Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review
Abstract
:1. Introduction
2. Main Structures, Distributions and Metabolism of SA
2.1. Structures of SA
2.2. Distributions of SA
2.3. Metabolism of SA
3. Biological Functions and Molecular Mechanisms of SA
3.1. Brain Development and Learning Behavior
3.2. Anti-Viral Capacity
3.3. Anti-Inflammation
3.4. Anti-Oxidant Activity
3.5. Affecting Tumor
3.6. Immune-Enhancing Ability
3.7. Other Functions
4. Broad Impact of SA on the Gut Microbiome and Function
4.1. Effect of SA on the Alterations of Microflora and Host Health
4.2. Effect of SA Metabolism
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3′SL | 3′sialylactose |
6′SL | 6′sialylactose |
Acetyl-CoA | acetyl coenzyme A |
AChE | acetylcholinesterase |
Akt | protein kinase B |
BDNF | brain-derived neurotrophic factor |
CAT | catalase |
ChAT | choline acetyltransferase |
CMAH | cytidine monophosphate N-acetylneuraminic acid hydroxylase |
CMAS | cytosine 5′-monophosphate N-acetylneuraminate synthetase |
CMP-Neu5Ac | cytidine 5′-monophosphate-N-acetylneuraminic acid |
CoVs | coronaviruses |
COX-2 | cyclooxygenase-2 |
EBN | edible bird’s nest |
ERK | extracellular signal-regulated kinase |
GNE | UDP-N-acetlyl-glucosamine-2-epimerase |
GOS | galacto-oligosaccharides |
GSH-Px | glutathione peroxidase |
HER2 | human epidermal growth factor receptor 2 |
HMOs | human milk oligosaccharides |
HO-1 | heme oxygenase-1 |
IBD | inflammatory bowel disease |
IgE | immunoglobulin E |
IL-1β | interleukin-1β |
IL-6 | interleukin-6 |
iNOS | inducible nitric oxide synthase |
JNK | c-Jun N-Terminal kinase |
KDN | deaminated neuraminic acid |
LPS | lipopolysaccharide |
ManNAc | N-acetylmannosamine |
ManNAc-6-P | ManNAc-6-phosphate |
MAPK | mitogen-activated protein kinase |
MDA | malondialdehyde |
NANP | N-acetylneuraminate-9-phosphate phosphatase |
NAL | N-acetylneuraminate lyase |
NANS | N-acetylneuraminate-9-phosphate synthase |
NCAM | neural cell adhesion molecule |
NEC | necrotising enterocolitis |
Neu | neuraminic acid |
NEU | neuraminidase |
Neu5Ac | N-acetylneuraminic acid |
Neu5Gc | N-glycolylneuraminic acid |
NeuAc-9-P | N-acetylneuraminic-9-phosphate |
NF-κB | nuclear factor-kappa B |
NO | nitric oxide |
NQO-1 | NADPH quinone oxidoreductase 1 |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
PEP | phosphoenolpyruvate |
PolySA | polysialic acid |
ROS | reactive oxygen species |
SA | sialic acid |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus-2 |
SCFAs | short-chain fatty acids |
SLC17A5 | solute carrier family 17 member 5 |
SOD | superoxide dismutase |
ST8SiaIV | α-2,8-sialyltransferase IV |
TBARS | thiobarbituric acid reactive species |
TLR4 | toll-like receptor 4 |
TNF-α | tumor necrosis factor-α |
UDP-GlcNAc | uridine diphosphate-N-acetylglucosamine |
References
- Yang, H.Q.; Lu, L.P.; Chen, X.Z. An overview and future prospects of sialic acids. Biotechnol. Adv. 2021, 46, 107678. [Google Scholar] [CrossRef] [PubMed]
- Haghani, A.; Mehrbod, P.; Safi, N.; Kadir, F.A.; Omar, A.R.; Ideris, A. Edible bird’s nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC Complement. Altern. Med. 2017, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Pawluczyk, I.Z.A.; Najafabadi, M.G.; Brown, J.R.; Bevington, A.; Topham, P.S. Sialic acid supplementation ameliorates puromycin aminonucleoside nephrosis in rats. Lab. Investig. 2015, 95, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Ofek, I.; Hasy, D.L.; Sharon, N. Anti-adhesion therapy of bacterial diseases: Prospects and problems. FEMS Immunol. Med. Microbiol. 2003, 38, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Liu, Q.C.; Qin, S.C.; Zong, C.L.; Zhang, Y.; Yao, S.T.; Yang, N.N.; Guan, T.; Guo, S.D. Synthesis and cardiovascular protective effects of quercetin 7-O-sialic acid. J. Cell. Mol. Med. 2017, 21, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Simpson, A.B.; D’Costa, E.; Bunn, F.S.; van Leeuwen, S.S. Sialic acid, the secret gift for the brain. Crit. Rev. Food Sci. Nutr. 2023, 63, 9875–9894. [Google Scholar] [CrossRef] [PubMed]
- van Karnebeek, C.D.; Bonafé, L.; Wen, X.Y.; Tarailo-Graovac, M.; Balzano, S.; Royer-Bertrand, B.; Ashikov, A.; Garavelli, L.; Mammi, I.; Turolla, L.; et al. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat. Genet. 2016, 48, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, R.Z.; Zheng, S.J.; Wang, X.L.; Li, Q.; Ding, J.; Ma, X.; Zhuo, Z.H.; Li, Z.; Xin, Q.; Lu, X.; et al. Crosstalk between breast milk N-acetylneuraminic acid and infant growth in a gut microbiota-dependent manner. Metabolites 2023, 13, 846. [Google Scholar] [CrossRef]
- Bell, A.; Severi, E.; Owen, C.D.; Latousakis, D.; Juge, N. Biochemical and structural basis of sialic acid utilization by gut microbes. J. Biol. Chem. 2023, 299, 104610. [Google Scholar]
- Sokolovskaya, O.M.; Tan, M.W.; Wolan, D.W. Sialic acid diversity in the human gut: Molecular impacts and tools for future discovery. Curr. Opin. Struct. Biol. 2022, 75, 102397. [Google Scholar] [CrossRef]
- Altman, M.O.; Gagneux, P. Absence of Neu5Gc and presence of anti-Neu5Gc antibodies in humans-an evolutionary perspective. Front. Immunol. 2019, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 2009, 19, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Brand-Miller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 2003, 57, 1351–1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 2012, 3, 465S–472S. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 2000, 17, 485–499. [Google Scholar] [CrossRef]
- Chen, X.; Varki, A. Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 2010, 5, 163–176. [Google Scholar] [CrossRef]
- Rösner, H. Significance of gangliosides in neuronal differentiation of neuroblastoma cells and neurite growth in tissue culture. Ann. N. Y. Acad. Sci. 1998, 845, 200–214. [Google Scholar] [CrossRef]
- Wang, B.; McVeagh, P.; Petocz, P.; Brand-Miller, J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am. J. Clin. Nutr. 2003, 78, 1024–1029. [Google Scholar] [CrossRef]
- Spichtig, V.; Michaud, J.; Austin, S. Determination of sialic acids in milks and milk-based products. Anal. Biochem. 2010, 405, 28–40. [Google Scholar] [CrossRef]
- Wang, B.; Brand-Miller, J.; McVeagh, P.; Petocz, P. Concentration and distribution of sialic acid in human milk and infant formulas. Am. J. Clin. Nutr. 2001, 74, 510–515. [Google Scholar] [CrossRef]
- Wong, Z.C.F.; Chan, G.K.L.; Wu, K.Q.Y.; Poon, K.K.M.; Chen, Y.; Dong, T.T.X.; Tsim, K.W.K. Completed digestion of edible bird’s nest releases free N-acetylneuraminic acid and small peptide: An efficiency method to improve functional properties. Food Funct. 2018, 9, 5139–5149. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.W.A.; Chang, L.S.; Babji, A.S.; Lim, S.J. Recovery of value-added glycopeptides from edible bird’s nest (EBN) co-products: Enzymatic hydrolysis, physicochemical characteristics and bioactivity. J. Sci. Food Agric. 2020, 100, 4714–4722. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.L.; Conway, L.P.; Wang, M.M.; Huang, K.; Liu, L.; Voglmeir, J. Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards. Glycoconj. J. 2016, 33, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Manzi, A.E.; Higa, H.H.; Diaz, S.; Varki, A. Intramolecular self-cleavage of polysialic acid. J. Biol. Chem. 1994, 269, 23617–23624. [Google Scholar] [CrossRef] [PubMed]
- Stäsche, R.; Hinderlich, S.; Weise, C.; Effertz, K.; Lucka, L.; Moormann, P.; Reutter, W. A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 1997, 272, 24319–24324. [Google Scholar] [CrossRef] [PubMed]
- Maliekal, P.; Vertommen, D.; Delpierre, G.; Van Schaftingen, E. Identification of the sequence encoding N-acetylneuraminate-9-phosphate phosphatase. Glycobiology 2006, 16, 165–172. [Google Scholar] [CrossRef]
- Li, Y.H.; Chen, X. Sialic acid metabolism and sialyltransferases: Natural functions and applications. Appl. Microbiol. Biotechnol. 2012, 94, 887–905. [Google Scholar] [CrossRef]
- Münster-Kühnel, A.K.; Tiralongo, J.; Krapp, S.; Weinhold, B.; Ritz-Sedlacek, V.; Jacob, U.; Gerardy-Schahn, R. Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology 2004, 14, 43R–51R. [Google Scholar] [CrossRef]
- Monti, E.; Preti, A.; Rossi, E.; Ballabio, A.; Borsani, G. Cloning and characterization of NEU2, a human gene homologous to rodent soluble sialidases. Genomics 1999, 57, 137–143. [Google Scholar] [CrossRef]
- Bao, L.; Ding, L.; Hui, J.J.; Ju, H.X. A light-up imaging protocol for neutral pH-enhanced fluorescence detection of lysosomal neuraminidase activity in living cells. Chem. Commun. 2016, 52, 12897–12900. [Google Scholar] [CrossRef]
- Monti, E.; Bassi, M.T.; Bresciani, R.; Civini, S.; Croci, G.L.; Papini, N.; Riboni, M.; Zanchetti, G.; Ballabio, A.; Preti, A.; et al. Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomics 2004, 83, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, T.; Wada, T.; Iwamatsu, A.; Hata, K.; Yoshikawa, Y.; Tokuyama, S.; Sawada, M. Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J. Biol. Chem. 1999, 274, 5004–5011. [Google Scholar] [CrossRef] [PubMed]
- Bardor, M.; Nguyen, D.H.; Diaz, S.; Varki, A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 2005, 280, 4228–4237. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R.; Sommer, U.; Krüger, D.; van Unen, H.; Traving, C. The terminal enzymes of sialic acid metabolism: Acylneuraminate pyruvate-lyases. Biosci. Rep. 1999, 19, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, J.Y.; Liu, Y.H.; Xu, D.Y. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids Health Dis. 2019, 18, 173. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Vázquez, E.; Barranco, A.; Ramírez, M.; Gruart, A.; Delgado-García, J.M.; Buck, R.; Rueda, R.; Martín, M.J. Sialic acid and sialylated oligosaccharide supplementation during lactation improves learning and memory in rats. Nutrients 2018, 10, 1519. [Google Scholar] [CrossRef]
- Hauser, J.; Pisa, E.; Arias Vásquez, A.; Tomasi, F.; Traversa, A.; Chiodi, V.; Martin, F.P.; Sprenger, N.; Lukjancenko, O.; Zollinger, A.; et al. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol. Psychiatr. 2021, 26, 2854–2871. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, B.; Karim, M.; Hu, H.; Sun, Y.; McGreevy, P.; Petocz, P.; Held, S.; Brand-Miller, J. Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 2007, 85, 561–569. [Google Scholar] [CrossRef]
- Obelitz-Ryom, K.; Bering, S.B.; Overgaard, S.H.; Eskildsen, S.F.; Ringgaard, S.; Olesen, J.L.; Skovgaard, K.; Pankratova, S.; Wang, B.; Brunse, A.; et al. Bovine milk oligosaccharides with sialyllactose improves cognition in preterm pigs. Nutrients 2019, 11, 1335. [Google Scholar] [CrossRef]
- Chung, Y.; Mohanakrishnan, R.; Brossmer, R.; Gong, Q.; Lönnerdal, B.; Jue, T. A mouse model and 19F NMR approach to investigate the effects of sialic acid supplementation on cognitive development. FEBS Lett. 2020, 594, 135–143. [Google Scholar] [CrossRef]
- Bian, D.S.; Wang, X.Y.; Huang, J.L.; Chen, X.X.; Li, H.W. Maternal Neu5Ac supplementation during pregnancy improves offspring learning and memory ability in rats. Front. Nutr. 2021, 8, 641027. [Google Scholar] [CrossRef] [PubMed]
- Mahaq, O.; Rameli, M.A.P.; Jaoi Edward, M.; Mohd Hanafi, N.; Abdul Aziz, S.; Abu Hassim, H.; Mohd Noor, M.H.; Ahmad, H. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav. 2020, 10, e01817. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zeng, H.L.; Huang, Z.J.; Xu, H.; Fan, Q.Y.; Zhang, Y.; Zheng, B.D. Effect of maternal administration of edible bird’s nest on the learning and memory abilities of suckling offspring in mice. Neural Plast. 2018, 2018, 7697261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.D.; Imam, M.U.; Ismail, M.; Ismail, N.; Ideris, A.; Abdullah, M.A. High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats. J. Biomed. Sci. 2015, 22, 96. [Google Scholar]
- Xue, Z.W.; Zhao, H.; Zhu, R.; Chen, C.C.; Cao, H.Z.; Han, J.H.; Han, S.F. On the use of abiotic sialic acids to attenuate cell inflammation. Sci. Rep. 2018, 8, 17320. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.A.; Soh, H.; Park, S.; Lee, H.J.; Im, J.P.; Kim, J.S. Soluble Siglec-9 alleviates intestinal inflammation through inhibition of the NF-κB pathway. Int. Immunopharmacol. 2020, 86, 106695. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Cui, Y.T.; Cao, F.Y.; Qin, Y.Y.; Li, W.J.; Zhang, J.H. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4. Int. Immunopharmacol. 2015, 28, 136–145. [Google Scholar] [CrossRef]
- Li, D.; Xie, T.T.; Guo, T.Y.; Hu, Z.M.; Li, M.Y.; Tang, Y.Q.; Wu, Q.; Luo, F.J.; Lin, Q.L.; Wang, H.Q. Sialic acid exerts anti-inflammatory effect through inhibiting MAPK-NF-κB/AP-1 pathway and apoptosis in ulcerative colitis. J. Funct. Foods 2023, 101, 105416. [Google Scholar] [CrossRef]
- Careena, S.; Sani, D.; Tan, S.N.; Lim, C.W.; Hassan, S.; Norhafizah, M.; Kirby, B.P.; Ideris, A.; Stanslas, J.; Bin Basri, H.; et al. Effect of edible bird’s nest extract on lipopolysaccharide-induced impairment of learning and memory in wistar rats. Evid.-Based Complement. Alternat. Med. 2018, 2018, 9318789. [Google Scholar] [CrossRef]
- Guo, S.D.; Tian, H.; Dong, R.R.; Yang, N.N.; Zhang, Y.; Yao, S.T.; Li, Y.J.; Zhou, Y.W.; Si, Y.H.; Qin, S.C. Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2016, 251, 183–191. [Google Scholar] [CrossRef]
- Psefteli, P.M.; Kitscha, P.; Vizcay, G.; Fleck, R.; Chapple, S.J.; Mann, G.E.; Fowler, M.; Siow, R.C. Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells. Redox Biol. 2021, 38, 101816. [Google Scholar] [CrossRef] [PubMed]
- Murugan, D.D.; Md Zain, Z.; Choy, K.W.; Zamakshshari, N.H.; Choong, M.J.; Lim, Y.M.; Mustafa, M.R. Edible bird’s nest protects against hyperglycemia-induced oxidative stress and endothelial dysfunction. Front. Pharmacol. 2020, 10, 1624. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.Y.; Qin, Y.Q.; Zeng, J.; Yang, Q.; Jia, T. Dietary intervention with sialylated lactulose affects the immunomodulatory activities of mice. J. Dairy Sci. 2021, 104, 9494–9504. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.A.; Ahmad, H.; Abdul Khalid, S.K.; Rathi, D.G. The potential use of sialic acid from edible bird’s nest to attenuate mitochondrial dysfunction by in vitro study. Front. Pharmacol. 2021, 12, 633303. [Google Scholar] [CrossRef]
- Sodhi, C.P.; Wipf, P.; Yamaguchi, Y.; Fulton, W.B.; Kovler, M.; Niño, D.F.; Zhou, Q.; Banfield, E.; Werts, A.D.; Ladd, M.R.; et al. The human milk oligosaccharides 2′-fucosyllactose and 6′-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr. Res. 2021, 89, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Steele, H.; Tague, A.J.; Skropeta, D. The role of sialylation in respiratory viral infection and treatment. Curr. Med. Chem. 2021, 28, 5251–5267. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.L. The role of cell surface sialic acids for SARS-CoV-2 infection. Glycobiology 2021, 31, 1245–1253. [Google Scholar] [CrossRef]
- Saso, W.; Yamasaki, M.; Nakakita, S.I.; Fukushi, S.; Tsuchimoto, K.; Watanabe, N.; Sriwilaijaroen, N.; Kanie, O.; Muramatsu, M.; Takahashi, Y.; et al. Significant role of host sialylated glycans in the infection and spread of severe acute respiratory syndrome coronavirus 2. PLoS Pathog. 2022, 18, e1010590. [Google Scholar] [CrossRef]
- Heida, R.; Bhide, Y.C.; Gasbarri, M.; Kocabiyik, Ö.; Stellacci, F.; Huckriede, A.L.W.; Hinrichs, W.L.J.; Frijlink, H.W. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov. Today 2021, 26, 122–137. [Google Scholar] [CrossRef]
- Pires de Mello, C.P.; Drusano, G.L.; Adams, J.R.; Shudt, M.; Kulawy, R.; Brown, A.N. Oseltamivir-zanamivir combination therapy suppresses drug-resistant H1N1 influenza A viruses in the hollow fiber infection model (HFIM) system. Eur. J. Pharm. Sci. 2018, 111, 443–449. [Google Scholar] [CrossRef]
- Xu, Q.; Shan, Y.Y.; Wang, N.; Liu, Y.P.; Zhang, M.J.; Ma, M.H. Sialic acid involves in the interaction between ovomucin and hemagglutinin and influences the antiviral activity of ovomucin. Int. J. Biol. Macromol. 2018, 119, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Ciarlet, M.; Ludert, J.E.; Iturriza-Gómara, M.; Liprandi, F.; Gray, J.J.; Desselberger, U.; Estes, M.K. Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin. J. Virol. 2002, 76, 4087–4095. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ikeda, K.; Koyama, N.; Hosokawa, C.; Kogure, T.; Takahashi, T.; Jwa Hidari, K.I.; Miyamoto, D.; Tanaka, K.; Suzuki, Y. Inhibition of human parainfluenza virus type 1 sialidase by analogs of 2-deoxy-2,3-didehydroN-acetylneuraminic acid. Glycoconj. J. 2001, 18, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Barnard, K.N.; Alford-Lawrence, B.K.; Buchholz, D.W.; Wasik, B.R.; LaClair, J.R.; Yu, H.; Honce, R.; Ruhl, S.; Pajic, P.; Daugherity, E.K.; et al. Modified sialic acids on mucus and erythrocytes inhibit influenza a virus hemagglutinin and neuraminidase functions. J. Virol. 2020, 94, e01567-19. [Google Scholar] [CrossRef] [PubMed]
- Limsuwat, N.; Suptawiwat, O.; Boonarkart, C.; Puthavathana, P.; Wiriyarat, W.; Auewarakul, P. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses. Arch. Virol. 2016, 161, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Rustmeier, N.H.; Strebl, M.; Stehle, T. The symmetry of viral sialic acid binding sites-implications for antiviral strategies. Viruses 2019, 11, 947. [Google Scholar] [CrossRef]
- Hu, T.Y.; Ju, J.M.; Mo, L.H.; Ma, L.; Hu, W.H.; You, R.R.; Chen, X.Q.; Chen, Y.Y.; Liu, Z.Q.; Qiu, S.Q.; et al. Anti-inflammation action of xanthones from Swertia chirayita by regulating COX-2/NF-κB/MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells. Phytomedicine 2019, 55, 214–221. [Google Scholar] [CrossRef]
- Karam, B.S.; Chavez-Moreno, A.; Koh, W.; Akar, J.G.; Akar, F.G. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc. Diabetol. 2017, 16, 120. [Google Scholar] [CrossRef]
- Xiao, L.; Harrison, D.G. Inflammation in hypertension. Can. J. Cardiol. 2020, 36, 635–647. [Google Scholar] [CrossRef]
- Esmaeili, Y.; Yarjanli, Z.; Pakniya, F.; Bidram, E.; Łos, M.J.; Eshraghi, M.; Klionsky, D.J.; Ghavami, S.; Zarrabi, A. Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment. J. Control. Release 2022, 345, 147–175. [Google Scholar] [CrossRef]
- Yang, X.Y.; He, T.M.; Han, S.J.; Zhang, X.Y.; Sun, Y.; Xing, Y.W.; Shang, H.C. The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxidative Med. Cell. Longev. 2019, 2019, 3231424. [Google Scholar] [CrossRef] [PubMed]
- Iijima, R.; Takahashi, H.; Namme, R.; Ikegami, S.; Yamazaki, M. Novel biological function of sialic acid (N-Acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 2004, 561, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.; Carlsten, M.; O’Dwyer, M. Sugar free: Novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front. Immunol. 2019, 10, 1047. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Zhai, Y.H.; Liu, C.M.; Yang, G.L.; Guo, J.; Li, G.; Sun, C.W.; Qi, X.W.; Li, X.; Guan, F. Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin α5β1 interaction and Akt signaling pathway. Cell Commun. Signal. 2020, 18, 44. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, A.; Zhang, H.; Chen, X.; Wang, L.; Zhang, H.; Yu, X.; Yuan, Q.; Zhang, J.; Wang, S. α2,6-Sialylation mediates hepatocellular carcinoma growth in vitro and in vivo by targeting the Wnt/β-catenin pathway. Oncogenesis 2020, 9, 28. [Google Scholar] [CrossRef]
- Liu, N.H.; Zhu, M.L.; Linhai, Y.J.; Song, Y.W.; Gui, X.J.; Tan, G.Q.; Li, J.Y.; Liu, Y.; Deng, Z.D.; Chen, X.T.; et al. Increasing HER2 α2,6 sialylation facilitates gastric cancer progression and resistance via the Akt and ERK pathways. Oncol. Rep. 2018, 40, 2997–3005. [Google Scholar] [CrossRef]
- Guruaribam, V.D.; Sarumathi, T. Relevance of serum and salivary sialic acid in oral cancer diagnostics. J. Cancer Res. Ther. 2020, 16, 401–404. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wuhrer, M.; Holst, S. Serum sialylation changes in cancer. Glycoconj. J. 2018, 35, 139–160. [Google Scholar] [CrossRef]
- Büll, C.; Boltje, T.J.; Balneger, N.; Weischer, S.M.; Wassink, M.; van Gemst, J.J.; Bloemendal, V.R.; Boon, L.; van der Vlag, J.; Heise, T.; et al. Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res. 2018, 78, 3574–3588. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhang, T.; Peng, B.; Luo, X.; Liu, X.R.; Hu, L.; Liu, Y.; Di, D.H.; Song, Y.Z.; Deng, Y.H. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int. J. Pharm. 2017, 523, 203–216. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Arena, A.; Fierabracci, A. Sialic acid-siglec axis in human immune regulation, involvement in autoimmunity and cancer and potential therapeutic treatments. Int. J. Mol. Sci. 2021, 22, 5774. [Google Scholar] [CrossRef] [PubMed]
- Shade, K.T.C.; Conroy, M.E.; Washburn, N.; Kitaoka, M.; Huynh, D.J.; Laprise, E.; Patil, S.U.; Shreffler, W.G.; Anthony, R.M. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature 2020, 582, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Keumatio Doungstop, B.C.; van Vliet, S.J.; van Ree, R.; de Jong, E.C.; van Kooyk, Y. Carbohydrates in allergy: From disease to novel immunotherapies. Trends Immunol. 2021, 42, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.R.; Hao, M.Z.; Zeng, B.H.; Liu, M.M.; Wang, J.J.; Sun, S.F.; Liu, C.Q.; Huilian, C. Sialic acid and food allergies: The link between nutrition and immunology. Crit. Rev. Food Sci. Nutr. 2022, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Abeln, M.; Albers, I.; Peters-Bernard, U.; Flächsig-Schulz, K.; Kats, E.; Kispert, A.; Tomlinson, S.; Gerardy-Schahn, R.; Münster-Kühnel, A.; Weinhold, B. Sialic acid is a critical fetal defense against maternal complement attack. J. Clin. Investig. 2019, 129, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Wielgat, P.; Rogowski, K.; Godlewska, K.; Car, H. Coronaviruses: Is sialic acid a gate to the eye of cytokine storm? From the entry to the effects. Cells 2020, 9, 1963. [Google Scholar] [CrossRef]
- Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 1998, 54, 1330–1349. [Google Scholar] [CrossRef]
- Varki, A. Sialic acids in human health and disease. Trends Mol. Med. 2008, 14, 351–360. [Google Scholar] [CrossRef]
- Jin, F.Y.; Liu, D.; Yu, H.; Qi, J.; You, Y.C.; Xu, X.L.; Kang, X.Q.; Wang, X.J.; Lu, K.J.; Ying, X.Y.; et al. Sialic acid-functionalized PEG-PLGA microspheres loading mitochondrial- targeting-modified curcumin for acute lung injury therapy. Mol. Pharm. 2019, 16, 71–85. [Google Scholar] [CrossRef]
- Lee, S.Y.; Nam, S.; Koo, J.S.; Kim, S.; Yang, M.Y.; Jeong, D.I.; Hwang, C.; Park, J.; Cho, H.J. Possible contribution of sialic acid to the enhanced tumor targeting efficiency of nanoparticles engineered with doxorubicin. Sci. Rep. 2020, 10, 19738. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S.S.; Lai, X.X.; Song, Y.Z.; Hu, L.; Li, C.; Shi, T.; Liu, X.R.; Deng, Y.H.; Chen, G.L. Sialic acid conjugate-modified liposomal dexamethasone palmitate targeting neutrophils for rheumatoid arthritis therapy: Influence of particle size. AAPS PharmSciTech 2021, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- de Fátima Martins, M.; Honório-Ferreira, A.; S Reis, M.; Cortez-Vaz, C.; Gonçalves, C.A. Sialic acids expression in newborn rat lungs: Implications for pulmonary developmental biology. Acta Histochem. 2020, 122, 151626. [Google Scholar] [CrossRef] [PubMed]
- Demirci, E.; Guler, Y.; Ozmen, S.; Canpolat, M.; Kumandas, S. Levels of salivary sialic acid in children with autism spectrum disorder; could it be related to stereotypes and hyperactivity? Clin. Psychopharmacol. Neurosci. 2019, 17, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Q.; Lou, Y.C.; Zhang, Y.M.; Liu, S.; Li, J.; Tao, J. Sialylated immunoglobulin G: A promising diagnostic and therapeutic strategy for autoimmune diseases. Theranostics 2021, 11, 5430–5446. [Google Scholar] [CrossRef] [PubMed]
- Coker, J.K.; Moyne, O.; Rodionov, D.A.; Zengler, K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021, 13, 1869502. [Google Scholar] [CrossRef] [PubMed]
- Hester, S.N.; Chen, X.; Li, M.; Monaco, M.H.; Comstock, S.S.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Donovan, S.M. Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br. J. Nutr. 2013, 110, 1233–1242. [Google Scholar] [CrossRef]
- Dinleyici, M.; Barbieur, J.; Dinleyici, E.C.; Vandenplas, Y. Functional effects of human milk oligosaccharides (HMOs). Gut Microbes 2023, 15, 2186115. [Google Scholar] [CrossRef]
- Yu, Z.T.; Chen, C.; Newburg, D.S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 2013, 23, 1281–1292. [Google Scholar] [CrossRef]
- Jacobi, S.K.; Yatsunenko, T.; Li, D.P.; Dasgupta, S.; Yu, R.K.; Berg, B.M.; Chichlowski, M.; Odle, J. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J. Nutr. 2016, 146, 200–208. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.J.; Kim, J.W. Bacterial clearance is enhanced by α2,3- and α2,6-sialyllactose via receptor-mediated endocytosis and phagocytosis. Infect. Immun. 2018, 87, e00694-18. [Google Scholar] [CrossRef]
- Masi, A.C.; Embleton, N.D.; Lamb, C.A.; Young, G.; Granger, C.L.; Najera, J.; Smith, D.P.; Hoffman, K.L.; Petrosino, J.F.; Bode, L.; et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 2021, 70, 2273–2282. [Google Scholar] [CrossRef] [PubMed]
- Tarr, A.J.; Galley, J.D.; Fisher, S.E.; Chichlowski, M.; Berg, B.M.; Bailey, M.T. The prebiotics 3’Sialyllactose and 6’Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav. Immun. 2015, 50, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Gong, S.; He, Y.; Gao, W.; Hao, W.; Lan, X. Effects of oral sialic acid on gut development, liver function and gut microbiota in mice. Lett. Appl. Microbiol. 2021, 73, 20–25. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chassard, C.; Hausmann, M.; von Itzstein, M.; Hennet, T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 2015, 6, 8141. [Google Scholar] [CrossRef]
- Young, W.; Egert, M.; Bassett, S.A.; Bibiloni, R. Detection of sialic acid-utilising bacteria in a caecal community batch culture using RNA-based stable isotope probing. Nutrients 2015, 7, 2109–2124. [Google Scholar] [CrossRef]
- Zaramela, L.S.; Martino, C.; Alisson-Silva, F.; Rees, S.D.; Diaz, S.L.; Chuzel, L.; Ganatra, M.B.; Taron, C.H.; Secrest, P.; Zuñiga, C.; et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 2019, 4, 2082–2089. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, S.; Jeon, J.; Kong, H.G.; Cho, H.J.; Kim, J.H.; Kim, S.Y.; Oh, M.J.; Lee, D.; Seo, N.; et al. Host tp53 mutation induces gut dysbiosis eliciting inflammation through disturbed sialic acid metabolism. Microbiome 2022, 10, 3. [Google Scholar] [CrossRef]
- Chen, C.C.; Li, T.H.; Chen, G.J.; Chen, D.; Peng, Y.J.; Hu, B.; Sun, Y.; Zeng, X.X. Commensal relationship of three Bifidobacterial species leads to increase of Bifidobacterium in vitro fermentation of sialylated immunoglobulin by human gut microbiota. J. Agric. Food Chem. 2020, 68, 9110–9119. [Google Scholar] [CrossRef]
- Chen, C.C.; Li, T.H.; Chen, G.J.; Chen, D.; Peng, Y.J.; Hu, B.; Sun, Y.; Zeng, X.X. Prebiotic effect of sialylated immunoglobulin G on gut microbiota of patients with inflammatory bowel disease by in vitro fermentation. Food Biosci. 2023, 52, 102393. [Google Scholar] [CrossRef]
- Cowardin, C.A.; Ahern, P.P.; Kung, V.L.; Hibberd, M.C.; Cheng, J.; Guruge, J.L.; Sundaresan, V.; Head, R.D.; Barile, D.; Mills, D.A.; et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc. Natl. Acad. Sci. USA 2019, 116, 11988–11996. [Google Scholar] [CrossRef]
- Charbonneau, M.R.; O’Donnell, D.; Blanton, L.V.; Totten, S.M.; Davis, J.C.; Barratt, M.J.; Cheng, J.; Guruge, J.; Talcott, M.; Bain, J.R.; et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 2016, 164, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Song, M.D.; Zeng, J.; Jia, T.; Gao, H.Y.; Zhang, R.Y.; Jiang, J.K.; Li, G.L.; Su, T.C. Effects of sialylated lactulose on the mouse intestinal microbiome using Illumina high-throughput sequencing. Appl. Microbiol. Biotechnol. 2019, 103, 9067–9076. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Song, M.D.; Jia, T.; Gao, H.Y.; Zhang, R.Y.; Jiang, J.K. Immunomodulatory influences of sialylated lactuloses in mice. Biochem. Biophys. Res. Commun. 2019, 514, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.F.; Sohail, A.; Ghazanfar, S.; Ahmad, A.; Riaz, A.; Abbasi, K.S.; Ibrahim, M.S.; Uzair, M.; Arshad, M. Recent innovations in non-dairy prebiotics and probiotics: Physiological potential, applications, and characterization. Probiotics Antimicrob. Proteins 2023, 15, 239–263. [Google Scholar] [CrossRef] [PubMed]
- Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Brit. J. Nutr. 2015, 114, 586–595. [Google Scholar] [CrossRef]
- Bouhnik, Y.; Flourié, B.; D’Agay-Abensour, L.; Pochart, P.; Gramet, G.; Durand, M.; Rambaud, J.C. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J. Nutr. 1997, 127, 444–448. [Google Scholar] [CrossRef]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef]
- Li, M.; Hu, F.C.; Qiao, F.; Du, Z.Y.; Zhang, M.L. Sodium acetate alleviated high-carbohydrate induced intestinal inflammation by suppressing MAPK and NF-κB signaling pathways in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 98, 758–765. [Google Scholar] [CrossRef]
- Tayyeb, J.Z.; Popeijus, H.E.; Mensink, R.P.; Konings, M.C.J.M.; Mokhtar, F.B.A.; Plat, J. Short-chain fatty acids (except hexanoic acid) lower NF-κB transactivation, which rescues inflammation-induced decreased apolipoprotein A-I transcription in HepG2 cells. Int. J. Mol. Sci. 2020, 21, 5088. [Google Scholar] [CrossRef]
- Moon, J.S.; Joo, W.; Ling, L.; Choi, H.S.; Han, N.S. In vitro digestion and fermentation of sialyllactoses by infant gut microflora. J. Funct. Foods 2016, 21, 497–506. [Google Scholar] [CrossRef]
- Li, H.Y.; Lane, J.A.; Chen, J.C.; Lu, Z.; Wang, H.W.; Dhital, S.; Fu, X.; Huang, Q.; Liu, F.T.; Zhang, B. In vitro fermentation of human milk oligosaccharides by individual Bifidobacterium longum-dominant infant fecal inocula. Carbohydr. Polym. 2022, 287, 119322. [Google Scholar] [CrossRef] [PubMed]
- Pekmez, C.T.; Larsson, M.W.; Lind, M.V.; Vazquez Manjarrez, N.; Yonemitsu, C.; Larnkjaer, A.; Bode, L.; Mølgaard, C.; Michaelsen, K.F.; Dragsted, L.O. Breastmilk lipids and oligosaccharides influence branched short-chain fatty acid concentrations in infants with excessive weight gain. Mol. Nutr. Food Res. 2020, 64, e1900977. [Google Scholar] [CrossRef] [PubMed]
- Badr, H.A.; AlSadek, D.M.; Mathew, M.P.; Li, C.Z.; Djansugurova, L.B.; Yarema, K.J.; Ahmed, H. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials 2015, 70, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yan, L.; Song, H.K.; Ma, Z.; Chen, D.S.; Yang, F.L.; Fang, L.; Li, Z.Y.; Li, K.; Li, D.W.; et al. Elevated serum sialic acid levels predict prostate cancer as well as bone metastases. J. Cancer 2019, 10, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Gruszewska, E.; Chrostek, L.; Cylwik, B.; Tobolczyk, J.; Szmitkowski, M.; Kuklinski, A.; Kedra, B. Serum sialic acid as a marker of pancreatic cancers. Clin. Lab. 2013, 59, 781–788. [Google Scholar] [CrossRef]
- Yadav, J.; Verma, A.K.; Garg, R.K.; Ahmad, K.; Shiuli; Mahdi, A.A.; Srivastava, S. Sialic acid associated with oxidative stress and total antioxidant capacity (TAC) expression level as a predictive indicator in moderate to severe Alzheimer’s disease. Exp. Gerontol. 2020, 141, 111092. [Google Scholar] [CrossRef]
- Gopaul, K.P.; Crook, M.A. Sialic acid: A novel marker of cardiovascular disease? Clin. Biochem. 2006, 39, 667–681. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, T.T.; Li, Y.; Li, J.; Fan, Y.; Huang, F.Q.; Cai, Y.Y.; Ma, G.X.; Liu, J.F.; Chen, Q.Q.; et al. Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation 2018, 137, 1374–1390. [Google Scholar] [CrossRef]
- Cerne, D.; Jürgens, G.; Ledinski, G.; Kager, G.; Greilberger, J.; Lukac-Bajalo, J. Relationship between the sialic acid content of low-density lipoprotein (LDL) and autoantibodies to oxidized LDL in the plasma of healthy subjects and patients with atherosclerosis. Clin. Chem. Lab. Med. 2002, 40, 15–20. [Google Scholar] [CrossRef]
- Gavella, M.; Lipovac, V.; Car, A.; Vucić, M.; Sokolić, L.; Rakos, R. Serum sialic acid in subjects with impaired glucose tolerance and in newly diagnosed type 2 diabetic patients. Acta Diabetol. 2003, 40, 95–100. [Google Scholar] [CrossRef]
- Perdijk, O.; van Baarlen, P.; Fernandez-Gutierrez, M.M.; van den Brink, E.; Schuren, F.H.J.; Brugman, S.; Savelkoul, H.F.J.; Kleerebezem, M.; van Neven, R.J.J. Sialyllactose and galactooligosaccharides promote epithelial barrier functioning and distinctly modulate microbiota composition and short chain fatty acid production in vitro. Front. Immunol. 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.M.; Chen, D.W.; Yu, B.; Huang, Z.Q.; Luo, Y.H.; Zheng, P.; Mao, X.B.; Yu, J.; Luo, J.Q.; Yan, H.; et al. Effect of sialyllactose on growth performance and intestinal epithelium functions in weaned pigs challenged by enterotoxigenic Escherichia coli. J. Anim. Sci. Biotechnol. 2022, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Luo, F.J.; Lin, Q.L. Dietary nutrition and gut microflora: A promising target for treating diseases. Trends Food Sci. Tech. 2018, 75, 72–80. [Google Scholar] [CrossRef]
Function | Type | Model | Results | Reference |
---|---|---|---|---|
Learning and memory improvement | Neu5Ac 6′-Sialyllactose | Rat | Memory and long-term potentiation ↑; polysialylated-neural cell adhesion molecule expression ↑. | [36] |
Casein glycomacropeptide | Piglet | Brain development ↑; learning-associated genes (ST8SiaIV and GNE) ↑. | [38] | |
6′-Sialyllactose | Mice | Cognitive development ↑; genes mediating neuronal patterning ↑. | [37] | |
Sialyllactose | Pig | Brain development ↑; genes encoding SA metabolism, myelination, and ganglioside biosynthesis ↑. | [39] | |
Edible bird’s nest | Mice | Cognitive and neurological development ↑; GNE, ST8SiaIV, SLC17A5, and BDNF in the generation mice ↑. | [42] | |
Edible bird’s nest | Mice | Learning and memory performances in the offspring ↑; BDNF, SOD and ChAT ↑; MDA and AChE ↓. | [43] | |
Anti-inflammation | Neu5Ac | High fat diet-fed rats | Inflammation ↓; IL-6, TNF-α, C-reactive protein and NF-κB ↓. | [44] |
Abiotic SA | LPS-stimulated RAW 264.7 cells | Inflammation ↓; NF-κB and MAPK signaling ↓. | [45] | |
Soluble Siglec-9 | TNF-α-stimulated COLO 205 human IECs and LPS-induced RAW 264.7 cells; colitis mice | NF-κB in COLO 205 human IECs and RAW 264.7 cells ↓; intestinal inflammation in colitis mice ↓. | [46] | |
Ganglioside GD1a | LPS-induced RAW 264.7 cells | Inflammation ↓; pro-inflammatory cytokines, NO and PGE2 ↓, TLR4/MAPK/NF-κB ↓. | [47] | |
Neu5Ac | Colitis mice; LPS-stimulated RAW 264.7 cells | Inflammation ↓; pro-inflammatory factors ↓; MAPK-NF-κB/AP-1↓. | [48] | |
Edible bird’s nest extract | LPS-induced rats | Neuro-inflammation ↓; TNF-α, IL-1β, and IL-6 ↓. | [49] | |
Anti-oxidant function | Neu5Ac | High fat diet-fed apolipoprotein E-deficient mice | Antioxidant enzymes activity ↑, expressions of antioxidant protein (paraoxonase 1 and 2) ↑. | [50] |
Neu5Ac | High fat diet-fed rats | GSH-Px, glutathione reductase, SOD ↑. | [44] | |
Glycocalyx SA | Human endothelial cells | Nrf2 signaling ↑. | [51] | |
Hydrolyzed edible bird’s nest and SA | Diabetic mice and high glucose-induced HUVEC | NADPH oxidase 2 and nitrotyrosine ↓, anti-oxidant protein (SOD-1) and p-eNOS ↑. | [52] | |
Immune-enhancing ability | Sialylated lactulose | Mice | IgA and IgM contents of spleen ↑, phagocytic percentage ↑, phagocytic index ↑. | [53] |
Osteogenic activity | Edible bird’s nest | MG-63 cell and osteoblast | Alkaline phosphatase expression in MG-63 cells and osteoblast ↑, runt-related transcription factor 2 expression in osteoblast ↑. | [21] |
Reduce mitochondrial dysfunction | Edible bird’s nest | SH-SY5Y cell | Mitochondrial dysfunction ↓; expression of active mitochondria ↑. | [54] |
Anti-necrotizing enterocolitis | 6′-Sialyllactose | Mice and piglet | Necrotizing enterocolitis development ↓; TLR4 signaling ↓. | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Lin, Q.; Luo, F.; Wang, H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods 2024, 13, 145. https://doi.org/10.3390/foods13010145
Li D, Lin Q, Luo F, Wang H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods. 2024; 13(1):145. https://doi.org/10.3390/foods13010145
Chicago/Turabian StyleLi, Dan, Qinlu Lin, Feijun Luo, and Hanqing Wang. 2024. "Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review" Foods 13, no. 1: 145. https://doi.org/10.3390/foods13010145
APA StyleLi, D., Lin, Q., Luo, F., & Wang, H. (2024). Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods, 13(1), 145. https://doi.org/10.3390/foods13010145