Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brandy Samples
2.2. Chemicals
2.3. Sample Preparation
2.4. Gas Chromatography-Olfactometry (GC-O) and Gas Chromatography-Mass Spectrometric (GC-MS) Analysis
2.5. Quantification of Odor Active Compounds
2.6. Assessors
2.7. Procedure of Sensory Evaluation
2.8. Quantitative Descriptive Analysis of Brandy Samples
2.9. Data Analysis
3. Results
3.1. Aroma Profile of Different Brandies
3.2. Identification and Quantification of Odor-Active Compounds in Different Brandies
3.3. Correlation between Odor-Active Compounds and Aroma Attributes of Brandies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uselmann, V.; Schieberle, P. Decoding the combinatorial aroma code of a commercial cognac by application of the sensomics concept and first insights into differences from a German brandy. J. Agric. Food Chem. 2015, 63, 1948–1956. [Google Scholar] [CrossRef]
- Bougas, N.V. Factors Influencing the Style of Brandy. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Jiao, L.; Ouyang, S. The Chinese wine industry. In The Palgrave Handbook of Wine Industry Economics, 1st ed.; Ugaglia, A.A., Jean-Marie Cardebat, J.M., Corsi, A., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 225–246. [Google Scholar]
- Ledauphin, J.; Saint-Clair, J.-F.; Lablanquie, O.; Guichard, H.; Founier, N.; Guichard, E.; Barillier, D. Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separations coupled with gas chromatography-mass spectrometry. J. Agric. Food Chem. 2004, 52, 5124–5134. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Krautwurst, D.; Schieberle, P. Current status and future perspectives in flavor research: Highlights of the 11th Wartburg Symposium on Flavor Chemistry & Biology. J. Agric. Food Chem. 2018, 66, 2197–2203. [Google Scholar] [PubMed]
- Ma, Y.; Xu, Y.; Tang, K. Aroma of icewine: A review on how environmental, viticultural, and oenological factors affect the aroma of icewine. J. Agric. Food Chem. 2021, 69, 6943–6957. [Google Scholar] [CrossRef]
- Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E. Determination of key odorant compounds in freshly distilled cognac using GC-O, GC-MS, and sensory evaluation. J. Agric. Food Chem. 2004, 52, 5670–5676. [Google Scholar] [CrossRef]
- Malfondet, N.; Gourrat, K.; Brunerie, P.; Le Quéré, J.L. Aroma characterization of freshly-distilled French brandies; their specificity and variability within a limited geographic area. Flavour Fragr. J. 2016, 31, 361–376. [Google Scholar] [CrossRef]
- Janáčová, A.; Sádecká, J.; Kohajdová, Z.; Špánik, I. The identification of aroma-active compounds in Slovak brandies using GC-sniffing, GC–MS and sensory evaluation. Chromatographia 2008, 67 (Suppl. S1), 113–121. [Google Scholar] [CrossRef]
- Cacho, J.; Moncayo, L.; Palma, J.C.; Ferreira, V.; Culleré, L. Comparison of the aromatic profile of three aromatic varieties of Peruvian pisco (Albilla, Muscat and Torontel) by chemical analysis and gas chromatography–olfactometry. Flavour Fragr. J. 2013, 28, 340–352. [Google Scholar] [CrossRef]
- Caldeira, I.; de Sousa, R.B.; Belchior, A.P.; Clímaco, M.C. A sensory and chemical approach to the aroma of wooden aged Lourinhã wine brandy. Ciência Téc. Vitiv. 2008, 23, 97–110. [Google Scholar]
- Thibaud, F.; Courregelongue, M.; Darriet, P. Contribution of volatile odorous terpenoid compounds to aged cognac spirits aroma in a context of multicomponent odor mixtures. J. Agric. Food Chem. 2020, 68, 13310–13318. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Zhang, B.; Shen, C.; Xu, Y.; Tang, K. Identification, quantitation and sensorial contribution of lactones in brandies between China and France. Food Chem. 2021, 357, 129761. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhou, J.; Zhang, B.; Shen, C.; Yu, L.; Gong, C.; Xu, Y.; Tang, K. Identification, quantitation and organoleptic contributions of furan compounds in brandy. Food Chem. 2023, 412, 135543. [Google Scholar] [CrossRef] [PubMed]
- Ledauphin, J.; Le Milbeau, C.; Barillier, D.; Hennequin, D. Differences in the volatile compositions of French labeled brandies (Armagnac, Calvados, Cognac, and Mirabelle) using GC-MS and PLS-DA. J. Agric. Food Chem. 2010, 58, 7782–7793. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, K.; Xu, Y.; Li, J.M. Characterization of the key aroma compounds in Chinese Vidal icewine by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission tests. J. Agric. Food Chem. 2017, 65, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Béno, N.; Tang, K.; Li, Y.; Simon, M.; Xu, Y.; Thomas-Danguin, T. Assessing the contribution of odor-active compounds in icewine considering odor mixture-induced interactions through gas chromatography–olfactometry and Olfactoscan. Food Chem. 2022, 388, 132991. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Sánchez, A.H.; Cortés-Delgado, A.; de Castro, A.; Montaño, A. Relating sensory analysis with SPME-GC-MS data for Spanish-style green table olive aroma profiling. LWT Food Sci. Technol. 2018, 89, 725–734. [Google Scholar] [CrossRef]
- Huang, L.; Ma, Y.; Tian, X.; Li, J.-M.; Li, L.-X.; Tang, K.; Xu, Y. Chemosensory characteristics of regional Vidal icewines from China and Canada. Food Chem. 2018, 261, 66–74. [Google Scholar] [CrossRef]
- Thomas-Danguin, T.; Rouby, C.; Sicard, G.; Vigouroux, M.; Farget, V.; Johanson, A.; Bengtzon, A.; Hall, G.; Ormel, W.; De Graaf, C.; et al. Development of the ETOC: A European test of olfactory capabilities. Rhinology 2003, 41, 134–151. [Google Scholar]
- Van Ruth, S.M. Methods for gas chromatography-olfactometry: A review. Biomol. Eng. 2001, 17, 121–128. [Google Scholar] [CrossRef]
- Husson, F.; Le, S. SensoMineR: A package for sensory data analysis with R. J. Sens. Stud. 2008, 23, 14–25. [Google Scholar]
- Castura, J.C. tempR: Temporal sensory data analysis. R Package Version 0.9. In Proceedings of the AgroStat 14th Symposium on Statistical Methods for the Food Industry, Lausanne, Switzerland, 21–24 March 2016; Volume 9. [Google Scholar]
- Caldeira, I.; Anjos, O.; Belchior, A.P.; Canas, S. Sensory impact of alternative ageing technology for the production of wine brandies. Ciência Téc. Vitiv. 2017, 32, 12–22. [Google Scholar] [CrossRef]
- Gadrat, M.; Lavergne, J.; Emo, C.; Teissedre, P.L.; Chira, K. Sensory characterisation of Cognac eaux-de-vie aged in barrels subjected to different toasting processes. OENO One 2022, 56, 17–28. [Google Scholar] [CrossRef]
- Lurton, L.; Ferrari, G.; Snakkers, G. Cognac: Production and aromatic characteristics. In Alcoholic Beverages, 1st ed.; Piggott, J., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 242–266. [Google Scholar]
- Caldeira, I.; Belchior, A.P.; Canas, S. Effect of alternative ageing systems on the wine brandy sensory profile. Ciência Téc. Vitiv. 2013, 28, 09–18. [Google Scholar]
- Caldeira, I.; Mateus, A.; Belchior, A. Flavour and odour profile modifications during the first five years of Lourinhã brandy maturation on different wooden barrels. Anal. Chim. Acta 2006, 563, 264–273. [Google Scholar] [CrossRef]
- Caldeira, I.; Santos, R.; Ricardo-Da-Silva, J.M.; Anjos, O.; Mira, H.; Belchior, A.P.; Canas, S. Kinetics of odorant compounds in wine brandies aged in different systems. Food Chem. 2016, 211, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Savchuk, S.A.; Kolesov, G.M. Chromatographic techniques in the quality control of cognacs and cognac spirits. J. Anal. Chem. 2005, 60, 752–771. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Higher Alcohols. In Understanding Wine Chemistry, 1st ed.; Waterhouse, A.L., Sacks, G.L., Jeffery, D.W., Eds.; John Wiley & Sons: New York, NY, USA, 2016; pp. 51–56. [Google Scholar]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef]
- Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Grape brandy production, composition and sensory evaluation. J. Sci. Food Agric. 2014, 94, 404–414. [Google Scholar] [CrossRef]
- Watts, V.A.; Butzke, C.E.; Boulton, R.B. Study of aged Cognac using solid-phase microextraction and partial least-squares regression. J. Agric. Food Chem. 2003, 51, 7738–7742. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Belchior, A.P. Extraction/oxidation kinetics of low molecular weight compounds in wine brandy resulting from different ageing technologies. Food Chem. 2013, 138, 2460–2467. [Google Scholar] [CrossRef]
Sample Code | Grade 1 | Region | Grape Cultivar | Region of Oak Barrels | Alcohol% (v/v) |
---|---|---|---|---|---|
CVS | VSOP | Yantai, China | Ugni Blanc | Limousin, France | 40 |
CX10 | XO10 | Yantai, China | Ugni Blanc | Limousin, France | 40 |
CX15 | XO15 | Yantai, China | Ugni Blanc | Limousin, France | 40 |
HVS | VSOP | Cognac, France | Ugni Blanc, Colombard, Folle Blanche | Limousin, France | 40 |
HXO | XO | Cognac, France | Ugni Blanc, Colombard, Folle Blanche | Limousin, France | 40 |
MVS | VSOP | Cognac, France | Ugni Blanc, Colombard, Folle Blanche | Troncais, France | 40 |
MXO | XO | Cognac, France | Ugni Blanc, Colombard, Folle Blanche | Troncais, France | 40 |
RVS | VSOP | Cognac, France | Ugni Blanc, Colombard, Folle Blanche | Limousin, France | 40 |
RXO | XO | Cognac, France | Ugni Blanc, Colombard, Folle Blanche | Limousin, France | 40 |
Sample | CVS | CX10 | CX15 | HVS | HXO | MVS | MXO | RVS | RXO |
---|---|---|---|---|---|---|---|---|---|
alcohol | 4.00 ± 0.26 d | 3.33 ± 0.15 b | 4.80 ± 0.29 ef | 4.50 ± 0.16 e | 3.50 ± 0.12 bc | 5.60 ± 0.39 g | 3.80 ± 0.20 cd | 5.00 ± 0.21 f | 2.80 ± 0.25 a |
dried fruit | 5.03 ± 0.15 fg | 4.80 ± 0.40 f | 5.20 ± 0.38 g | 2.50 ± 0.14 a | 3.00 ± 0.21 b | 3.20 ± 0.27 bc | 3.80 ± 0.23 de | 3.50 ± 0.19 cd | 4.00 ± 0.16 e |
floral | 0.85 ± 0.26 a | 1.00 ± 0.25 a | 1.50 ± 0.24 b | 2.50 ± 0.07 c | 2.50 ± 0.12 c | 3.50 ± 0.14 d | 2.50 ± 0.12 c | 3.50 ± 0.19 d | 4.00 ± 0.24 e |
fruity | 1.01 ± 0.14 a | 1.00 ± 0.28 a | 1.20 ± 0.23 a | 2.00 ± 0.39 b | 2.60 ± 0.12 c | 2.90 ± 0.26 c | 2.00 ± 0.19 b | 3.80 ± 0.19 d | 4.00 ± 0.21 d |
caramel | 1.47 ± 0.23 a | 3.00 ± 0.38 c | 3.70 ± 0.29 d | 3.80 ± 0.19 d | 4.50 ± 0.19 e | 4.80 ± 0.19 ef | 5.30 ± 0.28 g | 2.50 ± 0.25 b | 5.00 ± 0.14 fg |
toasted | 3.98 ± 0.18 cd | 5.00 ± 0.16 g | 5.50 ± 0.41 h | 3.00 ± 0.27 b | 4.50 ± 0.31 ef | 2.50 ± 0.25 a | 4.20 ± 0.21 de | 3.80 ± 0.16 c | 4.60 ± 0.31 f |
spicy | 5.52 ± 0.40 e | 5.30 ± 0.47 de | 4.80 ± 0.29 c | 3.60 ± 0.22 ab | 3.90 ± 0.38 ab | 3.80 ± 0.21 ab | 5.00 ± 0.19 cd | 4.00 ± 0.16 b | 3.50 ± 0.07 a |
mushroom | 0.98 ± 0.22 bc | 1.18 ± 0.29 c | 0.70 ± 0.30 b | 0.38 ± 0.28 a | 1.00 ± 0.16 bc | 3.50 ± 0.12 d | 4.00 ± 0.34 e | 1.00 ± 0.20 bc | 1.00 ± 0.23 bc |
No. | Compounds | Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CVS | CX10 | CX15 | HVS | HXO | MVS | MXO | RVS | RXO | ||
Concentration (mg L−1) | ||||||||||
1 | ethyl acetate | 488.3 ± 2.8 b | 807.3 ± 5.6 d | 814.3 ± 23.1 d | 409.2 ± 30.3 a | 583.5 ± 11.9 c | 366.0 ± 11.1 a | 512.4 ± 16.9 b | 376.7 ± 28.3 a | 584.3 ± 28.8 c |
3 | 2-methyl-1-propanol | 226.3 ± 10.1 b | 393.2 ± 3.3 de | 336.9 ± 9.8 c | 331.0 ± 27.7 c | 396.2 ± 3.2 de | 97.2 ± 3.1 a | 409.7 ± 6.5 e | 332.0 ± 3.2 c | 360.8 ± 3.0 cd |
4 | 2-methyl-1-butanol | 30.7 ± 0.9 a | 38.2 ± 1.2 ab | 42.0 ± 3.3 abc | 39.8 ± 2.1 abc | 56.7 ± 5.7 d | 35.3 ± 2.0 ab | 50.5 ± 6.7 cd | 51.1 ± 1.5 cd | 45.2 ± 3.6 bcd |
5 | 3-methyl-1-butanol | 562.5 ± 13.4 a | 679.5 ± 2.7 cde | 622.2 ± 8.8 b | 669.6 ± 27.1 cd | 709.0 ± 4.0 e | 684.8 ± 6.2 de | 710.0 ± 4.7 e | 642.3 ± 3.7 bc | 664.8 ± 2.9 cd |
9 | 1-hexanol | 17.0 ± 1.0 c | 31.6 ± 3.1 d | 10.9 ± 0.3 b | 4.6 ± 0.4 a | 11.1 ± 1.4 b | 6.5 ± 0.2 a | 15.5 ± 1.1 c | 5.7 ± 0.7 a | 5.7 ± 0.2 a |
10 | ethyl lactate | 10.6 ± 0.7 d | 20.5 ± 0.2 f | 15.8 ± 0.8 e | 6.3 ± 0.8 b | 8.4 ± 0.2 c | 3.9 ± 0.2 a | 8.1 ± 0.2 c | 5.5 ± 0.1 b | 6.9 ± 0.1 bc |
11 | (Z)-3-hexen-1-ol | 0.8 ± 0.1 ab | 1.1 ± 0.1 bc | 0.7 ± 0.1 a | 0.9 ± 0.1 ab | 1.3 ± 0.1 c | 1.0 ± 0.0 b | 1.7 ± 0.1 d | 1.0 ± 0.1 b | 1.0 ± 0.1 b |
13 | acetic acid | 101.8 ± 3.2 a | 129.8 ± 1.5 de | 130.3 ± 2.5 de | 121.1 ± 1.7 bc | 127.5 ± 2.9 cde | 119.2 ± 0.9 b | 126.2 ± 2.5 bcde | 124.9 ± 2.6 bcd | 133.7 ± 0.5 e |
14 | furfural | 9.0 ± 0.8 d | 13.0 ± 1.2 e | 8.6 ± 0.4 cd | 5.2 ± 0.4 b | 9.0 ± 0.5 d | 0.0 ± 0.0 a | 7.1 ± 0.3 c | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
18 | propanoic acid | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.1 ± 0.1 b | 0.0 ± 0.0 a | 3.9 ± 0.2 c | 4.2 ± 0.6 c | 3.9 ± 0.6 c | 7.8 ± 1.1 d |
19 | 2-methyl-propanoic acid | 1.9 ± 0.2 a | 2.2 ± 0.1 a | 2.9 ± 0.3 bc | 2.2 ± 0.2 a | 2.5 ± 0.2 abc | 2.3 ± 0.1 ab | 2.3 ± 0.1 ab | 2.6 ± 0.2 abc | 3.1 ± 0.2 c |
20 | 5-methylfurfural | 2.2 ± 0.2 d | 2.2 ± 0.0 cd | 2.0 ± 0.3 cd | 1.0 ± 0.1 a | 1.7 ± 0.2 bc | 1.2 ± 0.1 a | 1.1 ± 0.1 a | 1.3 ± 0.1 ab | 1.2 ± 0.2 ab |
21 | ethyl levulate | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.7 ± 0.1 bc | 0.4 ± 0.1 b | 1.0 ± 0.2 c | 9.2 ± 0.3 e | 1.0 ± 0.1 c | 1.0 ± 0.1 c | 2.4 ± 0.1 d |
22 | ethyl decanoate | 1.3 ± 0.5 bc | 0.8 ± 0.1 ab | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 3.0 ± 0.0 d | 3.1 ± 0.1 d | 1.4 ± 0.2 c | 0.8 ± 0.0 ab | 1.1 ± 0.1 bc |
24 | 3-methylbutanoic acid | 0.9 ± 0.1 bc | 1.2 ± 0.1 b | 1.1 ± 0.1 bc | 1.7 ± 0.2 c | 1.2 ± 0.1 b | 2.4 ± 0.3 d | 0.6 ± 0.0 a | 1.8 ± 0.2 c | 1.8 ± 0.2 c |
25 | diethyl succinate | 4.8 ± 0.5 d | 3.2 ± 0.1 c | 3.2 ± 0.1 c | 2.0 ± 0.1 a | 2.3 ± 0.1 ab | 1.8 ± 0.0 a | 2.2 ± 0.2 a | 2.0 ± 0.1 a | 2.9 ± 0.1 bc |
28 | hexanoic acid | 2.5 ± 0.2 b | 1.6 ± 0.2 a | 2.4 ± 0.1 b | 2.5 ± 0.0 b | 2.5 ± 0.0 b | 2.6 ± 0.0 b | 1.9 ± 0.0 a | 2.6 ± 0.1 b | 2.6 ± 0.1 b |
29 | guaiacol | 0.5 ± 0.1 b | 0.5 ± 0.0 b | 1.4 ± 0.2 d | 0.6 ± 0.1 bc | 1.4 ± 0.2 d | 0.1 ± 0.0 a | 1.0 ± 0.2 c | 0.7 ± 0.0 bc | 2.1 ± 0.2 e |
31 | 2-phenylethanol | 6.6 ± 0.7 a | 6.3 ± 0.4 a | 7.2 ± 0.1 a | 10.4 ± 0.7 ab | 13.5 ± 0.8 bc | 8.3 ± 0.1 a | 16.6 ± 2.3 c | 14.9 ± 1.6 c | 31.9 ± 2.4 d |
35 | octanoic acid | 10.8 ± 1.6 abc | 8.6 ± 0.8 ab | 6.6 ± 0.7 a | 9.7 ± 1.5 abc | 19.0 ± 2.3 d | 25.7 ± 0.3 e | 11.6 ± 1.5 bc | 13.6 ± 1.8 c | 21.9 ± 0.9 de |
39 | syringol | 0.4 ± 0.0 ab | 0.6 ± 0.0 bc | 1.4 ± 0.1 d | 0.9 ± 0.1 c | 1.9 ± 0.2 e | 0.1 ± 0.0 a | 1.4 ± 0.1 d | 0.8 ± 0.1 bc | 2.5 ± 0.3 f |
41 | 5-hydroxymethylfurfural | 23.8 ± 1.7 a | 30.6 ± 2.8 a | 32.0 ± 1.3 a | 34.2 ± 2.0 a | 69.4 ± 5.0 c | 30.3 ± 0.8 a | 45.8 ± 0.1 b | 89.5 ± 7.8 d | 31.9 ± 2.7 a |
42 | vanillin | 3.8 ± 0.4 b | 5.0 ± 0.3 cd | 5.8 ± 0.1 d | 2.0 ± 0.1 a | 4.4 ± 0.2 bc | 2.1 ± 0.1 a | 2.5 ± 0.2 a | 2.5 ± 0.1 a | 5.5 ± 0.7 d |
Concentration (ug L−1) | ||||||||||
2 | 2,3-butanedione | 8.9 ± 0.4 a | 17.1 ± 1.2 c | 20.5 ± 2.2 c | 9.5 ± 0.2 a | 16.3 ± 1.6 bc | 8.8 ± 0.7 a | 11.4 ± 0.8 ab | 20.0 ± 0.9 c | 29.0 ± 3.4 d |
6 | 1-pentanol | 117.4 ± 14.1 bc | 526.5 ± 71.8 e | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 156.9 ± 20.1 c | 402.3 ± 30.6 d | 55.4 ± 8.1 ab | 0.0 ± 0.0 a |
7 | 3-methyl-3-buten-1-ol | 162.6 ± 3.7 b | 543.4 ± 20.5 c | 0.0 ± 0.0 a | 27.4 ± 3.3 a | 150.2 ± 5.9 b | 136.7 ± 11.8 b | 145.1 ± 20.9 b | 0.0 ± 0.0 | 0.0 ± 0.0 |
8 | 3-methyl-1-pentanol | 249.9 ± 32.4 cd | 259.2 ± 12.9 cd | 0.0 ± 0.0 a | 182.0 ± 13.8 b | 341.4 ± 8.8 e | 257.2 ± 4.6 cd | 349.6 ± 14.3 e | 278.7 ± 38.0 d | 201.8 ± 2.6 bc |
12 | ethyl octanoate | 125.7 ± 28.0 b | 274.8 ± 9.4 c | 16.8 ± 1.9 a | 45.3 ± 6.3 ab | 394.9 ± 44.5 d | 320.4 ± 19.1 cd | 337.8 ± 54.0 cd | 53.6 ± 8.3 ab | 40.6 ± 5.8 ab |
15 | 2-acetylfuran | 265.4 ± 30.0 bc | 338.1 ± 9.4 d | 289.2 ± 7.2 bcd | 166.7 ± 3.9 a | 301.6 ± 19.2 bcd | 158.7 ± 11.4 a | 244.7 ± 17.1 b | 250.4 ± 21.2 b | 324.6 ± 40.6 cd |
16 | benzaldehyde | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 91.7 ± 4.4 b | 118.1 ± 2.3 c | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
17 | ethyl 2-hydroxy-4-methylpentanoate | 350.0 ± 47.3 d | 279.9 ± 12.6 cd | 291.4 ± 3.9 cd | 250.2 ± 9.3 bc | 191.9 ± 25.8 ab | 172.6 ± 8.5 a | 194.4 ± 27.1 ab | 179.5 ± 9.5 ab | 237.0 ± 13.7 abc |
23 | ethyl 2-furoate | 51.5 ± 8.0 bc | 60.4 ± 0.7 c | 43.1 ± 5.8 ab | 30.5 ± 2.1 a | 82.6 ± 2.1 d | 49.1 ± 1.9 bc | 75.7 ± 1.5 d | 47.6 ± 4.1 bc | 44.9 ± 4.5 b |
26 | β-damascenone | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 344.1 ± 2.1 d | 421.2 ± 54.0 e | 278.6 ± 6.9 c | 159.4 ± 14.6 b | 0.0 ± 0.0 a |
27 | ethyl dodecanoate | 453.5 ± 17.7 de | 352.0 ± 26.7 cd | 0.0 ± 0.0 a | 153.0 ± 21.5 ab | 599.9 ± 11.6 e | 1187.7 ± 113.2 f | 393.1 ± 48.1 cd | 244.2 ± 12.1 bc | 518.5 ± 68.7 de |
30 | (E)-whiskeylactone | 538.9 ± 46.2 c | 707.4 ± 43.5 e | 882.2 ± 10.7 f | 360.7 ± 12.7 a | 540.8 ± 16.2 c | 607.5 ± 1.9 cd | 668.3 ± 2.5 de | 444.2 ± 3.3 b | 399.2 ± 1.7 ab |
32 | (Z)-whiskeylactone | 698.0 ± 36.8 c | 860.0 ± 36.2 d | 1050.5 ± 9.9 e | 469.0 ± 6.3 a | 634.2 ± 15.5 b | 638.0 ± 5.6 bc | 678.6 ± 1.9 bc | 515.1 ± 2.9 a | 465.7 ± 1.4 a |
33 | phenol | 53.7 ± 5.4 abcd | 51.9 ± 5.6 abc | 73.2 ± 9.3 cd | 35.4 ± 4.2 a | 61.0 ± 8.4 bcd | 53.0 ± 6.7 abcd | 50.6 ± 4.4 ab | 34.6 ± 3.7 a | 74.2 ± 6.4 d |
34 | ethyl tetradecanoate | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 25.8 ± 2.1 b | 87.2 ± 9.5 c |
36 | γ-nonalactone | 26.4 ± 1.2 b | 20.5 ± 1.2 a | 25.8 ± 2.2 ab | 43.5 ± 1.1 d | 47.0 ± 1.0 d | 52.9 ± 0.3 e | 45.9 ± 4.1 d | 35.8 ± 0.5 c | 57.5 ± 0.7 e |
37 | 2-methoxy-4-vinylphenol | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 206.7 ± 10.8 c | 0.0 ± 0.0 a | 166.3 ± 11.1 b | 61.0 ± 7.1 a | 278.2 ± 28.7 d |
38 | ethyl hexadecanoate | 294.1 ± 16.0 c | 203.2 ± 70.0 b | 58.1 ± 7.5 a | 36.1 ± 3.5 a | 39.9 ± 0.1 a | 83.5 ± 12.0 a | 16.2 ± 0.4 a | 20.2 ± 2.4 a | 52.3 ± 10.8 a |
40 | γ-dodecalactone | 16.3 ± 1.6 a | 26.8 ± 1.2 b | 31.9 ± 1.2 c | 36.6 ± 1.0 de | 40.8 ± 2.3 ef | 37.2 ± 1.6 def | 34.0 ± 1.0 cd | 40.2 ± 0.6 ef | 41.7 ± 0.6 f |
43 | ethyl vanillate | 149.4 ± 11.4 bcd | 255.5 ± 31.3 f | 203.1 ± 25.7 def | 93.0 ± 12.8 ab | 235.2 ± 19.6 ef | 74.0 ± 6.7 a | 143.2 ± 5.6 bc | 91.3 ± 10.0 ab | 185.2 ± 11.5 cde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Li, Y.; Zhang, B.; Shen, C.; Yu, L.; Xu, Y.; Tang, K. Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac. Foods 2024, 13, 27. https://doi.org/10.3390/foods13010027
Ma Y, Li Y, Zhang B, Shen C, Yu L, Xu Y, Tang K. Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac. Foods. 2024; 13(1):27. https://doi.org/10.3390/foods13010027
Chicago/Turabian StyleMa, Yue, Yuanyi Li, Baochun Zhang, Chunhua Shen, Lina Yu, Yan Xu, and Ke Tang. 2024. "Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac" Foods 13, no. 1: 27. https://doi.org/10.3390/foods13010027