Biological Activity and Phytochemical Characteristics of Star Anise (Illicium verum) Essential Oil and Its Anti-Salmonella Activity on Sous Vide Pumpkin Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. GC and GC/MS Chemical Analyses of IVEO Sample
2.3. Microbial Strains for Antimicrobial Activity
2.4. Disc Diffusion Method
2.5. Broth Dilution Method
2.6. Vapor Phase of IVEO
2.7. Sous Vide Antimicrobial Affect
- (i)
- Control: Fresh pumpkin samples were treated for five to twenty-five minutes at 50 to 65 °C after being in polyethylene bags and kept at 4 °C.
- (ii)
- Control + vacuum: Fresh pumpkin samples were treated by heating for five to twenty-five minutes at 50–65 °C in water bath after being vacuum-packed in polyethylene bags and kept at 4 °C.
- (iii)
- EO: Fresh pumpkins that had been vacuum-packed and treated with 1% IVEO were kept at 4 °C and then heated in water bath for five to twenty-five minutes at 50 to 65 °C.
- (iv)
- Salmonella: Fresh pumpkins treated with S. enterica and vacuum-packed were kept at 4 °C before being exposed to the bacteria and then heated in a water for five to twenty-five minutes at 50 to 65 °C.
- (v)
- Salmonella + EO: Vacuum-packed fresh pumpkins treated with S. enterica and containing 1% IVEO were kept at 4 °C before being treated and were then heated at 50 to 65 °C for five to twenty-five minutes in water bath.
2.8. Antibiofilm Assay
2.8.1. Crystal Violet Study
2.8.2. MALDI-TOF MS Biotyper
2.9. Insecticidal Activity
2.10. Statistical Analysis
3. Results
3.1. GC/MS Analysis
3.2. Disc Diffusion Method
3.3. In Situ Antimicrobial Effect
3.4. Microbiological Analyses of Pumpkin Prepared by Sous Vide Method
3.5. Antibiofilm Effect Evaluated by MALDI-TOF MS Biotyper
3.6. Insecticidal Activity of IVEO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wrona, M.; Silva, F.; Salafranca, J.; Nerín, C.; Alfonso, M.J.; Caballero, M.Á. Design of New Natural Antioxidant Active Packaging: Screening Flowsheet from Pure Essential Oils and Vegetable Oils to Ex Vivo Testing in Meat Samples. Food Control 2021, 120, 107536. [Google Scholar] [CrossRef]
- Gokoglu, N. Novel Natural Food Preservatives and Applications in Seafood Preservation: A Review. J. Sci. Food Agric. 2019, 99, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Jaber, H.; Oubihi, A.; Ouryemchi, I.; Boulamtat, R.; Oubayoucef, A.; Bourkhiss, B.; Ouhssine, M. Chemical Composition and Antibacterial Activities of Eight Plant Essential Oils from Morocco against Escherichia coli Strains Isolated from Different Turkey Organs. Biochem. Res. Int. 2021, 2021, 6685800. [Google Scholar] [CrossRef] [PubMed]
- Bammou, M.; Tariq Bouhlali, E.D.; Sellam, K.; Derouich, M.; El-Rhaffari, L.; Ibijbijen, J.; Nassiri, L. Chemical Profile and Antimicrobial Properties of Liquid and Vapor Phases of The Essential Oil of Cladanthus eriolepis: An Endemic Asteraceae Growing in The Moroccan Oases. J. Essent. Oil Bear. Plants 2020, 23, 1042–1053. [Google Scholar] [CrossRef]
- Teshome, E.; Forsido, S.F.; Rupasinghe, H.P.V.; Olika Keyata, E. Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. Sci. World J. 2022, 2022, 9901018. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K. Medicinal Plants: Future Source of New Drugs. Int. J. Herb. Med. 2016, 4, 59–64. [Google Scholar]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.-N.; Tang, G.-Y.; Li, H.-B. Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous Vide Cooking: A Review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef]
- Sebastiá, C.; Soriano, J.M.; Iranzo, M.; Rico, H. Microbiological Quality Of Sous Vide Cook-Chill Preserved Food At Different Shelf Life: Microbiological Quality Of Sous Vide Cook-Chill Preserved Food. J. Food Process. Preserv. 2010, 34, 964–974. [Google Scholar] [CrossRef]
- Zavadlav, S.; Blažić, M.; Van De Velde, F.; Vignatti, C.; Fenoglio, C.; Piagentini, A.M.; Pirovani, M.E.; Perotti, C.M.; Bursać Kovačević, D.; Putnik, P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods 2020, 9, 1537. [Google Scholar] [CrossRef]
- Rondanelli, M.; Daglia, M.; Meneghini, S.; Di Lorenzo, A.; Peroni, G.; Faliva, M.A.; Perna, S. Nutritional Advantages of Sous-vide Cooking Compared to Boiling on Cereals and Legumes: Determination of Ashes and Metals Content in Ready-to-eat Products. Food Sci. Nutr. 2017, 5, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska-Kujawska, M.; Draszanowska, A.; Starowicz, M. Effect of Different Cooking Methods on the Folate Content, Organoleptic and Functional Properties of Broccoli and Spinach. LWT 2022, 167, 113825. [Google Scholar] [CrossRef]
- Rizzo, V.; Amoroso, L.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Restuccia, C.; Lombardo, S.; Pandino, G.; Strano, M.G.; Mauromicale, G. The Effect of Sous Vide Packaging with Rosemary Essential Oil on Storage Quality of Fresh-Cut Potato. LWT 2018, 94, 111–118. [Google Scholar] [CrossRef]
- Mkangara, M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. Int. J. Food Sci. 2023, 2023, 8899596. [Google Scholar] [CrossRef]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Fatica, M.K.; Schneider, K.R. Salmonella and Produce: Survival in the Plant Environment and Implications in Food Safety. Virulence 2011, 2, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Harrell, J.E.; Hahn, M.M.; D’Souza, S.J.; Vasicek, E.M.; Sandala, J.L.; Gunn, J.S.; McLachlan, J.B. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front. Cell. Infect. Microbiol. 2021, 10, 624622. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, N.A.; O’Bryan, C.A.; Dawoud, T.M.; Park, S.H.; Kwon, Y.M.; Crandall, P.G.; Ricke, S.C. An Overview of Salmonella Thermal Destruction during Food Processing and Preparation. Food Control 2016, 68, 280–290. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Wang, T. Star Anise Essential Oil: Chemical Compounds, Antifungal and Antioxidant Activities: A Review. J. Essent. Oil Res. 2021, 33, 1–22. [Google Scholar] [CrossRef]
- Sharafan, M.; Jafernik, K.; Ekiert, H.; Kubica, P.; Kocjan, R.; Blicharska, E.; Szopa, A. Illicium verum (Star Anise) and Trans-Anethole as Valuable Raw Materials for Medicinal and Cosmetic Applications. Molecules 2022, 27, 650. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal Activity of the Essential Oil of Illicium Verum Fruit and Its Main Component Trans-Anethole. Molecules 2010, 15, 7558–7569. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Jiang, C.H.; Chu, S.S.; Zuo, M.X.; Liu, Z.L. Chemical Composition and Toxicity against Sitophilus zeamais and Tribolium castaneum of the Essential Oil of Murraya Exotica Aerial Parts. Molecules 2010, 15, 5831–5839. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Ahn, Y. Fumigant Activity of (E)-anethole Identified in Illicium verum Fruit against Blattella germanica. Pest Manag. Sci. 2002, 58, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-I.; Park, C.; Ohh, M.-H.; Cho, H.-C.; Ahn, Y.-J. Contact and Fumigant Activities of Aromatic Plant Extracts and Essential Oils against Lasioderma serricorne (Coleoptera: Anobiidae). J. Stored Prod. Res. 2003, 39, 11–19. [Google Scholar] [CrossRef]
- Chaiyasit, D.; Choochote, W.; Rattanachanpichai, E.; Chaithong, U.; Chaiwong, P.; Jitpakdi, A.; Tippawangkosol, P.; Riyong, D.; Pitasawat, B. Essential Oils as Potential Adulticides against Two Populations of Aedes aegypti, the Laboratory and Natural Field Strains, in Chiang Mai Province, Northern Thailand. Parasitol. Res. 2006, 99, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Čmiková, N.; Vukovic, N.L.; Verešová, A.; Bianchi, A.; Garzoli, S.; Ben Saad, R.; Ben Hsouna, A.; Ban, Z.; Vukic, M.D. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. Plants 2024, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream 2005, 16, 65–120. [Google Scholar]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovic, N.L.; Čmiková, N.; Galovičová, L.; Schwarzová, M.; Šimora, V.; Kowalczewski, P.Ł.; Kluz, M.I.; Puchalski, C.; Bakay, L.; et al. Salvia Sclarea Essential Oil Chemical Composition and Biological Activities. Int. J. Mol. Sci. 2023, 24, 5179. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Galovičová, L.; Ivanišová, E.; Štefániková, J.; Valková, V.; Borotová, P.; Kowalczewski, P.Ł.; Kunová, S.; Felšöciová, S.; et al. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules 2020, 25, 3956. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Valková, V.; Ďuranová, H.; Borotová, P.; Štefániková, J.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Felsöciová, S.; et al. Chemical Composition and Biological Activity of Salvia officinalis Essential Oil. Acta Hortic. Regiotect. 2021, 24, 81–88. [Google Scholar] [CrossRef]
- Kačániová, M.; Čmiková, N.; Kluz, M.I.; Akacha, B.B.; Ben Saad, R.; Mnif, W.; Waszkiewicz-Robak, B.; Garzoli, S.; Ben Hsouna, A. Anti-Salmonella Activity of Thymus serpyllum Essential Oil in Sous Vide Cook–Chill Rabbit Meat. Foods 2024, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Hanus, P.; Bakay, L.; Zagrobelna, E.; Kluz, M.; et al. Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants 2022, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Muhsinah, A.B.; Maqbul, M.S.; Mahnashi, M.H.; Jalal, M.M.; Altayar, M.A.; Saeedi, N.H.; Alshehri, O.M.; Shaikh, I.A.; Khan, A.A.L.; Shakeel Iqubal, S.M.; et al. Antibacterial Activity of Illicium verum Essential Oil against MRSA Clinical Isolates and Determination of Its Phyto-Chemical Components. J. King Saud Univ. Sci. 2022, 34, 101800. [Google Scholar] [CrossRef]
- Wang, G.-W.; Hu, W.-T.; Huang, B.-K.; Qin, L.-P. Illicium Verum: A Review on Its Botany, Traditional Use, Chemistry and Pharmacology. J. Ethnopharmacol. 2011, 136, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Kong, W.; Yang, S.; Luo, J.; Yang, M. Illicium Verum Essential Oil, a Potential Natural Fumigant in Preservation of Lotus Seeds from Fungal Contamination. Food Chem. Toxicol. 2020, 141, 111347. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Bose, S.; Banerjee, S.; Vishnuprasad, C.N.; Del Pilar Rodriguez-Torres, M.; Shin, H. Star Anise (Illicium verum): Chemical Compounds, Antiviral Properties, and Clinical Relevance. Phytother. Res. 2020, 34, 1248–1267. [Google Scholar] [CrossRef] [PubMed]
- Çetin, B.; Özer, H.; Cakir, A.; Polat, T.; Dursun, A.; Mete, E.; Öztürk, E.; Ekinci, M. Antimicrobial Activities of Essential Oil and Hexane Extract of Florence Fennel [Foeniculum vulgare Var. azoricum (Mill.) Thell.] against Foodborne Microorganisms. J. Med. Food 2010, 13, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. The in Vitro Antibacterial Activity of Dietary Spice and Medicinal Herb Extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Thirumurugan, K.; Shihabudeen, M.; Hansi, P. Antimicrobial Activity and Phytochemical Analysis of Selected Indian Folk Medicinal Plants. Steroids 2010, 1, 430–434. [Google Scholar]
- Freire, J.M.; Cardoso, M.G.; Batista, L.R.; Andrade, M.A. Essential Oil of Origanum majorana L., Illicium verum Hook. f. and Cinnamomum zeylanicum Blume: Chemical and Antimicrobial Characterization. Rev. Bras. Plantas Med. 2011, 13, 209–214. [Google Scholar] [CrossRef]
- Noumi, E.; Ahmad, I.; Adnan, M.; Patel, H.; Merghni, A.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Kadri, A.; Caputo, L.; et al. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023, 28, 7691. [Google Scholar] [CrossRef] [PubMed]
- Damayanti, R.; Tamrin, E.; Alfian, Z. Illicium Verum Essential Oil as Antibacterial Agent. In Proceedings of the 1st International Conference on Chemical Science and Technology Innovation, Medan, Indonesia, 21–22 July 2019; SCITEPRESS—Science and Technology Publications: Medan, Indonesia, 2019; pp. 96–99. [Google Scholar]
- Abdel Khalek, H.; Mattar, Z.T.; Ibrahim, M.; Azam, Z. Star Anise Essential Oil As An Enhancer And Restorer Of The Antibacterial Action For Certain Antibiotics Against Gram Positive Or Negative Multi-Drug Resistance Isolates. J. RNA Genomics 2022, S04, 1–11. [Google Scholar]
- Outemsaa, B.; Oubihi, A.; Jaber, H.; Haida, S.; Kenfaoui, I.; Ihamdan, R.; El Azhari, H.; Ouhssine, M. Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oil of Illicium verum. E3S Web Conf. 2021, 319, 01052. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; deLampasona, M.; Catalan, C. Chemical Constituents, Antimicrobial Investigations and Antioxidative Potential of Volatile Oil and Acetone Extract of Star Anise Fruits. J. Sci. Food Agric. 2006, 86, 111–121. [Google Scholar] [CrossRef]
- Tian, L.; Li, P. Study on the Soxhlet’s Extraction of Star Anise Oil and Preliminary Investigation of Its Antibacterial Activity; Springer: Berlin/Heidelberg, Germany, 2015; pp. 509–518. [Google Scholar]
- Aly, S.E.; Sabry, B.A.; Shaheen, M.S.; Hathout, A.S. Assessment of Antimycotoxigenic and Antioxidant Activity of Star Anise (Illicium verum) in Vitro. J. Saudi Soc. Agric. Sci. 2016, 15, 20–27. [Google Scholar] [CrossRef]
- Čmiková, N.; Kunová, S.; Kačániová, M. Illicium verum Essential Oil Antimicrobial Activity in Vitro and in Situ. Sci. Pap. Anim. Sci. Biotechnol. 2023, 56, 82. [Google Scholar]
- Andón-Sánchez, N.; Chávez-Jáuregui, R.N.; Wessel-Beaver, L. Quality and Microbiological Changes in Minimally Processed Tropical Pumpkin Packed in Low-Density Polyethylene Bags1, 2. J. Agric. Univ. Puerto Rico 2011, 100, 203–220. [Google Scholar]
- Alves, J.A.; Vilas Boas, E.V.D.B.; Vilas Boas, B.M.; Souza, É.C.D. Qualidade de Produto Minimamente Processado à Base de Abóbora, Cenoura, Chuchu e Mandioquinha-Salsa. Ciênc. E Tecnol. Aliment. 2010, 30, 625–634. [Google Scholar] [CrossRef]
- Roura, S.I.; Moreira, M.D.R.; Valle, C.E.D. Shelf-life of Fresh-like Ready-to-Use Diced Squash. J. Food Qual. 2004, 27, 91–101. [Google Scholar] [CrossRef]
- Sasaki, F.F.; Aguila, J.S.D.; Gallo, C.R.; Ortega, E.M.M.; Jacomino, A.P.; Kluge, R.A. Alterações Fisiológicas, Qualitativas e Microbiológicas Durante o Armazenamento de Abóbora Minimamente Processada Em Diferentes Tipos de Corte. Hortic. Bras. 2006, 24, 170–174. [Google Scholar] [CrossRef]
- Baskaran, R.; Prasad, R.; Shivaiah, K.M.; Not Available, N.A. Storage Behaviour of Minimally Processed Pumpkin (Cucurbita Maxima) under Modified Atmosphere Packaging Conditions. Eur. Food Res. Technol. 2001, 212, 165–169. [Google Scholar] [CrossRef]
- Beuchat, L.R. Ecological Factors Influencing Survival and Growth of Human Pathogens on Raw Fruits and Vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef]
- Ruengvisesh, S.; Kerth, C.R.; Taylor, T.M. Inhibition of Escherichia Coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles. Foods 2019, 8, 575. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.I.S.; Marques, C.; Mota, J.; Pedroso, L.; Lima, A. Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022, 10, 760. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, Y.; Paidari, S.; Baghbaderani, S.A.; Nateghi, L.; Al-Hassan, A.A.; Ariffin, F. Essential Oils as Natural Antimicrobial Agents in Postharvest Treatments of Fruits and Vegetables: A Review. J. Food Meas. Charact. 2022, 16, 507–522. [Google Scholar] [CrossRef]
- Thielmann, J.; Muranyi, P. Review on the Chemical Composition of Litsea cubeba Essential Oils and the Bioactivity of Its Major Constituents Citral and Limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Wieczyńska, J.; Cavoski, I. Antimicrobial, Antioxidant and Sensory Features of Eugenol, Carvacrol and Trans-Anethole in Active Packaging for Organic Ready-to-Eat Iceberg Lettuce. Food Chem. 2018, 259, 251–260. [Google Scholar] [CrossRef]
- Maleki, G.; Sedaghat, N.; Woltering, E.J.; Farhoodi, M.; Mohebbi, M. Chitosan-Limonene Coating in Combination with Modified Atmosphere Packaging Preserve Postharvest Quality of Cucumber during Storage. J. Food Meas. Charact. 2018, 12, 1610–1621. [Google Scholar] [CrossRef]
- Niu, B.; Yan, Z.; Shao, P.; Kang, J.; Chen, H. Encapsulation of Cinnamon Essential Oil for Active Food Packaging Film with Synergistic Antimicrobial Activity. Nanomaterials 2018, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Casalini, S.; Giacinti Baschetti, M. The Use of Essential Oils in Chitosan or Cellulose-based Materials for the Production of Active Food Packaging Solutions: A Review. J. Sci. Food Agric. 2023, 103, 1021–1041. [Google Scholar] [CrossRef]
- Zubair, M.; Shahzad, S.; Hussain, A.; Pradhan, R.A.; Arshad, M.; Ullah, A. Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers 2022, 14, 1146. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhu, B.; Chen, H.; Chi, H.; Li, L.; Qin, Y.; Xue, J. The Quality Evaluation of Postharvest Strawberries Stored in Nano-Ag Packages at Refrigeration Temperature. Polymers 2018, 10, 894. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef]
- Dheeman, S. Plant Growth-Promoting Rhizobacteria. In Definitions; Qeios: London, UK, 2021. [Google Scholar]
- Berg, G.; Hallmann, J. Control of Plant Pathogenic Fungi with Bacterial Endophytes. In Microbial Root Endophytes; Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2006; Volume 9, pp. 53–69. ISBN 978-3-540-33525-2. [Google Scholar]
- Fürnkranz, M.; Lukesch, B.; Müller, H.; Huss, H.; Grube, M.; Berg, G. Microbial Diversity Inside Pumpkins: Microhabitat-Specific Communities Display a High Antagonistic Potential Against Phytopathogens. Microb. Ecol. 2012, 63, 418–428. [Google Scholar] [CrossRef]
- Luís, Â.; Sousa, S.; Wackerlig, J.; Dobusch, D.; Duarte, A.P.; Pereira, L.; Domingues, F. Star Anise (Illicium verum Hook. f.) Essential Oil: Antioxidant Properties and Antibacterial Activity against Acinetobacter baumannii. Flavour Fragr. J. 2019, 34, 260–270. [Google Scholar] [CrossRef]
- Freitas, J.P.; De Jesus, I.L.R.; Chaves, J.K.D.O.; Gijsen, I.S.; Campos, D.R.; Baptista, D.P.; Ferreira, T.P.; Alves, M.C.C.; Coumendouros, K.; Cid, Y.P.; et al. Efficacy and Residual Effect of Illicium verum (Star Anise) and Pelargonium graveolens (Rose Geranium) Essential Oil on Cat Fleas Ctenocephalides Felis Felis. Rev. Bras. Parasitol. Veterinária 2021, 30, e009321. [Google Scholar] [CrossRef]
- Sripongpun, G. Contact Toxicity of the Crude Extract of Chinese Star Anise Fruits to House Fly Larvae and Their Development. Songklanakarin J. Sci. Technol. 2008, 30, 667–672. [Google Scholar]
- Szczepanik, M.; Szumny, A. Insecticidal Activity of Star Anise (Illicum verum Hook. F.) Fruits Extracts against Lesser Mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopathy J. 2011, 27, 277–288. [Google Scholar]
- Wei, L.; Hua, R.; Li, M.; Huang, Y.; Li, S.; He, Y.; Shen, Z. Chemical Composition and Biological Activity of Star Anise Illicium verum Extracts against Maize Weevil, Sitophilus zeamais Adults. J. Insect Sci. 2014, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Gomes Da Rocha Voris, D.; Dos Santos Dias, L.; Alencar Lima, J.; Dos Santos Cople Lima, K.; Pereira Lima, J.B.; Dos Santos Lima, A.L. Evaluation of Larvicidal, Adulticidal, and Anticholinesterase Activities of Essential Oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr., and Myristica Fragrans Houtt. against Zika Virus Vectors. Environ. Sci. Pollut. Res. 2018, 25, 22541–22551. [Google Scholar] [CrossRef] [PubMed]
- Popović, A.; Petrović, M.; Stojanović, T.; Buđen, M. The Effect of the Minth and Star Anise Essential Oil on the Adults of Tribolium confusum (Coleoptera, Tenebrionidae). Biljni Lek. Plant Dr. 2019, 47, 344–354. [Google Scholar]
- Nilprapat, P.; Pumnuan, J.; Insung, A. Acaricidal Properties of Star Anise (Illicium verum Hook. f.) Essential Oil against House Dust Mite [Dermatophagoides pteronyssinus (Trouessart)]. Int. J. Agric. Technol. 2017, 13, 2307–2315. [Google Scholar]
- Elmhalli, F.; Pålsson, K.; Örberg, J.; Grandi, G. Acaricidal Properties of Ylang-Ylang Oil and Star Anise Oil against Nymphs of Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 209–220. [Google Scholar] [CrossRef]
No | RI (Lit.) a | RI (Calc.) b | Compound c | % d |
---|---|---|---|---|
Monoterpenes | 2.0 | |||
Monoterpene hydrocarbons | 1.8 | |||
1 | 939 | 934 | α-pinene | 0.7 |
2 | 1002 | 1006 | α-phellandrene | 0.4 |
3 | 1011 | 1008 | δ-3-carene | 0.2 |
4 | 1026 | 1027 | o-cymene | Tr e |
5 | 1029 | 1032 | limonene | 0.5 |
6 | 1059 | 1063 | γ-terpinene | tr |
Oxygenated monoterpenes | 0.2 | |||
Monoterpene epoxides | 0.2 | |||
7 | 1031 | 1035 | 1,8-cineole | 0.2 |
Phenylpropanoids | 93.2 | |||
8 | 1196 | 1198 | estragole | 4.8 |
9 | 1284 | 1290 | (E)-anethole | 88.4 |
Aromatic compounds | 0.9 | |||
10 | 1244 | 1250 | anisole | 0.3 |
11 | 1250 | 1255 | p-anis aldehyde | 0.6 |
Sesquiterpenes | 1.1 | |||
sesquiterpene hydrocarbons | 1.1 | |||
12 | 1375 | 1377 | α-ylangene | 0.1 |
13 | 1419 | 1419 | (E)-caryophyllene | 0.4 |
14 | 1434 | 1434 | α-(E)-bergamoten | 0.5 |
15 | 1505 | 1506 | β-bisabolene | 0.1 |
Total | 97.2 |
Microorganism | Inhibition Zone | ATB |
---|---|---|
Gram-positive bacteria | ||
Enterococcus faecalis CCM4224 | 7.33 ± 0.58 bc | 27.67 ± 0.58 bc |
Streptococcus constellatus CCM 4043 | 5.33 ± 0.57 d | 28.33 ± 0.58 abc |
Priestia megaterium CCM 2007 | 5.67 ± 0.58 cd | 29.33 ± 0.58 a |
Streptococcus pneumoniae CCM 4501 | 6.33 ± 1.15 cd | 27.67 ± 0.57 bc |
Gram-negative bacteria | ||
Serratia marcescens CCM 8587 | 8.67 ± 0.58 ab | 27.00 ± 0.05 c |
Citrobacter freundii CCM 7187 | 10.33 ± 0.58 a | 27.67 ± 0.58 bc |
Shigella sonnei CCM 4421 | 7.33 ± 0.59 bc | 28.00 ± 0.58 abc |
Escherichia coli CCM 3954 | 9.33 ± 0.58 a | 28.67 ± 0.58 ab |
Biofilm-forming bacteria (BFB) | ||
Salmonella enterica | 6.67 ± 0.58 cd | 28.33 ± 0.58 abc |
Microorganism | MIC50 | MIC90 |
---|---|---|
Gram-positive bacteria | ||
Enterococcus faecalis CCM4224 | 3.20 ± 0.03 e | 3.81 ± 0.16 de |
Streptococcus constellatus CCM 4043 | 43.41 ± 1.46 a | 46.72 ± 1.12 a |
Priestia megaterium CCM 2007 | 23.27 ± 1.51 b | 26.71 ± 0.99 b |
Streptococcus pneumoniae CCM 4501 | 12.30 ± 0.45 c | 14.15 ± 0.57 c |
Gram-negative bacteria | ||
Serratia marcescens CCM 8587 | 12.57 ± 0.84 c | 14.60 ± 2.82 c |
Citrobacter freundii CCM 7187 | 6.41 ± 0.16 d | 6.91 ± 0.13 d |
Shigella sonnei CCM 4421 | 12.27 ± 0.24 c | 12.61 ± 0.23 c |
Escherichia coli CCM 3954 | 1.55 ± 0.01 e | 1.68 ± 0.10 e |
Biofilm-forming bacteria | ||
Salmonella enterica | 1.51 ± 0.05 e | 1.72 ± 0.14 e |
Food Model | Microorganisms | Concentration of EO in μg/L | |||
---|---|---|---|---|---|
62.5 | 125 | 250 | 500 | ||
Pear | |||||
Gram-positive bacteria | |||||
Enterococcus faecalis | 45.27 ± 1.56 b | 55.11 ± 1.53 b | 66.34 ± 1.39 b | 77.29 ± 1.10 b | |
Streptococcus constellatus | 43.70 ± 1.21 b | 55.76 ± 2.10 b | 65.55 ± 1.15 b | 76.22 ± 2.07 b | |
Priestia megaterium | 44.30 ± 2.21 b | 56.07 ± 2.24 b | 66.03 ± 1.63 b | 75.21 ± 2.17 b | |
Streptococcus pneumoniae | 44.81 ± 1.76 b | 53.89 ± 0.74 b | 66.99 ± 1.33 b | 76.68 ± 1.21 b | |
Gram-negative bacteria | |||||
Serratia marcescens | 55.41 ± 1.65 a | 65.99 ± 1.80 a | 76.48 ± 1.65 a | 86.74 ± 1.89 a | |
Citrobacter freundii | 54.92 ± 1.74 a | 63.12 ± 1.63 a | 74.81 ± 1.18 a | 86.80 ± 1.70 a | |
Shigella sonnei | 55.81 ± 1.70 a | 65.52 ± 1.94 a | 76.22 ± 2.62 a | 85.92 ± 2.18 a | |
Escherichia coli | 55.30 ± 1.30 a | 65.76 ± 1.85 a | 75.22 ± 2.18 a | 87.07 ± 2.27 a | |
Biofilm-forming bacteria | |||||
Salmonella enterica | 15.45 ± 2.63 c | 36.44 ± 1.74 c | 57.54 ± 2.57 c | 77.06 ± 1.72 b | |
Beetroot | |||||
Gram-positive bacteria | |||||
Enterococcus faecalis | 65.73 ± 2.16 b | 55.11 ± 1.53 b | 45.44 ± 1.53 b | 35.33 ± 2.73 b | |
Streptococcus constellatus | 65.33 ± 2.26 b | 54.71 ± 1.00 b | 43.70 ± 0.95 b | 34.74 ± 1.06 b | |
Priestia megaterium | 66.96 ± 2.29 b | 55.77 ± 0.96 b | 45.47 ± 0.63 b | 35.77 ± 2.04 b | |
Streptococcus pneumoniae | 65.40 ± 2.19 b | 56.25 ± 1.53 b | 45.17 ± 1.54 b | 34.97 ± 2.74 b | |
Gram-negative bacteria | |||||
Serratia marcescens | 76.55 ± 1.94 a | 65.33 ± 2.28 a | 55.85 ± 1.01 a | 45.77 ± 2.05 a | |
Citrobacter freundii | 76.73 ± 2.28 a | 65.37 ± 2.22 a | 56.22 ± 1.57 a | 44.74 ± 0.95 a | |
Shigella sonnei | 76.95 ± 2.39 a | 67.09 ± 2.35 a | 54.44 ± 1.52 a | 45.77 ± 1.83 a | |
Escherichia coli | 75.44 ± 1.27 a | 67.25 ± 1.62 a | 56.47 ± 2.22 a | 44.44 ± 1.49 a | |
Biofilm-forming bacteria | |||||
Salmonella enterica | 66.44 ± 2.28 b | 56.11 ± 2.19 b | 44.44 ± 1.07 b | 34.40 ± 2.61 b |
Concentration (%) | Number of Living Individuals | Number of Dead Individuals | Insecticidal Activity (%) |
---|---|---|---|
100 | 0 | 100 | 100.00 ± 0.00 |
50 | 10 | 90 | 90.00 ± 0.00 |
25 | 25 | 75 | 75.00 ± 0.00 |
12.5 | 40 | 60 | 60.00 ± 0.00 |
6.25 | 50 | 50 | 50.00 ± 0.00 |
3.125 | 65 | 35 | 35.00 ± 0.00 |
Control group | 100 | 0 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačániová, M.; Vukovic, N.L.; Čmiková, N.; Bianchi, A.; Garzoli, S.; Ben Saad, R.; Ben Hsouna, A.; Elizondo-Luévano, J.H.; Said-Al Ahl, H.A.H.; Hikal, W.M.; et al. Biological Activity and Phytochemical Characteristics of Star Anise (Illicium verum) Essential Oil and Its Anti-Salmonella Activity on Sous Vide Pumpkin Model. Foods 2024, 13, 1505. https://doi.org/10.3390/foods13101505
Kačániová M, Vukovic NL, Čmiková N, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Said-Al Ahl HAH, Hikal WM, et al. Biological Activity and Phytochemical Characteristics of Star Anise (Illicium verum) Essential Oil and Its Anti-Salmonella Activity on Sous Vide Pumpkin Model. Foods. 2024; 13(10):1505. https://doi.org/10.3390/foods13101505
Chicago/Turabian StyleKačániová, Miroslava, Nenad L. Vukovic, Natália Čmiková, Alessandro Bianchi, Stefania Garzoli, Rania Ben Saad, Anis Ben Hsouna, Joel Horacio Elizondo-Luévano, Hussein A. H. Said-Al Ahl, Wafaa M. Hikal, and et al. 2024. "Biological Activity and Phytochemical Characteristics of Star Anise (Illicium verum) Essential Oil and Its Anti-Salmonella Activity on Sous Vide Pumpkin Model" Foods 13, no. 10: 1505. https://doi.org/10.3390/foods13101505
APA StyleKačániová, M., Vukovic, N. L., Čmiková, N., Bianchi, A., Garzoli, S., Ben Saad, R., Ben Hsouna, A., Elizondo-Luévano, J. H., Said-Al Ahl, H. A. H., Hikal, W. M., & Vukic, M. D. (2024). Biological Activity and Phytochemical Characteristics of Star Anise (Illicium verum) Essential Oil and Its Anti-Salmonella Activity on Sous Vide Pumpkin Model. Foods, 13(10), 1505. https://doi.org/10.3390/foods13101505