Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Bacterial Strain
2.3. Reagents
2.4. Preparation of Plant Extracts
2.5. Antibacterial Potential Analysis
2.6. Isolation and Identification of Active Compounds from EtOAc Phase
2.7. In Vitro and In Vivo Antibacterial Activity Evaluation
2.7.1. Determination of DIZ
2.7.2. Determination of MIC
2.7.3. In Vivo Experiments
Protective Assay
Curative Assay
2.8. Cell Membrane Damage Assessments
2.8.1. Determination of Membrane Potential
2.8.2. Cell Membrane Integrity Analysis
2.8.3. Determine the Leakage of Nucleic Acids and Proteins
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antibacterial Potential of Extracts of Different Polarity from FPO
3.2. Active Compounds of EtOAc Phase from FPO
3.3. Antibacterial Activity of DHQ against Cms In Vitro and In Vivo
3.3.1. DIZ of DHQ
3.3.2. MIC of DHQ
3.3.3. In Vivo Antibacterial Effects on Cms
3.4. Effects of DHQ on Cell Membrane
3.4.1. Effect of DHQ on Membrane Potential
3.4.2. Effect of DHQ on Cell Membrane Integrity
3.4.3. Effect of DHQ on Leakage of Nucleic Acids and Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.J.; Liu, H.; Zeng, F.K.; Yang, Y.C.; Xu, D.; Zhao, Y.C.; Liu, X.F.; Kaur, L.; Liu, G.; Singh, J. Potato processing industry in China: Current scenario, future trends and global impact. Potato Res. 2022, 66, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.H.; Zhang, G.H.; Lv, S.D.; Guo, H.C. Steroidal glycoalkaloids in potato foods as affected by cooking methods. Int. J. Food Prop. 2018, 21, 1875–1887. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Available online: http://www.fao.org/faostat/ (accessed on 8 December 2023).
- Dourado, C.; Pinto, C.; Barba, F.J.; Lorenzo, J.M.; Delgadillo, I.; Saraiva, J.A. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci. Technol. 2019, 88, 274–289. [Google Scholar] [CrossRef]
- Gebrechristos, H.Y.; Chen, W.H. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Perfileva, A.I.; Nozhkina, O.A.; Ganenko, T.V.; Graskova, I.A.; Sukhov, B.G.; Artem’ev, A.V.; Trofimov, B.A.; Krutovsky, K.V. Selenium nanocomposites in natural matrices as potato recovery agent. Int. J. Mol. Sci. 2021, 22, 4576. [Google Scholar] [CrossRef] [PubMed]
- Zaczek, A.; Strus, K.; Sokolowska, A.; Parniewski, P.; Wojtasik, A.; Dziadek, J. Differentiation of Clavibacter michiganensis subsp. sepedonicus using PCR melting profile and variable number of tandem repeat methods. Lett. Appl. Microbiol. 2018, 68, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Przewodowski, W.; Przewodowska, A. Development of a sensitive and specific polyclonal antibody for serological detection of Clavibacter michiganensis subsp. sepedonicus. PLoS ONE 2017, 12, e0169785. [Google Scholar] [CrossRef]
- Cho, M.S.; Park, D.H.; Namgung, M.; Ahn, T.Y.; Park, D.S. Validation and application of a real-time PCR protocol for the specific detection and quantification of Clavibacter michiganensis subsp. sepedonicus in potato. Plant Pathol. J. 2015, 31, 123–131. [Google Scholar] [CrossRef]
- Stevens, L.H.; Lamers, J.G.; van der Zouwen, P.S.; Mendes, O.; van der Berg, W.; Tjou-Tam-Sin, N.N.A.; Jilesen, C.J.T.J.; Spoorenberg, P.M.; van der Wolf, J.M. Chemical eradication of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus on potato storage crates. Potato Res. 2017, 60, 145–158. [Google Scholar] [CrossRef]
- Osdaghi, E.; van der Wolf, J.M.; Abachi, H.; Li, X.; De Boer, S.H.; Ishimaru, C.A. Bacterial ring rot of potato caused by Clavibacter sepedonicus: A successful example of defeating the enemy under international regulations. Mol. Plant Pathol. 2022, 23, 911–932. [Google Scholar] [CrossRef]
- Lesnichaya, M.; Gazizova, A.; Perfileva, A.; Nozhkina, O.; Graskova, I.; Sukhov, B. Starch-capped sulphur nanoparticles synthesised from bulk powder sulphur and their anti-phytopathogenic activity against Clavibacter sepedonicus. IET Nanobiotechnol. 2021, 15, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Vu, N.T.; Oh, C.S. Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol. J. 2020, 36, 204–217. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Abdolmaleki, K.; Javanmardi, F.; Hadidi, M.; Khaneghah, A.M. Recent advances in plant-based compounds for mitigation of mycotoxin contamination in food products: Current status, challenges and perspectives. Int. J. Food Sci. Technol. 2022, 57, 2159–2170. [Google Scholar] [CrossRef]
- Al-Shabibi, M.H.S.; Al-Touby, S.S.J.; Hossain, M.A. Isolation, characterization and prediction of biologically active glycoside compounds quercetin-3-rutinoside from the fruits of Ficus sycomorus. Carbohyd. Res. 2022, 511, 108483. [Google Scholar] [CrossRef] [PubMed]
- Mcotshana, Z.K.S.; McGaw, L.J.; Kemboi, D.; Fouche, G.; Famuyide, I.M.; Krause, R.W.M.; Siwe-Noundou, X.; Tembu, V.J. Cytotoxicity and antimicrobial activity of isolated compounds from Monsonia angustifolia and Dodonaea angustifolia. J. Ethnopharmacol. 2023, 301, 115170. [Google Scholar] [CrossRef] [PubMed]
- Gou, K.J.; Zeng, R.; Dong, Y.; Hu, Q.Q.; Hu, H.W.Y.; Maffucci, K.G.; Dou, Q.L.; Yang, Q.B.; Qin, X.H.; Qu, Y. Anti-inflammatory and analgesic effects of Polygonum orientale L. extracts. Front. Pharmacol. 2017, 8, 562. [Google Scholar] [CrossRef]
- Gou, K.J.; Zeng, R.; Ma, Y.; Li, A.N.; Yang, K.; Yan, H.X.; Jin, S.R.; Qu, Y. Traditional uses, phytochemistry, and pharmacology of Persicaria orientalis (L.) Spach—A review. J. Ethnopharmacol. 2020, 249, 112407. [Google Scholar] [CrossRef]
- Lu, Y.; Li, N.; Zhu, X.Q.; Pan, J.; Wang, Y.L.; Lan, Y.Y.; Li, Y.J.; Wang, A.M.; Sun, J.; Liu, C.H. Comparative analysis of excretion of six major compounds of Polygonum orientale L. extract in urine, feces and bile under physiological and myocardial ischemia conditions in rats using UPLC-MS/MS. Biomed. Chromatogr. 2021, 35, e5174. [Google Scholar] [CrossRef]
- Chen, K.; Qu, J.J.; Chen, H.W.; Wang, J.; Hua, H.L.; Li, J.D.; Zhou, L.; Zhang, W.; Li, Z. Investigating the medicinal potential, material basis and mechanism of Polygoni Orientalis Fructus based on multi-technology integrated network pharmacology. Phytomedicine 2021, 91, 153685. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.C.; Guan, L. Polygonum development prospect and research progress. Heilongjiang Med. J. 2012, 25, 542–544. [Google Scholar] [CrossRef]
- Islam, M.T.; Priyanka, A.K.; Sultana, T.; Kawsar, M.H.; Sumon, M.H.U.; Sohel, M.D. In vitro antimicrobial, antioxidant and cytotoxic activities of Polygonum orientale (Bishkatali). J. Pharm. Nutr. Sci. 2016, 6, 112–119. [Google Scholar] [CrossRef]
- Hou, J.Y.; Lu, T.; Li, J.L.; Chen, L.J. Analysis of volatile chemical components of Polygonum orientale L. and antifungal activities. J. Xinyang Agric. Forest. Univ. 2019, 29, 124–127. [Google Scholar] [CrossRef]
- Permonow, J.I.S.; Akselsen, I.L.W.; Borowski, E.; Ruden, Ø.; Grønås, W. Potato ring rot in Norway: Occurrence and control. Potato Res. 2012, 55, 241–247. [Google Scholar] [CrossRef]
- Mphande, I.; Kataba, A.; Muzandu, K.; Gono-Bwalya, A. An evaluation of the antibacterial activity of Pterocarpus tinctorius Bark extract against enteric bacteria that cause gastroenteritis. Evid. Based Compl. Alt. 2022, 2022, 7973942. [Google Scholar] [CrossRef] [PubMed]
- Faazil, S.; Malik, M.S.; Ahmed, S.A.; Jamal, Q.M.S.; Basha, S.T.; Al-Rooqi, M.M.; Obaid, R.J.; Qurban, J.; Shaikh, I.N.; Asghar, B.H.; et al. New quinoline-thiolactone conjugates as potential antitubercular and antibacterial agents. J. Mol. Struct. 2023, 1271, 134099. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Wang, X.N.; Zhang, T.; Xu, J.S.; Zhang, H.; Feng, J. Control effects of eleven bactericides on potato soft rot. Plant Protect. 2020, 46, 309–315. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ma, M.M.; Yang, J.; Chen, L.; Yu, P.; Wang, J.; Gong, D.M.; Deng, S.G.; Wen, X.F.; Zeng, Z.L. In vitro antibacterial activity and mechanism of monocaprylin against Escherichia coli and Staphylococcus aureus. J. Food Protect. 2018, 81, 1988–1996. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, H.; Li, J.Y.; Zhang, W.W.; Jiang, B.; Xuan, H.Z. Australian propolis ethanol extract exerts antibacterial activity against methicillin-resistant Staphylococcus aureus by mechanisms of disrupting cell structure, reversing resistance, and resisting biofilm. Braz. J. Microbiol. 2021, 52, 1651–1664. [Google Scholar] [CrossRef]
- Yang, Z.H.; He, Q.; Ismail, B.B.; Hu, Y.Q.; Guo, M.M. Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022, 133, 108609. [Google Scholar] [CrossRef]
- Pakulski, G.; Budzianowski, J. Ellagic acid derivatives and naphthoquinones of Dionaea muscipula from in vitro cultures. Phytochemistry 1996, 41, 775–778. [Google Scholar] [CrossRef]
- Liu, M.Z.; Huang, X.Q.; Liu, Q.; Li, X.J.; Chen, M.; Zhu, Y.Q.; Chen, X.Q. Separation of alpha-glucosidase inhibitors from Potentilla kleiniana Wight et Arn using solvent and flow-rate gradient high-speed counter-current chromatography target-guided by ultrafiltration HPLC-MS screening. Phytochem. Analysis 2019, 30, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.C.; Chang, Y.S.; Hott, L.K. Nuclear magnetic resonance studies of 5,7-dihydroxyflavonoids. Phytochemistry 1993, 34, 843–845. [Google Scholar] [CrossRef]
- Alegbe, E.O.; Terali, K.; Olofinsan, K.A.; Surgun, S.; Ogbaga, C.C.; Ajiboye, T.O. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J. Food Biochem. 2019, 43, e12927. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.M. Prevention measures of potato ring rot. Mod. Anim. Husbandry Sci. Technol. 2020, 4, 46–47. [Google Scholar] [CrossRef]
- Jeong, K.W.; Lee, J.Y.; Kang, D.I.; Lee, J.U.; Shin, S.Y.; Kim, Y. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J. Nat. Prod. 2009, 72, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Fongang, Y.S.F.; Bankeu, J.J.K.; Ali, M.S.; Awantu, A.F.; Zeeshan, A.; Assob, C.N.; Mehreen, L.; Lenta, B.N.; Ngouela, S.A.; Tsamo, E. Flavonoids and other bioactive constituents from Ficus thonningii Blume (Moraceae). Phytochem. Lett. 2015, 11, 139–145. [Google Scholar] [CrossRef]
- Sun, X.; Liu, J.C.; Yang, B.B.; Geng, R.H.; Wang, D.L. Residue analysis and risk assessment of dietary intake of thiophanate-methyl and its metabolite in Hemerocallis citrina Baroni. J. Food Saf. Qual. 2022, 13, 3907–3915. [Google Scholar] [CrossRef]
- Zhou, T.R.; Guo, T.; Wang, Y.; Wang, A.D.; Zhang, M.Y. Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health. Chemosphere 2023, 314, 137723. [Google Scholar] [CrossRef]
- Jia, K.; Cheng, B.; Huang, L.R.; Xiao, J.H.; Bai, Z.H.; Liao, X.J.; Gao, Z.G.; Shen, T.Z.; Zhang, C.P.; Hu, C.Y.; et al. Thiophanate-methyl induces severe hepatotoxicity in zebrafish. Chemosphere 2020, 248, 125941. [Google Scholar] [CrossRef]
- Booth, A.N.; DeEds, F. The toxicity and metabolism of dihydroquercetin. J. Am. Pharm. Assoc. 1958, 47, 183–184. [Google Scholar] [CrossRef]
- Zhanataev, A.K.; Kulakova, A.V.; Nasonova, V.V.; Durnev, A.D. In vivo study of dihydroquercetin genotoxicity. Bull. Exp. Biol. Med. 2008, 145, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Xu, B.J. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 2019, 166, 112066. [Google Scholar] [CrossRef]
- Schauss, A.G.; Tselyico, S.S.; Kuznetsova, V.A.; Yegorova, I. Toxicological and genotoxicity assessment of a dihydroquercetin-rich dahurian larch tree (Larix gmelinii Rupr) extract (Lavitol). Int. J. Toxicol. 2015, 34, 162–181. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed]
- Zamuz, S.; Munekata, P.E.S.; Dzuvor, C.K.O.; Zhang, W.G.; Sant’Ana, A.S.; Lorenzo, J.M. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, L.Z.; Lin, Y.L.; Cai, X.X.; Wang, S.Y. The preservative potential of Octopus scraps peptides−Zinc chelate against Staphylococcus aureus: Its fabrication, antibacterial activity and action mode. Food Control 2019, 98, 24–33. [Google Scholar] [CrossRef]
- Liu, M.M.; Pan, Y.; Feng, M.X.; Guo, W.; Fan, X.; Feng, L.; Huang, J.R.; Cao, Y.G. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. Ultrason. Sonochem. 2022, 90, 106201. [Google Scholar] [CrossRef]
- Yan, F.L.; Dang, Q.F.; Liu, C.S.; Yan, J.Q.; Wang, T.; Fan, B.; Cha, D.S.; Li, X.L.; Liang, S.G.; Zhang, Z.Z. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohyd. Polym. 2016, 149, 102–111. [Google Scholar] [CrossRef]
- He, Q.; Zhang, L.J.; Song, L.Y.; Zhang, X.H.; Liu, D.H.; Hu, Y.Q.; Guo, M.M. Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism. LWT-Food Sci. Technol. 2021, 147, 111574. [Google Scholar] [CrossRef]
Strain | Concentrations of DHQ (mg/mL) | 3% DMSO | MIC of TM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 5 | 2.5 | 1.25 | 0.625 | 0.313 | 0.156 | 0.08 | 0.04 | 0.02 | 0.01 | |||
Cms | − | − | − | − | − | − | + | + | + + + | + + + | + + + | + + + | 0.313 mg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Wang, S.; Wang, Q. Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane. Foods 2024, 13, 23. https://doi.org/10.3390/foods13010023
Cai J, Wang S, Wang Q. Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane. Foods. 2024; 13(1):23. https://doi.org/10.3390/foods13010023
Chicago/Turabian StyleCai, Jin, Shiqin Wang, and Qi Wang. 2024. "Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane" Foods 13, no. 1: 23. https://doi.org/10.3390/foods13010023
APA StyleCai, J., Wang, S., & Wang, Q. (2024). Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane. Foods, 13(1), 23. https://doi.org/10.3390/foods13010023