cor1 Gene: A Suitable Marker for Identification of Opium Poppy (Papaver somniferum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Model Samples
2.3. DNA Isolation
2.4. In Silico Analysis of Actin and cor Genes
2.5. Primers and Probes
Marker | Oligonucleotide † | Sequence (5′-3′) | Size [bp] | Reference |
---|---|---|---|---|
COR1 | COR1_F | CCTTGTATAAATATCCCCGGA | 207 | This work |
COR1_R | TCTGATTATGCCCTTATTCAAC | |||
COR1_P | FAM-AGTTGTTTCCATTTTTGGAGT CAAGTTGAGACA-BHQ-1 | |||
Actin | Act-L_F | CAAGCAGCATGAAGATCAAGGT | ~103 | [29,30] |
Act-L_R | CACATCTGTTGGAAAGTGCTGAG | |||
Act-L_P | HEX-CCTCCAATCCAGACACTGTA CTTYCTCTC-BHQ-1 | |||
Actin-Z_F | CCCTGGAATTGCTGATAGGATGA | 150 ‡ | This work | |
Actin-Z_P | HEX-ATCACAGCTCTTGCACCAAGCAG CATGAAG-BHQ-1 | |||
Myostatin | MY_F | TTGTGCAAATCCTGAGACTCAT | 97 | [31] |
MY_R | ATACCAGTGCCTGGGTTCAT |
2.6. End-Point PCR
2.7. Quantitative Real-Time PCR (qPCR)
2.8. Droplet Digital PCR (ddPCR)
2.9. Multiplex PCR
2.10. Validation of Designed PCR Assays
2.10.1. Specificity
2.10.2. Sensitivity
3. Results
3.1. Actin Gene as a Reference Marker and Control of DNA Amplification
3.2. cor Gene as a Marker for P. somniferum Discrimination
3.3. Comparison of Three PCR Types
3.4. Multiplexing of the PCR Assays
3.5. Analysis of Heat-Treated Seeds and Real Food Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labanca, F.; Ovesna, J.; Milella, L. Papaver somniferum L. taxonomy, uses and new insight in poppy alkaloid pathways. Phytochem. Rev. 2018, 17, 853–871. [Google Scholar] [CrossRef]
- Emir, D.D.; Aydeniz, B.; Yilmaz, E. Effects of roasting and enzyme pretreatments on yield and quality of cold-pressed poppy seed oils. Turk. J. Agric. For. 2015, 39, 260–271. [Google Scholar] [CrossRef]
- Azcan, N.; Kalender, B.O.; Kara, M. Investigation of Turkish poppy seeds and seed oils. Chem. Nat. Compd. 2004, 40, 370–372. [Google Scholar] [CrossRef]
- Nergiz, C.; Ötles, S. The proximate composition and some minor constituents of poppy seeds. J. Sci. Food Agric. 1994, 66, 117–120. [Google Scholar] [CrossRef]
- Lančaričová, A.; Havrlentová, M.; Muchová, D.; Bednárová, A. Oil content and fatty acids composition of poppy seeds cultivated in two localities of Slovakia. Agric. Pol’nohospodárstvo 2016, 62, 19–27. [Google Scholar] [CrossRef]
- Luthra, R.; Singh, N. Changes in fatty acid composition accompanying the deposition of triacylglycerols in developing seeds of opium poppy (Papaver somniferum L.). Plant Sci. 1989, 60, 55–60. [Google Scholar] [CrossRef]
- Bozan, B.; Temelli, F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour. Technol. 2008, 99, 6354–6359. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Data. 2019. Available online: https://www.fao.org/faostat/en/#data (accessed on 21 October 2022).
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L. Update of the scientific opinion on opium alkaloids in poppy seeds. EFSA J. 2018, 16, e05243. [Google Scholar]
- López-Calleja, I.M.; de la Cruz, S.; González, I.; García, T.; Martín, R. Duplex real-time PCR using TaqMan® for the detection of sunflower (Helianthus annuus) and poppy (Papaver rhoeas) in commercial food products. LWT-Food Sci. Technol. 2016, 65, 999–1007. [Google Scholar] [CrossRef]
- Gevenkiriş, A. Determination of Morphine and Total Phenolic Content in Poppy Seed of Turkish Origin. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2011. [Google Scholar]
- European Union. Recommendation (2014/662/UE) of 10 September 2014 on Good Practices to Prevent and to Reduce the Presence of Opium Alkaloids in Poppy Seeds and Poppy Seed Products; OJ L 271 of 12 September 2014; Official Journal of the European Union: Brussels, Belgium, 2014; pp. 96–100. [Google Scholar]
- Sasikumar, B.; Swetha, V.; Parvathy, V.; Sheeja, T. Advances in adulteration and authenticity testing of herbs and spices. In Advances in Food Authenticity Testing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 585–624. [Google Scholar]
- Krist, S.; Stuebiger, G.; Bail, S.; Unterweger, H. Detection of adulteration of poppy seed oil with sunflower oil based on volatiles and triacylglycerol composition. J. Agric. Food Chem. 2006, 54, 6385–6389. [Google Scholar] [CrossRef]
- Avula, B.; Katragunta, K.; Adams, S.J.; Wang, Y.-H.; Chittiboyina, A.G.; Khan, I.A. Applicability of LC-QToF and Microscopical Tools in Combating the Sophisticated, Economically Motivated Adulteration of Poppy Seeds. Foods 2023, 12, 1510. [Google Scholar] [CrossRef]
- Singhal, R.S.; Kulkarni, P. Detection of Adultration of the Spice Poppy Seeds (Papaver somniferum) With Amaranthus paniculatas (Rajgeera) Seeds. J. Food Qual. 1990, 13, 375–381. [Google Scholar] [CrossRef]
- Celik, I.; Gultekin, V.; Allmer, J.; Doganlar, S.; Frary, A. Development of genomic simple sequence repeat markers in opium poppy by next-generation sequencing. Mol. Breed. 2014, 34, 323–334. [Google Scholar] [CrossRef]
- Celik, I.; Camci, H.; Kose, A.; Kosar, F.C.; Doganlar, S.; Frary, A. Molecular genetic diversity and association mapping of morphine content and agronomic traits in Turkish opium poppy (Papaver somniferum) germplasm. Mol. Breed. 2016, 36, 46. [Google Scholar] [CrossRef]
- Hosokawa, K.; Shibata, T.; Nakamura, I.; Hishida, A. Discrimination among species of Papaver based on the plastid rpl16 gene and the rpl16-rpl14 spacer sequence. Forensic Sci. Int. 2004, 139, 195–199. [Google Scholar] [CrossRef]
- Masárová, V.; Mihálik, D.; Kraic, J. In silico retrieving of opium poppy (Papaver somniferum L.) microsatellites. Agric. Pol’nohospodárstvo 2015, 61, 149–156. [Google Scholar] [CrossRef]
- Saunders, J.A.; Pedroni, M.J.; Penrose, L.D.; Fist, A.J. AFLP analysis of opium poppy. Crop Sci. 2001, 41, 1596–1601. [Google Scholar] [CrossRef]
- Unterlinner, B.; Lenz, R.; Kutchan, T.M. Molecular cloning and functional expression of codeinone reductase: The penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J. 1999, 18, 465–475. [Google Scholar] [CrossRef]
- Hosseini, B.; Shahriari-Ahmadi, F.; Hashemi, H.; Marashi, M.-H.; Mohseniazar, M.; Farokhzad, A.; Sabokbari, M. Transient Expression of cor Gene in Papaver somniferum. BioImpacts BI 2011, 1, 229. [Google Scholar]
- Guo, L.; Winzer, T.; Yang, X.; Li, Y.; Ning, Z.; He, Z.; Teodor, R.; Lu, Y.; Bowser, T.A.; Graham, I.A. The opium poppy genome and morphinan production. Science 2018, 362, 343–347. [Google Scholar] [CrossRef]
- Li, Q.; Ramasamy, S.; Singh, P.; Hagel, J.M.; Dunemann, S.M.; Chen, X.; Chen, R.; Yu, L.; Tucker, J.E.; Facchini, P.J. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nat. Commun. 2020, 11, 1190. [Google Scholar] [CrossRef] [PubMed]
- ISO 21570:2005; Foodstuffs—Methods of Analysis for the Detection of Genetically Modified Organisms and Derived Products—Quantitative Nucleic Acid Based Methods. International Organization for Standardization: Geneva, Switzerland, 2005.
- Hougs, L.; Gatto, F.; Goerlich, O.; Grohmann, L.; Lieske, K.; Mazzara, M.; Narendja, F.; Ovesna, J.; Papazova, N.; Scholtens, I. Verification of analytical methods for GMO testing when implementing interlaboratory validated methods. In Testing and Analysis of GMO-containing Foods and Feed; CRC Press: Boca Raton, FL, UAS, 2017; pp. 245–266. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Laube, I.; Hird, H.; Brodmann, P.; Ullmann, S.; Schöne-Michling, M.; Chisholm, J.; Broll, H. Development of primer and probe sets for the detection of plant species in honey. Food Chem. 2010, 118, 979–986. [Google Scholar] [CrossRef]
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Laube, I.; Spiegelberg, A.; Butschke, A.; Zagon, J.; Schauzu, M.; Kroh, L.; Broll, H. Methods for the detection of beef and pork in foods using real-time polymerase chain reaction. Int. J. Food Sci. Technol. 2003, 38, 111–118. [Google Scholar] [CrossRef]
- FAO. Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods. CAC/GL 74-2010. 2010. p. 22. Available online: https://www.fao.org/fileadmin/user_upload/gmfp/resources/CXG_074e.pdf (accessed on 21 October 2022).
- Jacchia, S.; Kagkli, D.-M.; Lievens, A.; Angers-Loustau, A.; Savini, C.; Emons, H.; Mazzara, M. Identification of single target taxon-specific reference assays for the most commonly genetically transformed crops using digital droplet PCR. Food Control 2018, 93, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Dingle, T.C.; Sedlak, R.H.; Cook, L.; Jerome, K.R. Tolerance of Droplet-Digital PCR vs Real-Time Quantitative PCR to Inhibitory Substances. Clin. Chem. 2013, 59, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Williams, J.; Gärtner, K.; Phillips, R.; Hurst, J.; Frater, J. Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, ‘definetherain’. J. Virol. Methods 2014, 202, 46–53. [Google Scholar] [CrossRef]
- Bernardo, G.D.; Gaudio, S.D.; Galderisi, U.; Cascino, A.; Cipollaro, M. Comparative evaluation of different DNA extraction procedures from food samples. Biotechnol. Prog. 2007, 23, 297–301. [Google Scholar] [CrossRef]
- Kaňuková, Š.; Mrkvová, M.; Mihálik, D.; Kraic, J. Procedures for DNA extraction from opium poppy (Papaver somniferum L.) and poppy seed-containing products. Foods 2020, 9, 1429. [Google Scholar] [CrossRef]
- Čermáková, E.; Zdeňková, K.; Demnerová, K.; Ovesná, J. Comparison of methods to extract PCR-amplifiable DNA from fruit, herbal and black teas. Czech J. Food Sci. 2021, 39, 410–417. [Google Scholar] [CrossRef]
- Debode, F.; Zdeòková, K.; Janssen, E.; Tizolova, A.; du Jardin, P.; Berben, G.; Demnerova, K. Development of real-time PCR assays for the detection of the pin II terminator (tpinII) used in GM constructs and its donor organism, potato (Solanum tuberosum). Food Anal. Methods 2018, 11, 2172–2180. [Google Scholar] [CrossRef]
- Pietsch, K.; Waiblinger, H.; Brodmann, P.; Wurz, A. Screeningverfahren zur identifizierung gentechnisch veränderter pflanzlicher lebensmittel. Dtsch. Lebensm.-Rundsch. 1997, 93, 35–38. [Google Scholar]
- Sovová, T.; Křížová, B.; Ovesná, J. Determining the optimal method for DNA isolation from fruit jams. Czech J. Food Sci. 2018, 36, 126–132. [Google Scholar] [CrossRef]
- Ghitarrini, S.; Pierboni, E.; Rondini, C.; Tedeschini, E.; Tovo, G.R.; Frenguelli, G.; Albertini, E. New biomolecular tools for aerobiological monitoring: Identification of major allergenic Poaceae species through fast real-time PCR. Ecol. Evol. 2018, 8, 3996–4010. [Google Scholar] [CrossRef]
- Waiblinger, H.-U.; Ohmenhaeuser, M.; Meissner, S.; Schillinger, M.; Pietsch, K.; Goerlich, O.; Mankertz, J.; Lieske, K.; Broll, H. In-house and interlaboratory validation of a method for the extraction of DNA from pollen in honey. J. Verbraucherschutz Und Leb. 2012, 7, 243–254. [Google Scholar] [CrossRef]
- Lee, E.J.; Hwang, I.K.; Kim, N.Y.; Lee, K.L.; Han, M.S.; Lee, Y.H.; Kim, M.Y.; Yang, M.S. An assessment of the utility of universal and specific genetic markers for opium poppy identification. J. Forensic Sci. 2010, 55, 1202–1208. [Google Scholar] [CrossRef]
- Choe, S.; Lee, E.; Jin, G.-n.; Lee, Y.H.; Kim, S.Y.; Choi, H.; Chung, H.; Hwang, B.Y.; Kim, S. Genetic and chemical components analysis of Papaver setigerum naturalized in Korea. Forensic Sci. Int. 2012, 222, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Vašek, J.; Čílová, D.; Melounová, M.; Svoboda, P.; Zdeňková, K.; Čermáková, E.; Ovesná, J. OpiumPlex is a novel microsatellite system for profiling opium poppy (Papaver somniferum L.). Sci. Rep. 2021, 11, 12799. [Google Scholar] [CrossRef]
- Vašek, J.; Čílová, D.; Melounová, M.; Svoboda, P.; Vejl, P.; Štikarová, R.; Vostrý, L.; Kuchtová, P.; Ovesná, J. New EST-SSR markers for individual genotyping of opium poppy cultivars (Papaver somniferum L.). Plants 2019, 9, 10. [Google Scholar] [CrossRef]
- Svoboda, P.; Vašek, J.; Vejl, P.; Ovesná, J. Genetic features of Czech blue poppy (Papaver somniferum L.) revealed by DNA polymorphism. Czech J. Food Sci. 2020, 38, 198–202. [Google Scholar] [CrossRef]
- Ren, J.; Deng, T.; Huang, W.; Chen, Y.; Ge, Y. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLoS ONE 2017, 12, e0173567. [Google Scholar] [CrossRef]
- Cottenet, G.; Blancpain, C.; Chuah, P.F. Performance assessment of digital PCR for the quantification of GM-maize and GM-soya events. Anal. Bioanal. Chem. 2019, 411, 2461–2469. [Google Scholar] [CrossRef]
- Cai, Y.; He, Y.; Lv, R.; Chen, H.; Wang, Q.; Pan, L. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLoS ONE 2017, 12, e0181949. [Google Scholar] [CrossRef]
- Bucher, T.B.; Köppel, R. Duplex digital droplet PCR for the determination of non-Basmati rice in Basmati rice (Oryza sativa) on the base of a deletion in the fragrant gene. Eur. Food Res. Technol. 2016, 242, 927–934. [Google Scholar] [CrossRef]
Family | Genus | Species | Common Name | Source |
---|---|---|---|---|
Papaveraceae | Argemone | A. mexicana | Mexican poppy | Seeds, leaves |
Papaver | P. bracteatum | Iranian poppy, Persian poppy | Leaves | |
P. commutatum | Caucasian scarlet poppy | Leaves | ||
P. glaucum | Tulip poppy | Seeds, leaves | ||
P. nudicaule | Iceland poppy | Seeds, leaves | ||
P. orientale | Oriental poppy | Seeds, leaves | ||
P. rhoeas | Common poppy | Seeds, leaves | ||
P. somniferum | Opium poppy | Seeds, leaves, stems, poppyheads | ||
Amaranthaceae | Amaranthus | (not specified) | Amaranth | Seeds |
Asteraceae | Helianthus | H. annuus | Sunflower | Seeds |
Brassicaceae | Brassica | B. napus | Rape | Leaves |
Sinapsis | S. alba | White mustard | Leaves | |
Fabaceae | Glycine | G. max | Soya-bean | Leaves |
Medicago | M. sativa | Alfalfa | Seeds, leaves | |
Linaceae | Linum | L. usitatissimum | Common flax | Seeds |
Poaceae | Avena | A. sativa | Common oat | Grain, leaves |
Hordeum | H. vulgare | Six-rowed barley | Grain, leaves | |
Oryza | O. sativa | Burgundy rice | Leaves | |
Secale | S. cereale | Cereal rye | Grain, leaves | |
Sorghum | S. bicolor | Great Millet, Sorghum | Seeds, leaves | |
Triticum | T. aestivum | Bread wheat | Grain, leaves | |
Zea | Z. mays | Maize | Grain, leaves | |
Solanaceae | Capsicum | C. annuum | Sweet Pepper | Leaves, pod |
Solanum | S. tuberosum | Potato | Tissue | |
S. lycopersicum | Tomato | Leaves | ||
Bovidae | Bos | B. taurus | Cattle | Tissue |
Equidae | Equus | E. caballus | Horse | Tissue |
Phasianidae | Gallus | G. gallus | Chicken | Tissue |
Suidae | Sus | S. scrofa | Pig | Tissue |
Treatment Conditions | Type of Treatment | Poppy Seeds | |
---|---|---|---|
80 °C, 30 min | Baking | Whole | |
Ground | |||
100 °C, 2 min | Cooking | in water | Ground |
in milk with the addition of sugar | |||
180 °C, 30 min | Baking | Seeds after cooking in water | |
Seeds after cooking in milk | |||
Ground (without previous cooking) | |||
Whole (without previous cooking) | |||
Dried at room temperature; without heat treatment | Ground |
Group | Sample | DNA Amplification Control † | Amplification of cor Gene ‡ | |||
---|---|---|---|---|---|---|
PCR (All Tested Platforms) | PCR | qPCR (EvaGreen/Probe) | ddPCR (Probe) | |||
Papaveraceae | Opium poppy | Aplaus | + | + | + | + |
Bergamon | + | + | + | + | ||
Buddha | + | + | + | + | ||
Major | + | + | + | + | ||
Maraton | + | + | + | + | ||
Opal | + | + | + | + | ||
Opex | + | + | + | + | ||
Peony | + | + | + | + | ||
Postomi | + | + | + | + | ||
Caucasian scarlet poppy | + | − | − | − | ||
Common poppy | + | − | − | − | ||
Iceland poppy | + | − | − | − | ||
Iranian or Persian Poppy | + | − | − | − | ||
Mexican Poppy | + | − | − | − | ||
Oriental Poppy | + | − | − | − | ||
Tulip poppy | + | − | − | − | ||
Other plant species | Alfalfa | + | − | − | − | |
Amaranth | + | − | − | − | ||
Barley | + | − | − | −/+ | ||
Flax | + | − | − | − | ||
Maize | + | − | − | − | ||
Mustard | + | − | +/− | −/+ | ||
Oat | + | − | − | − | ||
Oilseed rape | + | − | − | − | ||
Pepper | + | − | +/− | − | ||
Potato | + | − | +/− | − | ||
Rice | + | − | − | − | ||
Rye | + | − | − | − | ||
Sorghum | + | − | − | − | ||
Soya | + | − | − | |||
Sunflower | + | − | − | − | ||
Tomato | + | − | − | − | ||
Wheat | + | − | +/− | − | ||
Animal species | Cattle | + | − | − | − | |
Horse | + | − | N | − | ||
Chicken | + | − | − | − | ||
Pig | + | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čermáková, E.; Svoboda, P.; Ovesná, J.; Vašek, J.; Demnerová, K.; Zdeňková, K. cor1 Gene: A Suitable Marker for Identification of Opium Poppy (Papaver somniferum L.). Foods 2024, 13, 1432. https://doi.org/10.3390/foods13101432
Čermáková E, Svoboda P, Ovesná J, Vašek J, Demnerová K, Zdeňková K. cor1 Gene: A Suitable Marker for Identification of Opium Poppy (Papaver somniferum L.). Foods. 2024; 13(10):1432. https://doi.org/10.3390/foods13101432
Chicago/Turabian StyleČermáková, Eliška, Pavel Svoboda, Jaroslava Ovesná, Jakub Vašek, Kateřina Demnerová, and Kamila Zdeňková. 2024. "cor1 Gene: A Suitable Marker for Identification of Opium Poppy (Papaver somniferum L.)" Foods 13, no. 10: 1432. https://doi.org/10.3390/foods13101432
APA StyleČermáková, E., Svoboda, P., Ovesná, J., Vašek, J., Demnerová, K., & Zdeňková, K. (2024). cor1 Gene: A Suitable Marker for Identification of Opium Poppy (Papaver somniferum L.). Foods, 13(10), 1432. https://doi.org/10.3390/foods13101432