Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures
2.2. Preparation of “Torta del Casar” Cheeses
2.3. Microbiological Analysis
2.4. Physicochemical Analysis
2.5. Characterization of LAB Strains by Pulsed-Field Gel Electrophoresis Typing
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Changes during Ripening
3.2. Microbiological Changes during Ripening
3.3. Characterization of LAB Strains by Pulsed-Field Gel Electrophoresis Typing
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaves, R.D.; Kumazawa, S.H.; Khaneghah, A.M.; Alvarenga, V.O.; Hungaro, H.M.; Sant’Ana, A.S. Comparing the susceptibility to sanitizers, biofilm-forming ability, and biofilm resistance to quaternary ammonium and chlorine dioxide of 43 Salmonella enterica and Listeria monocytogenes strains. Food Microbiol. 2024, 117, 104380. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Osek, J.; Wieczorek, K. Listeria monocytogenes—How this pathogen uses its virulence mechanisms to infect the hosts. Pathogens 2022, 11, 1491. [Google Scholar] [CrossRef] [PubMed]
- Kurpas, M.; Wieczorek, K.; Osek, J. Ready-to-eat meat products as a source of Listeria monocytogenes. J. Vet. Res. 2018, 62, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bucur, F.I.; Grigore-Gurgu, L.; Crauwels, P.; Riedel, C.U.; Nicolau, A.I. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front. Microbiol. 2018, 9, 417209. [Google Scholar] [CrossRef] [PubMed]
- Gérard, A.; El-Hajjaji, S.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and survival of Listeria monocytogenes in various types of cheese—A review. Int. J. Dairy Technol. 2018, 71, 825–843. [Google Scholar] [CrossRef]
- Palacios, A.; Otto, M.; Flaherty, E.; Boyle, M.M.; Malec, L.; Holloman, K.; Low, M.; Wellman, A.; Newhart, C.; Gollarza, L.; et al. Multistate outbreak of Listeria monocytogenes infections linked to fresh, soft hispanic-style cheese—United States, 2021. Morb. Mortal. Wkly. Rep. 2022, 71, 709. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Bloemberg, G.V.; Müller, A.; Stevens, M.J.A.; Cernela, N.; Kollöffel, B.; Stephan, R. Listeriosis Caused by Persistence of Listeria monocytogenes serotype 4b sequence type 6 in cheese production environment. Emerg. Infect. Dis. 2021, 27, 284. [Google Scholar] [CrossRef]
- Gopal, N.; Hill, C.; Ross, P.R.; Beresford, T.P.; Fenelon, M.A.; Cotter, P.D. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front. Microbiol. 2015, 6, 167862. [Google Scholar] [CrossRef]
- Costanzo, N.; Ceniti, C.; Santoro, A.; Clausi, M.T.; Casalinuovo, F. Foodborne pathogen assessment in raw milk cheeses. Int. J. Food Sci. 2020, 2020, 3616713. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.; Sood, M.; Sofi, S.; Norzom, T. Non-thermal processing in food applications: A review. Int. J. Food Sci. Nutr. 2017, 2, 171–180. [Google Scholar]
- Moula Ali, A.M.; Sant’Ana, A.S.; Bavisetty, S.C.B. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci. Technol. 2022, 129, 306–326. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Delgado, J.; Álvarez, M.; Cebrián, E.; Martín, I.; Roncero, E.; Rodríguez, M. Biocontrol of pathogen microorganisms in ripened foods of animal origin. Microorganisms 2023, 11, 1578. [Google Scholar] [CrossRef]
- Official Journal of the European Union Publication of an Amendment Application Pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on Quality Schemes for Agricultural Products and Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=uriserv%3AOJ.C_.2015.235.01.0005.01.SPA&toc=OJ%3AC%3A2015%3A235%3ATOC (accessed on 30 September 2023).
- Martín, I.; Rodríguez, A.; Córdoba, J.J. Application of selected lactic-acid bacteria to control Listeria monocytogenes in soft-ripened “Torta del Casar” cheese. LWT 2022, 168, 113873. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Battelli, G.; Brasca, M. Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The Case of Gorgonzola Cheese. Food Control 2019, 96, 499–507. [Google Scholar] [CrossRef]
- Meloni, M.P.; Piras, F.; Siddi, G.; Cabras, D.; Comassi, E.; Lai, R.; McAuliffe, O.; De Santis, E.P.L.; Scarano, C. Comparison of activity of commercial protective cultures and thermophilic lactic acid bacteria against Listeria monocytogenes: A new perspective to improve the safety of Sardinian PDO cheeses. Foods 2023, 12, 1182. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Alía, A.; Martínez, R.; Córdoba, J.J. Selection and characterization of lactic acid bacteria with activity against Listeria monocytogenes from traditional RTE ripened foods. LWT 2022, 163, 113579. [Google Scholar] [CrossRef]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 7218:2007; Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. International Organization for Standardization: Geneva, Switzerland, 2007.
- AOAC Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC International; AOAC Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Merchán, A.V.; Ruiz-Moyano, S.; Hernández, M.V.; Martín, A.; Lorenzo, M.J.; Benito, M.J. Characterization of autochthonal Hafnia spp. strains isolated from Spanish soft raw ewe’s milk PDO cheeses to be used as adjunct culture. Int. J. Food Microbiol. 2022, 373, 109703. [Google Scholar] [CrossRef]
- Weragama, D.; Weerasingha, V.; Jayasumana, L.; Adikari, J.; Vidanarachchi, J.K.; Priyashantha, H. The physicochemical, microbiological, and organoleptic properties and antioxidant activities of cream cheeses fortified with dried curry leaves (Murraya Koenigii L.) powder. Food Sci. Nutr. 2021, 9, 5774–5784. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.T.P.; Benito, M.J.; de Guía Córdoba, M.; Egas, C.; Merchán, A.V.; Galván, A.I.; Ruiz-Moyano, S. Bacterial Communities in Serpa cheese by culture dependent techniques, 16S RRNA Gene Sequencing and High-Throughput Sequencing Analysis. J. Food Sci. 2018, 83, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg/2007/1441/oj (accessed on 22 September 2023).
- Crespo, A.; Martín, A.; Ruiz-Moyano, S.; Benito, M.J.; Rufo, M.; Paniagua, J.M.; Jiménez, A. Application of ultrasound for quality control of “Torta del Casar” cheese ripening. J. Dairy Sci. 2020, 103, 8808–8821. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Quero, G.M.; Poltronieri, P.; Morea, M.; Baruzzi, F. Autochthonous and probiotic lactic acid bacteria employed for production of “advanced traditional cheeses”. Foods 2019, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, F.; Ferrocino, I.; Milanović, V.; Belleggia, L.; Corvaglia, M.R.; Garofalo, C.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cocolin, L.; et al. Microbial communities and volatile profile of Queijo de Azeitão PDO cheese, a traditional Mediterranean thistle-curdled cheese from Portugal. Food Res. Int. 2021, 147, 110537. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, S.; Decastelli, L.; Nucera, D.; Gallina, S.; Manila Bianchi, D.; Civera, T. Listeria monocytogenes in Gorgonzola: Subtypes, diversity and persistence over time. Int. J. Food Microbiol. 2009, 128, 516–520. [Google Scholar] [CrossRef]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar] [CrossRef]
- Parada, J.L.; Caron, C.R.; Medeiros, A.B.P.; Soccol, C.R. Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Braz. Arch. Biol. Technol. 2007, 50, 512–542. [Google Scholar] [CrossRef]
- Martín, I.; Barbosa, J.; Pereira, S.I.A.; Rodríguez, A.; Córdoba, J.J.; Teixeira, P. Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. LWT 2023, 173, 114300. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Margalho, L.P.; Kamimura, B.A.; Feliciano, M.D.; Freire, L.; Lopes, L.S.; Alvarenga, V.O.; Cadavez, V.A.P.; Gonzales-Barron, U.; Schaffner, D.W.; et al. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol. 2018, 73, 288–297. [Google Scholar] [CrossRef]
- Ortolani, M.B.T.; Yamazi, A.K.; Moraes, P.M.; Viçosa, G.N.; Nero, L.A. Microbiological quality and safety of raw milk and soft cheese and detection of autochthonous lactic acid bacteria with antagonistic activity against Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Foodborne Pathog. Dis. 2010, 7, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, F.; Giarratana, F.; Caridi, A.; Sidari, R.; De Bruno, A.; Giuffrida, A. Lactic acid bacteria isolated from traditional Italian dairy products: Activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT 2021, 137, 110446. [Google Scholar] [CrossRef]
- Dalzini, E.; Cosciani-Cunico, E.; Monastero, P.; Bernini, V.; Neviani, E.; Bellio, A.; Decastelli, L.; Losio, M.N.; Daminelli, P.; Varisco, G. Listeria monocytogenes in Gorgonzola cheese: Study of the behaviour throughout the process and growth prediction during shelf life. Int. J. Food Microbiol. 2017, 262, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; Nørrung, B.; et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, e05134. [Google Scholar] [CrossRef]
- Falardeau, J.; Trmčić, A.; Wang, S. The occurrence, growth, and biocontrol of Listeria monocytogenes in fresh and surface-ripened soft and semisoft cheeses. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4019–4048. [Google Scholar] [CrossRef]
Batches | Days of Ripening | ||||
---|---|---|---|---|---|
0 | 15 | 30 | 60 | ||
1. Low relativity humidity maturation | |||||
Moisture content (%) | A | 55.34 ± 0.99 *b4 | 50.75 ± 2.18 3 | 40.24 ± 0.70 *2 | 32.77 ± 1.05 *a1 |
B | 52.37 ± 1.22 *a3 | 48.99 ± 2.87 3 | 40.14 ± 0.69 *2 | 33.75 ± 0.65 *a1 | |
C | 57.85 ± 1.25 c23 | 47.23 ± 1.25 *3 | 43.24 ± 0.72 *2 | 39.35 ± 0.22 *b1 | |
D | 55.12 ± 0.78 b4 | 48.65 ± 2.57 *3 | 38.73 ± 1.83 *2 | 33.61 ± 1.11 *a1 | |
aw | A | 0.980 ± 0.002 2 | 0.980 ± 0.002 b3 | 0.949 ± 0.002 *1 | 0.949 ± 0.003 *a1 |
B | 0.977 ± 0.001 *3 | 0.977 ± 0.001 ab4 | 0.951 ± 0.004 *2 | 0.944 ± 0.001 *ab1 | |
C | 0.982 ± 0.005 2 | 0.982 ± 0.005 ab3 | 0.950 ± 0.007 *1 | 0.962 ± 0.002 b1 | |
D | 0.979 ± 0.001 2 | 0.981 ± 0.006 a2 | 0.942 ± 0.005 *1 | 0.952 ± 0.010 ab1 | |
pH | A | 6.93 ± 0.11 *b2 | 5.33 ± 0.29 1 | 4.95 ± 0.13 *1 | 5.16 ± 0.04 1 |
B | 6.69 ± 0.05 *a3 | 5.27 ± 0.02 2 | 4.86 ± 0.04 *1 | 5.15 ± 0.23 12 | |
C | 6.61 ± 0.12 a2 | 5.21 ± 0.10 1 | 4.82 ± 0.25 1 | 5.18 ± 0.24 1 | |
D | 6.65 ± 0.04 a2 | 5.31 ± 0.22 1 | 4.94 ± 0.10 *1 | 4.99 ± 0.03 *1 | |
2. High relative humidity maturation | |||||
Moisture content (%) | A | 56.96 ± 0.44 *3 | 50.02 ± 0.77 a2 | 51.80 ± 1.34 *2 | 43.25 ± 1.10 *a1 |
B | 56.18 ± 1.45 *3 | 51.47 ± 0.90 a2 | 52.72 ± 0.91 *23 | 45.78 ± 0.23 *a1 | |
C | 58.39 ± 1.11 3 | 51.47 ± 0.66 *a2 | 54.14 ± 1.93 *123 | 47.78 ± 0.66 *a1 | |
D | 56.49 ± 1.14 2 | 53.90 ± 1.27 *b2 | 53.69 ± 1.28 *2 | 45.98 ± 1.03 *b1 | |
aw | A | 0.976 ± 0.024 23 | 0.981 ± 0.004 *3 | 0.974 ± 0.004 *2 | 0.963 ± 0.010 *b1 |
B | 0.982 ± 0.004 *2 | 0.976 ± 0.005 *2 | 0.975 ± 0.007 *12 | 0.962 ± 0.005 *ab1 | |
C | 0.980 ± 0.012 123 | 0.982 ± 0.003 *3 | 0.976 ± 0.001 *2 | 0.967 ± 0.007 ab1 | |
D | 0.979 ± 0.001 2 | 0.983 ± 0.001 2 | 0.974 ± 0.001 *1 | 0.972 ± 0.008 b1 | |
pH | A | 7.09 ± 0.29 *bc2 | 5.68 ± 0.25 2 | 5.36 ± 0.28 *b2 | 5.37 ± 0.16 1 |
B | 7.35 ± 0.20 *c3 | 5.82 ± 0.30 2 | 5.31 ± 0.10 *ab1 | 5.24 ± 0.23 1 | |
C | 6.87 ± 0.12 ab4 | 5.40 ± 0.19 3 | 5.12 ± 0.16 a1 | 5.39 ± 0.04 2 | |
D | 6.84 ± 0.18 a3 | 5.66 ± 0.13 1 | 5.21 ± 0.05 *a2 | 5.35 ± 0.04 *2 |
Microbial Group | Batches | Days of Ripening | |||
---|---|---|---|---|---|
0 | 15 | 30 | 60 | ||
1. Low relative humidity maturation (log CFU/g) | |||||
TVC | A | 7.49 ± 0.09 *c1 | 9.68 ± 0.09 *c3 | 8.75 ± 0.15 de2 | 8.85 ± 0.01 2 |
B | 7.30 ± 0.06 *bc1 | 9.14 ± 0.04 a2 | 7.58 ± 0.20 *a1 | 8.66 ± 0.91 12 | |
C | 6.58 ± 0.13 ab1 | 9.05 ± 0.18 abc3 | 7.92 ± 0.17 *ab2 | 8.22 ± 0.26 *2 | |
D | 6.19 ± 0.13 *a1 | 9.26 ± 0.15 abc3 | 8.19 ± 0.09 *bc2 | 8.81 ± 0.21 3 | |
E | 7.49 ± 0.09 *c1 | 9.53 ± 0.07 *bc3 | 9.06 ± 0.08 *e2 | 8.91 ± 0.04 *2 | |
F | 7.30 ± 0.06 *bc1 | 8.78 ± 0.32 abc3 | 7.85 ± 0.22 *ab12 | 7.94 ± 0.17 *2 | |
G | 6.58 ± 0.13 ab1 | 9.23 ± 0.04 *ab3 | 8.29 ± 0.19 *bcd2 | 8.03 ± 0.10 *2 | |
H | 6.19 ± 0.13 *a1 | 9.21 ± 0.13 *abc3 | 8.17 ± 0.25 *bc2 | 8.23 ± 0.13 *2 | |
EB | A | 7.05 ± 0.08 *c1 | 8.65 ± 0.17 *c2 | 8.11 ± 0.03 *c2 | 7.01 ± 0.12 *bc1 |
B | 6.82 ± 0.12 *bc12 | 7.16 ± 0.03 *ab2 | 6.13 ± 0.98 *a12 | 6.97 ± 0.02 *b1 | |
C | 6.01 ± 0.09 *ab | 7.48 ± 0.05 *abc | 7.01 ± 0.44 ab | 5.65 ± 0.79 abc | |
D | 5.70 ± 0.04 a1 | 7.64 ± 0.11 bc2 | 7.38 ± 0.08 bc12 | 6.01 ± 0.32 *abc12 | |
E | 7.05 ± 0.08 *c1 | 8.56 ± 0.12 *c4 | 8.13 ± 0.09 *c3 | 7.28 ± 0.02 *c2 | |
F | 6.82 ± 0.12 *bc2 | 7.11 ± 0.12 *a2 | 6.83 ± 0.22 *ab2 | 6.36 ± 0.07 a1 | |
G | 6.01 ± 0.09 *ab | 7.36 ± 0.09 *ab1 | 7.23 ± 0.11 *abc1 | 6.26 ± 0.11 a1 | |
H | 5.70 ± 0.04 a1 | 7.69 ± 0.23 bc3 | 7.28 ± 0.08 *abc23 | 5.96 ± 0.47 abc12 | |
GC+ | A | 6.19 ± 0.16 *c2 | 5.52 ± 0.13 b1 | 5.41 ± 0.30 c12 | 6.29 ± 0.82 *ab12 |
B | 5.36 ± 0.13 b | 5.54 ± 0.18 *b | 5.23 ± 0.21 c | 5.88 ± 0.47 *ab | |
C | 4.87 ± 0.04 *a1 | 4.52 ± 0.06 *a2 | 4.55 ± 0.28 ab12 | 6.65 ± 0.24 *b3 | |
D | 4.85 ± 0.13 a2 | 4.67 ± 0.15 a12 | 4.33 ± 0.08 a1 | 6.12 ± 0.13 *ab3 | |
E | 6.19 ± 0.16 *c2 | 5.29 ± 0.15 b1 | 5.01 ± 0.09 bc1 | 6.53 ± 0.41 *ab12 | |
F | 5.36 ± 0.13 b | 5.37 ± 0.13 *b | 5.36 ± 0.22 c | 6.50 ± 0.49 *ab | |
G | 4.87 ± 0.04 *a2 | 4.38 ± 0.08 a1 | 4.80 ± 0.05 *abc2 | 5.29 ± 0.22 *a3 | |
H | 4.85 ± 0.13 a1 | 4.60 ± 0.18 a1 | 4.67 ± 0.05 *ab1 | 5.71 ± 0.37 *ab2 | |
LAB | A | 7.12 ± 0.17 *a1 | 8.49 ± 0.00 *bc2 | 8.81 ± 0.06 *b3 | 8.84 ± 0.08 a23 |
B | 7.56 ± 0.06 *b1 | 8.29 ± 0.03 ab2 | 8.93 ± 0.20 a2 | 9.37 ± 0.49 bc12 | |
C | 7.55 ± 0.03 b1 | 8.31 ± 0.04 ab2 | 8.89 ± 0.05 a3 | 9.23 ± 0.02 *c4 | |
D | 7.52 ± 0.03 *ab1 | 8.30 ± 0.10 ab2 | 8.77 ± 0.07 ab3 | 8.90 ± 0.06 *ab3 | |
E | 7.12 ± 0.17 *a1 | 8.62 ± 0.11 *c2 | 8.96 ± 0.03 *ab2 | 8.82 ± 0.05 *a2 | |
F | 7.56 ± 0.06 *b1 | 8.42 ± 0.12 *bc2 | 8.74 ± 0.06 *ab3 | 8.92 ± 0.07 *ab3 | |
G | 7.55 ± 0.03 b1 | 8.33 ± 0.11 ab2 | 8.69 ± 0.03 a2 | 9.08 ± 0.04 bc3 | |
H | 7.52 ± 0.03 *ab1 | 8.22 ± 0.06 a2 | 8.97 ± 0.29 ab3 | 8.98 ± 0.10 *abc3 | |
Yeasts | A | 7.29 ± 0.20 *b1 | 9.47 ± 0.20 *cd3 | 8.45 ± 0.10 c2 | 8.90 ± 0.07 3 |
B | 7.26 ± 0.20 *b1 | 9.11 ± 0.17 *abc2 | 7.29 ± 0.12 *a1 | 9.01 ± 0.15 2 | |
C | 6.27 ± 0.14 a1 | 8.96 ± 0.18 *ab3 | 7.28 ± 0.50 *a2 | 9.11 ± 0.08 3 | |
D | 5.81 ± 0.23 a1 | 9.21 ± 0.10 *abcd3 | 7.58 ± 0.16 *a2 | 8.22 ± 1.09 123 | |
E | 7.29 ± 0.20 *b1 | 9.48 ± 0.06 *d4 | 8.33 ± 0.12 *b2 | 8.74 ± 0.13 *3 | |
F | 7.26 ± 0.20 b | 8.68 ± 0.24 a | 7.64 ± 0.36 *abc | 8.75 ± 1.11 | |
G | 6.27 ± 0.14 a1 | 9.35 ± 0.13 bcd4 | 7.65 ± 0.08 *ab2 | 8.97 ± 0.02 *3 | |
H | 5.81 ± 0.23 a1 | 9.42 ± 0.08 *cd4 | 7.71 ± 0.06 *abc2 | 9.05 ± 0.06 *3 | |
2. High relative humidity maturation (log CFU/g) | |||||
TVC | A | 6.33 ± 0.02 *a1 | 9.42 ± 0.08 *3 | 8.65 ± 0.06 ab2 | 9.03 ± 0.373 |
B | 6.53 ± 0.06 *c1 | 8.90 ± 0.262 | 8.96 ± 0.03 *abc2 | 9.18 ± 0.083 | |
C | 6.39 ± 0.07 ab1 | 9.00 ± 0.162 | 9.00 ± 0.03 *bc2 | 8.92 ± 0.29 *2 | |
D | 6.48 ± 0.05 *bc1 | 9.17 ± 0.212 | 8.99 ± 0.10 *abc2 | 9.14 ± 0.082 | |
E | 6.33 ± 0.02 *aa1 | 8.92 ± 0.05 *3 | 8.59 ± 0.04 *a2 | 9.15 ± 0.13 *3 | |
F | 6.53 ± 0.06 *c1 | 8.77 ± 0.05 2 | 8.99 ± 0.06 *abc3 | 9.27 ± 0.04 *4 | |
G | 6.39 ± 0.07 ab1 | 8.90 ± 0.17 *2 | 9.11 ± 0.05 *c23 | 9.36 ± 0.11 *3 | |
H | 6.48 ± 0.05 *bc1 | 8.90 ± 0.07 *2 | 9.07 ± 0.06 *c3 | 9.52 ± 0.11 *4 | |
EB | A | 5.59 ± 0.07 *1 | 7.89 ± 0.39 *2 | 8.01 ± 0.05 *b2 | 4.92 ± 0.12 *abcd1 |
B | 5.69 ± 0.29 *2 | 7.83 ± 0.15 *3 | 7.76 ± 0.21 *ab3 | 3.30 ± 0.27 *a1 | |
C | 5.71 ± 0.09 *2 | 7.85 ± 0.12 *3 | 7.45 ± 0.23 a3 | 4.69 ± 0.48 abc1 | |
D | 5.57 ± 0.33 12 | 7.22 ± 1.11 23 | 7.51 ± 0.25 a3 | 4.17 ± 0.69 *ab1 | |
E | 5.59 ± 0.07 *1 | 7.71 ± 0.12 *3 | 7.55 ± 0.15 *a3 | 6.09 ± 0.24 *cde2 | |
F | 5.69 ± 0.29 *1 | 7.90 ± 0.13 *2 | 7.78 ± 0.04 *ab2 | 6.24 ± 0.29 e1 | |
G | 5.71 ± 0.09 *1 | 7.86 ± 0.12 *2 | 7.75 ± 0.15 *ab2 | 6.16 ± 0.37 de1 | |
H | 5.57 ± 0.33 1 | 7.56 ± 0.58 23 | 7.79 ± 0.13 *ab3 | 5.51 ± 0.04 bcde12 | |
GC+ | A | 4.67 ± 0.26 *a123 | 5.48 ± 0.163 | 5.11 ± 0.18 bc3 | 4.23 ± 0.51 *ab1 |
B | 5.31 ± 0.11 b2 | 5.18 ± 0.02 *2 | 5.13 ± 0.08 c2 | 4.13 ± 0.08 *ab1 | |
C | 4.59 ± 0.07 *a2 | 4.83 ± 0.07 *2 | 4.59 ± 0.07 abc2 | 3.85 ± 0.09 *a1 | |
D | 4.98 ± 0.22 ab2 | 4.92 ± 0.162 | 4.49 ± 0.15 a2 | 3.85 ± 0.12 *a1 | |
E | 4.67 ± 0.26 *a | 5.31 ± 0.21 | 4.51 ± 0.50 a | 4.24 ± 0.56 *a1 | |
F | 5.31 ± 0.11 ab | 5.01 ± 0.05 * | 4.78 ± 0.40 abc | 4.85 ± 0.25 *ab | |
G | 4.59 ± 0.07 *b | 4.44 ± 0.51 | 4.28 ± 0.10 *ab | 3.89 ± 0.38 *ab | |
H | 4.98 ± 0.22 ab3 | 4.81 ± 0.0823 | 4.23 ± 0.12 *ab1 | 4.48 ± 0.12 *b12 | |
LAB | A | 5.73 ± 0.08 *a1 | 8.06 ± 0.02 *ab2 | 7.83 ± 0.33 *ab2 | 8.43 ± 0.47 a2 |
B | 7.68 ± 0.03 *b1 | 8.39 ± 0.11 bd2 | 8.67 ± 0.11 bc3 | 9.21 ± 0.15 bc4 | |
C | 7.62 ± 0.07 ab1 | 8.46 ± 0.10 d2 | 8.72 ± 0.09 c3 | 8.84 ± 0.27 *ab23 | |
D | 7.62 ± 0.02 *ab1 | 8.39 ± 0.05 d2 | 8.54 ± 0.33 abc123 | 9.14 ± 0.08 *abc3 | |
E | 5.73 ± 0.08 *a1 | 7.76 ± 0.10 *ac2 | 7.58 ± 0.10 *a2 | 8.54 ± 0.21 *a3 | |
F | 7.68 ± 0.03 *b1 | 8.17 ± 0.07 *abcd2 | 8.59 ± 0.06 *abc3 | 9.22 ± 0.03 *bc4 | |
G | 7.62 ± 0.07 ab1 | 8.03 ± 0.29 abcd1 | 8.67 ± 0.14 c2 | 9.20 ± 0.10 bc3 | |
H | 7.62 ± 0.02 *ab1 | 8.26 ± 0.03 cd2 | 8.72 ± 0.12 c2 | 9.37 ± 0.10 *c3 | |
Yeasts | A | 6.07 ± 0.13 *1 | 8.64 ± 0.07 *b2 | 8.58 ± 0.16 a2 | 9.06 ± 0.18 ab3 |
B | 6.32 ± 0.11 *1 | 8.35 ± 0.07 *a2 | 9.09 ± 0.14 *c3 | 9.08 ± 0.11 ab3 | |
C | 6.10 ± 0.07 1 | 8.40 ± 0.10 *a2 | 8.89 ± 0.15 *abc3 | 8.90 ± 0.17 a3 | |
D | 6.25 ± 0.18 1 | 8.40 ± 0.09 *a2 | 8.94 ± 0.01 *bc3 | 9.11 ± 0.08 ab3 | |
E | 6.07 ± 0.13 *1 | 8.68 ± 0.03 *b2 | 8.71 ± 0.12 *ab2 | 9.09 ± 0.11 *ab3 | |
F | 6.32 ± 0.11 *1 | 8.44 ± 0.01 a2 | 9.02 ± 0.08 *bc3 | 9.28 ± 0.12 b4 | |
G | 6.10 ± 0.07 1 | 8.44 ± 0.02 a2 | 8.92 ± 0.07 *bc3 | 9.35 ± 0.04 *b4 | |
H | 6.25 ± 0.18 1 | 8.25 ± 0.08 *a2 | 8.93 ± 0.10 *bc3 | 9.39 ± 0.14 *b4 |
Batches | Days of Ripening | |||
---|---|---|---|---|
0 | 15 | 30 | 60 | |
1. Low relative humidity maturation (log CFU/g) | ||||
E | 4.09 ± 0.15 *ab1 | 4.30 ± 0.27 *b1 | 5.73 ± 0.08 *b2 | 4.97 ± 0.45 b12 |
F | 4.05 ± 0.18 *ab2 | 3.75 ± 0.19 *a12 | 2.87 ± 0.04 *a1 | 3.61 ± 1.21 ab12 |
G | 4.16 ± 0.08 *b3 | 3.82 ± 0.05 *a2 | 2.88 ± 0.15 *a1 | 2.03 ± 0.69 a12 |
H | 3.89 ± 0.18 *a3 | 3.71 ± 0.15 *a23 | 2.69 ± 0.13 *a1 | 2.37 ± 0.22 a1 |
2. High relative humidity maturation (log CFU/g) | ||||
E | 5.56 ± 0.10 *2 | 5.21 ± 0.20 *b12 | 4.58 ± 0.05 *b1 | 4.55 ± 0.05 b1 |
F | 5.42 ± 0.06 *2 | 4.46 ± 0.19 *a1 | 4.17 ± 0.26 *ab1 | 2.94 ± 1.14 ab12 |
G | 5.56 ± 0.08 *3 | 4.50 ± 0.02 *ab2 | 3.78 ± 0.33 *ab23 | 2.11 ± 0.57 ab1 |
H | 5.51 ± 0.05 *4 | 4.37 ± 0.09 *a3 | 3.46 ± 0.26 *a2 | 1.44 ± 0.83 a1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Miguélez, J.M.; Robledo, J.; Martín, I.; Castaño, C.; Delgado, J.; Córdoba, J.J. Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions. Foods 2024, 13, 172. https://doi.org/10.3390/foods13010172
Martín-Miguélez JM, Robledo J, Martín I, Castaño C, Delgado J, Córdoba JJ. Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions. Foods. 2024; 13(1):172. https://doi.org/10.3390/foods13010172
Chicago/Turabian StyleMartín-Miguélez, José M., Jurgen Robledo, Irene Martín, Cristina Castaño, Josué Delgado, and Juan J. Córdoba. 2024. "Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions" Foods 13, no. 1: 172. https://doi.org/10.3390/foods13010172
APA StyleMartín-Miguélez, J. M., Robledo, J., Martín, I., Castaño, C., Delgado, J., & Córdoba, J. J. (2024). Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions. Foods, 13(1), 172. https://doi.org/10.3390/foods13010172