.F. The preservation of Listeria-critical foods by a combination of endolysin and high hydrostatic pressure. Int. J. Food Microbiol. 2018, 266, 355–362. [Google Scholar] [CrossRef]
- Batty, D.; Meunier-Goddik, L.; Waite-Cusic, J.G. Camembert-type cheese quality and safety implications in relation to the timing of high-pressure processing during aging. J. Dairy Sci. 2019, 102, 8721–8733. [Google Scholar] [CrossRef] [PubMed]
- Stratakos, A.C.; Inguglia, E.S.; Linton, M.; Tollerton, J.; Murphy, L.; Corcionivoschi, N.; Koidis, A.; Tiwari, B.K. Effect of high pressure processing on the safety, shelf life and quality of raw milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 325–333. [Google Scholar] [CrossRef]
- Bambace, M.F.; Moreira, R.; Sánchez-Moreno, C.; Ancos, B.D. Effects of combined application of high-pressure processing and active coatings on phenolic compounds and microbiological and physicochemical quality of apple cubes. J. Sci. Food Agric. 2021, 101, 4256–4265. [Google Scholar] [CrossRef] [PubMed]
- Cava, R.; Higuero, N.; Ladero, L. High-pressure processing and storage temperature on Listeria monocytogenes, microbial counts and oxidative changes of two traditional dry-cured meat products. Meat Sci. 2021, 171, 108273. [Google Scholar] [CrossRef] [PubMed]
- Valdramidis, V.P.; Patterson, M.F.; Linton, M. Modelling the recovery of Listeria monocytogenes in high pressure processed simulated cured meat. Food Control 2015, 47, 353–358. [Google Scholar] [CrossRef]
- Zagorska, J.; Galoburda, R.; Raita, S.; Liepa, M. Inactivation and recovery of bacterial strains, individually and mixed, in milk after high pressure processing. Int. Dairy J. 2021, 123, 105147. [Google Scholar] [CrossRef]
- Jofré, A.; Aymerich, T.; Bover-Cid, S.; Garriga, M. Inactivation and recovery of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus after high hydrostatic pressure treatments up to 900 MPa. Int. Microbiol. 2010, 13, 105–112. [Google Scholar] [CrossRef]
- Jarzynka, S.; Strom, K.; Barbarska, O.; Pawlikowska, E.; Rosiak, E.; Oledzka, G.; Wesolowska, A. Combination of High-Pressure Processing and Freeze-Drying as the Most Effective Techniques in Maintaining Biological Values and Microbiological Safety of Donor Milk. Int. J. Environ. Res. Public Health 2020, 18, 2147. [Google Scholar] [CrossRef]
- Pérez-Baltar, A.; Serrano, A.; Medina, M.; Montiel, R. Effect of high pressure processing on the inactivation and the relative gene transcription patterns of Listeria monocytogenes in dry-cured ham. LWT 2021, 139, 110555. [Google Scholar] [CrossRef]
- Raghubeer, E.V.; Phan, B.N.; Onuoha, E.; Diggins, S.; Aguilar, V.; Swanson, S.; Lee, A. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. Int. J. Food Microbiol. 2020, 331, 108697. [Google Scholar] [CrossRef]
- Baptista, I.; Rocha, S.M.; Cunha, Â.; Saraiva, J.A.; Almeida, A. Inactivation of Staphylococcus aureus by high pressure processing: An overview. Innov. Food Sci. Emerg. Technol. 2016, 36, 128–149. [Google Scholar] [CrossRef]
- Hnosko, J.; San-Martin Gonzalez, M.; Clark, S. High-pressure processing inactivates Listeria innocua yet compromises Queso Fresco crumbling properties. J. Dairy Sci. 2012, 95, 4851–4862. [Google Scholar] [CrossRef] [PubMed]
- Hereu, A.; Bover-Cid, S.; Garriga, M.; Aymerich, T. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. Int. J. Food Microbiol. 2012, 154, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, Y.; Acosta-Muñiz, C.; Olivas, G.I.; Guerrero-Beltrán, J.; Rodrigo-Aliaga, D.; Sepúlveda, D.R. High hydrostatic pressure processing of cheese. Compr. Rev. Food Sci. Food Saf. 2012, 11, 399–415. [Google Scholar] [CrossRef]
- Kheadr, E.E.; Vachon, J.; Paquin, P.; Fliss, I. Effect of dynamic high pressure on microbiological, rheological and microstructural quality of Cheddar cheese. Int. Dairy J. 2001, 12, 435–446. [Google Scholar] [CrossRef]
- Evert-Arriagada, K.; Hernández-Herrero, M.; Juan, B.; Guamis, B.; Trujillo, A. Effect of high pressure on fresh cheese shelf-life. J. Food Eng. 2012, 110, 248–253. [Google Scholar] [CrossRef]
- Fleischmann, S.; Robben, C.H.; Alter, T.; Rossmanith, P.; Mester, P. How to evaluate nongrowing cells—Current strategies for determining antimicrobial resistance of VBNC bacteria. Antibiotics 2021, 10, 115. [Google Scholar] [CrossRef]
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms. Crit. Rev. Microbiol. 2015, 41, 61–76. [Google Scholar] [CrossRef]
- Zhao, X.H.; Li, M.; Xu, Z.B. Detection of foodborne pathogens by surface enhanced raman spectroscopy. Front. Microbiol. 2018, 9, 1236. [Google Scholar] [CrossRef]
- Zhao, X.H.; Yu, Z.X.; Xu, Z.B. Study the features of 57 confirmed CRISPR Loci in 38 strains of Staphylococcus aureus. Front. Microbiol. 2018, 9, 1591. [Google Scholar] [CrossRef]
- Aurass, P.; Prager, R.; Flieger, A. EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of hemolytic uremic syndrome enters the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ. Microbiol. 2011, 13, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.K.; Hayman, M.M.; Stewart, C.M.; Szabo, E.A.; Knabel, S.J. Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. Int. J. Food Microbiol. 2014, 101, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Koseki, S.; Yamamoto, K. Modelling the bacterial survival/death interface induced by high pressure processing. Int. J. Food Microbiol. 2007, 116, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Nakaura, Y.; Morimatsu, K.; Inaoka, T.; Yamamoto, K. Listeria monocytogenes cells injured by high hydrostatic pressure and their recovery in nutrient-rich or -free medium during cold storage. High Press Res. 2019, 39, 324–333. [Google Scholar] [CrossRef]
- Pérez-Baltar, A.; Alía, A.; Rodríguez, A.; Córdoba, J.J.; Medina, M.; Montiel, R. Impact of water activity on the inactivation and gene expression of Listeria monocytogenes during refrigerated storage of pressurized dry-cured ham. Foods 2020, 9, 1092. [Google Scholar] [CrossRef]
- Kannan, S.; Balakrishnan, J.; Govindasamy, A. Listeria monocytogenes—Amended understanding of its athogenesis with a complete picture of its membrane vesicles, quorum sensing, biofilm and invasion. Microb. Pathog. 2020, 149, 104575. [Google Scholar] [CrossRef]
- Wei, L.N.; Shi, C.Z.; Luo, C.X.; Hu, C.H.Y.; Meng, Y.H. Phloretin inhibits biofilm formation by affecting quorum sensing under different temperature. LWT 2020, 131, 109668. [Google Scholar] [CrossRef]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef]
- Wemekamp-Kamphuis, H.H.; Wouters, J.A.; De Leeuw, P.P.L.A.; Hain, T.; Chakraborty, T.; Abee, T. Identification of sigma factor σB-controlled genes and their impact on acid stress, igh hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 2004, 70, 3457–3466. [Google Scholar] [CrossRef]
- Rantsiou, K.; Greppi, A.; Garosi, M.; Acquadro, A.; Mataragas, M.; Cocolin, L. Strain dependent expression of stress response and virulence genes of Listeria monocytogenes in meat juices as determined by microarray. Int. J. Food Microbiol. 2012, 152, 116–122. [Google Scholar] [CrossRef]
- Liu, Y.; Orsi, R.H.; Gaballa, A.; Wiedmann, M.; Boor, K.J.; Guariglia-Oropeza, V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol. 2019, 14, 801–828. [Google Scholar] [CrossRef] [PubMed]
- Chaturongakul, S.; Raengpradub, S.; Wiedmann, M.; Boor, K.J. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol. 2008, 16, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Sue, D.; Boor, K.J.; Wiedmann, M. SigmaB -dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 2003, 149, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.P.; Bittencourt, C.R.; Ross, T. Differential gene expression of Listeria monocytogenes during high hydrostatic pressure processing. Microbiology 2008, 154, 462–475. [Google Scholar] [CrossRef]
- Schrama, D.; Helliwell, N.; Neto, L.; Faleiro, M.L. Adaptation of Listeria monocytogenes in a simulated cheese medium: Effects on virulence using the Galleria mellonella infection model. Lett. Appl. Microbiol. 2013, 56, 421–427. [Google Scholar] [CrossRef]
- Montiel, R.; Quesille-Villalobos, A.; Alessandria, V.; Medina, M.; Cocolin, L.S.; Rantsiou, K. Antilisterial effect and influence on Listeria monocytogenes gene expression of enterocin or Enterococcus faecalis in sliced dry-cured ham stored at 7 °C. J. Food Prot. 2019, 82, 1598–1606. [Google Scholar] [CrossRef]
Virulence Factors | Protein/Gene | Function | |
---|---|---|---|
Protein Regulatory Factor | PrfA | Regulator of expression of many virulence proteins | |
Sigma B | σB | Regulation of stress and virulence genes | |
Adhesion Proteins | Listeria adhesion protein | LAP | Adhesion to intestinal epithelial cells; disruption of intestinal epithelial barrier |
Listeria adhesion protein B | LapB | Adhesion and invasion into host cells | |
Autolysin amidase | Ami | Adhesion to hepatocytes | |
Fibronectin binding protein | FbpA | Adhesion to cells and serves as a chaperone to stabilise and secrete LLO, InlB | |
Internalin J | InlJ | Adhesion to epithelial cells and binds to human intestinal mucin-2 (MUC2) | |
Internalin F | InlF | The crossing of blood–brain barrier | |
Autolysin IspC | - | Adhesion to non-phagocytic cells | |
Lmo1656 | - | Transcytosis in goblet cells | |
Invasion | Internalin | InlA | Promotes bacterial internalisation into enterocytes and bacterial transcytosis across the intestinal barrier |
Internalin B | InlB | Acts in the invasion of enterocytes and passage through M-cells of Peyer’s patches | |
Virulence invasion protein | Vip | Invasion of epithelial cells | |
LAP | - | Induces junctional protein dysregulation and increases epithelial permeability (translocation) | |
Lysis of vacuole | Listeriolysin (LLO) | hlyA | A haemolysin helps bacteria escape from the phagosome inside the cell by disrupting the vacuolar membrane |
Phospholipase | (plcA–PI-PLC; plcB–PC-PLC) | Lyses of vacuole membrane | |
Cell-to-cell spread | Actin polymerisation protein | ActA | Nucleation of actin tail for bacterial movement inside the cytoplasm |
PC-PLC | - | Lyses of vacuole membrane | |
Metalloprotease | Mpl | Helps synthesis of PLC | |
Miscellaneous | P60 (cell wall hydrolase) | - | Adhesion/invasion |
Bile salt hydrolase | BSH | Survival in gut | |
Fructose-1,6- bisphosphate aldolase | FAB | Moonlighting protein: (i) adhesion to the host’s cells and (ii) role in the pathogenesis | |
Internalin C | InlC | Perturbs apical cell junctions | |
Internalin H (InlH) | InlH | Contributes to systemic listeriosis | |
Autolysin amidase | Ami | Bacteriolysin: enhances the host immune response | |
LAP | - | Upregulates TNF-a and IL-6 expression in intestinal cells | |
Listeriolysin (LLO) | hlyA | Induces lymphocyte apoptosis and suppresses proinflammatory cytokines | |
Listeria nuclear-targeted protein A | IntA | Decreases the host’s immune response | |
Listeriolysin S | - | Haemolytic and cytotoxic; bacteriocin (bactericidal) |
No. | Strains | HPP | Reduction in Population (log CFU/g or log CFU/mL) | Food/Medium | Reference | ||
---|---|---|---|---|---|---|---|
Pressure (MPa) | Time (min) | Temp. (°C) | |||||
1 | One strain | 100 | 3 | 12 | NE | Tryptic soy broth (TSB) | [55] |
200 | |||||||
300 | 1.49 | ||||||
400 | BD | ||||||
2 | One strain | 200 | 10 | 20 | NE | pH 5.6 citrate buffer | [95] |
300 | |||||||
400 | BD | ||||||
3 | Cocktail of 5 strains | 200 | 5, 10, 15, 20 | 20, 40 | NE | Queso Fresco (QF) cheese | [99] |
400 | ~1.78-BD | ||||||
600 | BD | ||||||
4 | Cocktail of 2 strains | 200 | 8 | 8 | NE | TSBYE | [14] |
400 | 5.78 and 7.04 | ||||||
5 | Cocktail of 5 strains | 200 | 10 | 25 | NE (I, II, III) | UHT milk (I) Mozzarella (II) Smoked salmon (III) | [103] |
300 | |||||||
400 | 3.00–4.00 (I, II); NE (III) | ||||||
500 | BD (I, II) 1.50 (III) | ||||||
6 | Cocktail of 9 strains | 250 | 5 | 30 | 3.90–4.34 | Pasteurized fruit juices (apple, apricot, cherry, and orange) | [96] |
350 | 25 | 0.92–3.53 | |||||
40 | 8.20–8.70 | ||||||
50 | 7.78–8.04 | ||||||
7 | Cocktail of 14 strains | 300 | 5 | 10 | 0.00–2.76 | TSBYE | [100] |
400 | 0.06–6.31 | ||||||
500 | 0.75–7.23 | ||||||
8 | Two strains | 300 | 10 | 5, 20 | NE | Cheeses | [97] |
400 | 2.97 and 1.57 | ||||||
500 | 5.00 | ||||||
9 | Two strains | 300 | 5 | 6 | NE | Commercial free-starter fresh cheese | [102] |
400 | |||||||
500 | BD − and BD + 1.50 − and 2.00 + | ||||||
600 | BD − and BD + 3.90 − and 4.30 + | ||||||
10 | Cocktail of 4 strains | 350 | 10 | 25 | ~2.00 | Camembert cheese | [104] |
450 | >5.00 | ||||||
550 | |||||||
11 | One strain | 400 | 5 | 35 | >5.00 | Apple cubes | [106] |
12 | Cocktail of 10 strains | 400 | 1 | 20 | 0.05–2.07 | TSBYE | [10] |
600 | 5.42–8.27 | ||||||
13 | Cocktail of 5 strains | 400–800 | 3 | 20 | 2.00-BD | Meat simulation medium | [108] |
14 | One strain | 400 | 15 | 20 | 4.00 − and 6.70 + | UHT milk | [109] |
500 | |||||||
550 | 4.00 − and 7.00 + | ||||||
600 | |||||||
15 | Cocktail of 5 strains | 400 | 1, 3, 5 | 18 | 1.42 (1 min) | Raw milk | [105] |
500 | 5.48 (5 min) | ||||||
600 | 5.65 (3 min) 5.91 (5 min) | ||||||
16 | Cocktail of 5 strains | 400 | 10 | 15 | ≥8.00 | Brain-heart infusion (BHI) | [110] |
600 | |||||||
900 | 5 | ||||||
17 | One strain | 450 | 15 | 21 | ≥7.91 | Human milk | [111] |
18 | Cocktail of 2 strains | 450 | 10 | 16 | 0.80 | Sliced dry ham | [112] |
600 | 5 | 1.30 and 1.50 | |||||
19 | Cocktail of 7 strains | 593 | 3 | 4 | ≥6.00 | Coconut water | [113] |
20 | Cocktail of 5 strains | 500 | 2, 5, 7 | 4 | 3.90 (2 min) ≥6.50 (7 min) | Raw beef | [60] |
21 | Cocktail of 4 strains | 600 | 8 | 16 | 2.47 (DCS); 2.13 (DCL) | Dry-cured salchichón (DCS) and dry-cured loin (DCL) | [107] |
22 | Cocktail of 13 strains | 600 | 2 | 20 | 5.64-BD | Cooked chicken | [98] |
23 | Cocktail of 4 strains | 600 | 3 | 4 | ≥7.50 | Cooked pork sausage | [101] |
No. | Strains | HPP | Storage Analyses | Food/Medium | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Pressure (MPa) | Time (min) | Temp. (°C) | Time (Days) | Temp. (°C) | Recovery/Presence of Damaged Cells | ||||
1 | Cocktail of 5 strains | 200 | 5, 10, 15, 20 | 20, 40 | 60 (0, 7, 14, 28, 42, 60) * | 4, 10 | (+) ≥42 day recovery | Queso Fresco cheese (QF) | [99] |
400 | |||||||||
600 | |||||||||
2 | One strain | 200–500 | 1, 3, 5, 10, 20, 30 | 22 ± 2 | 30 (10, 20, 30) * | 20 | (+) | Medium | [126] |
37 | (–) | ||||||||
3 | One strain | 350 | 10 | 45 | 28 (0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 26, 28) * | 4 | >6 day (+) | UHT milk | [13] |
450 | 22 | >1 day (+) | |||||||
550 | 30 | ||||||||
4 | Cocktail of 5 strains | 400 | 10 | 15 | 21 (2, 7, 21) * | 14 | (+) >21 days more recovery | Brain-heart infusion (BHI) | [110] |
600 | |||||||||
900 | 5 | 22 | >2 day (+) | ||||||
5 | Cocktail of 5 strains | 400–800 | 3 | 20 | 28 (7 days intervals) * | 8 | ≥700 MPa (–) | Meat simulation medium | [108] |
6 | Cocktail of 5 strains | 450 | 15 | 18 ± 2 | 14 (daily) * | 4 | >72 h (–) | Skim/whole raw milk | [125] |
600 | 1.5 | 15 | ≤14 days (–) | ||||||
30 | >72 h (–) | ||||||||
7 | One strain | 500 | 10 | 25 | 42 (daily) * | 0 | (–/+) | Trypticase soy broth (TSB) and phosphate-buffered saline (PBS) | [127] |
5 | (+) | ||||||||
10 | |||||||||
15 | |||||||||
8 | Cocktail of 7 strains | 593 | 3 | 4 | 75 (1, 7, 14, 28, 45, 60, 75) * | 4 | (–) | Coconut water | [113] |
10 | |||||||||
9 | Cocktail of 4 strains | 600 | 3 | 4 | 35 (0, 7, 14, 21, 28, 35) * | 4 | (–) | Cooked pork sausage | [101] |
10 | ≤21 day (–) 35 day (+) |
No. | Strains | HPP | Virulence Genes | Expression | Food/Medium | Reference | ||
---|---|---|---|---|---|---|---|---|
Pressure (MPa) | Time (min) | Temp. (°C) | ||||||
1 | 2 strains | 450 | 10 | 19 | plcA, hly, iap, sigB | General strain-dependent overexpression/suppression (mainly hly sigB, plcA) | Dry-cured ham | [112] |
600 | 5 | |||||||
2 | 2 strains | 450 | 10 | 16 | prfA, plcA, hly, sigB, lmo1421 | [128] | ||
600 | 5 | |||||||
3 | 1 strain | 200 | 3 | 12 | luxS | Upregulation | Trypticase soy broth (TSB) | [15] |
400 | ||||||||
4 | 2 strains | 200 | 8 | 8 | sigB, hpf, prfA | Upregulation | TSBYE | [14] |
400 | ||||||||
5 | 2 strains | 400 | 5 | 15 | sigB, prfA | Strong suppression | TSBYE | [137] |
600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses. Foods 2024, 13, 14. https://doi.org/10.3390/foods13010014
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses. Foods. 2024; 13(1):14. https://doi.org/10.3390/foods13010014
Chicago/Turabian StyleWiśniewski, Patryk, Wioleta Chajęcka-Wierzchowska, and Anna Zadernowska. 2024. "Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses" Foods 13, no. 1: 14. https://doi.org/10.3390/foods13010014
APA StyleWiśniewski, P., Chajęcka-Wierzchowska, W., & Zadernowska, A. (2024). Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses. Foods, 13(1), 14. https://doi.org/10.3390/foods13010014