Changes in α-Dicarbonyl Compound Contents during Storage of Various Fruits and Juices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Fruits and Juices
2.4. Extraction of the α-DCs from the Homogenate of the Fruits
2.5. Derivatization of the α-DCs in Various Fruit Extracts and Different Juices
2.6. HPLC-UV Determination of NPDA Derivatives of the α-DCs
2.7. Statistical Methods
3. Results and Discussion
3.1. Weight Loss of Fruits during Storage
3.2. Changes in the Concentrations of the Three α-DCs in Fruits during Storage
3.2.1. Alteration of 3-DG Contents
3.2.2. Alteration of GO Contents
3.2.3. Alteration of MGO Contents
3.3. Changes in the Concentrations of the Three α-DCs in Commercial Juices during Storage
3.3.1. Alteration of 3-DG Contents
3.3.2. Alteration of GO Contents
3.3.3. Alteration of MGO Contents
3.4. Changes in the Concentrations of the Three α-DCs in the Homemade Juices during 4 °C Storage
3.4.1. Alteration of 3-DG Contents
3.4.2. Alteration of GO Contents
3.4.3. Alteration of MGO Contents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maasen, K.; Scheijen, J.L.J.M.; Opperhuizen, A.; Stehouwer, C.D.A.; Van Greevenbroek, M.M.; Schalkwijk, C.G. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls. Food Chem. 2021, 339, 128063. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ou, J.; Ou, S. Alpha-Dicarbonyl Compounds. In Chemical Hazards in Thermally-Processed Foods; Springer: Singapore, 2019; pp. 19–46. [Google Scholar]
- Hellwig, M.; Gensberger-Reigl, S.; Henle, T.; Pischetsrieder, M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin. Cancer Biol. 2018, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, G.P. The Strecker Degradation of Amino Acids: Newer Avenues for Flavor Formation. Food Rev. Int. 2008, 24, 416–435. [Google Scholar] [CrossRef]
- Nemet, I.; Varga-Defterdarović, L.; Turk, Z. Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 2006, 50, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Henle, T. Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 2005, 29, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Jahan, H.; Choudhary, M.I. Glycation, carbonyl stress and AGEs inhibitors: A patent review. Expert Opin. Ther. Pat. 2015, 25, 1267–1284. [Google Scholar]
- Dobler, D.; Ahmed, N.; Song, L.; Eboigbodin, K.E.; Thornalley, P.J. Increased Dicarbonyl Metabolism in Endothelial Cells in Hyperglycemia Induces Anoikis and Impairs Angiogenesis by RGD and GFOGER Motif Modification. Diabetes 2006, 55, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef] [PubMed]
- Akhter, F.; Chen, D.; Akhter, A.; Yan, S.F.; Yan, S.S. Age-dependent accumulation of dicarbonyls and advanced glycation endproducts (AGEs) associates with mitochondrial stress. Free Radic. Biol. Med. 2021, 164, 429–438. [Google Scholar] [CrossRef]
- Tikellis, C.; Pickering, R.J.; Tsorotes, D.; Huet, O.; Cooper, M.E.; Jandeleit-Dahm, K.; Thomas, M.C. Dicarbonyl Stress in the Absence of Hyperglycemia Increases Endothelial Inflammation and Atherogenesis Similar to That Observed in Diabetes. Diabetes 2014, 63, 3915–3925. [Google Scholar] [CrossRef]
- Lin, J.A.; Wu, C.H.; Lu, C.C.; Hsia, S.M.; Yen, G.C. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol. Nutr. Food Res. 2016, 60, 1850–1864. [Google Scholar] [CrossRef] [PubMed]
- Aktağ, I.G.; Gökmen, V. A survey of the occurrence of α-dicarbonyl compounds and 5-hydroxymethylfurfural in dried fruits, fruit juices, puree and concentrates. J. Food Compos. Anal. 2020, 91, 103523. [Google Scholar] [CrossRef]
- Distler, L.; Georgieva, A.; Kenkel, I.; Huppert, J.; Pischetsrieder, M. Structure- and concentration-specific assessment of the physiological reactivity of alpha-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Chem. Res. Toxicol. 2014, 27, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Aktağ, I.G.; Gökmen, V. Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in fruit products during storage: New insights into the role of Maillard reaction. Food Chem. 2021, 363, 130280. [Google Scholar] [CrossRef] [PubMed]
- Aktağ, I.G.; Gökmen, V. Multiresponse kinetic modelling of alpha-dicarbonyl compounds formation in fruit juices during storage. Food Chem. 2020, 320, 126620. [Google Scholar] [CrossRef] [PubMed]
- Bilova, T.; Paudel, G.; Shilyaev, N.; Schmidt, R.; Brauch, D.; Tarakhovskaya, E.; Milrud, S.; Smolikova, G.; Tissier, A.; Vogt, T.; et al. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J. Biol. Chem. 2017, 292, 15758–15776. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, H.-L.; Cheng, R.-T.; Zheng, P.-R.; Sun, H.-P.; Liu, Z.-W.; Yuan, H.; Liu, X.-Y.; Gao, W.-Y.; Li, H. Determination of -Dicarbonyl Compounds in Traditional Chinese Herbal Medicines. Fitoterapia 2024, 175, 105928. [Google Scholar] [CrossRef]
- Li, P.L.; Zhu, Y.C.; He, S.; Fan, J.Q.; Hu, Q.B.; Cao, Y.S. Development and Validation of a High-Performance Liquid Chromatography Method for the Determination of Diacetyl in Beer Using 4-Nitro-o-phenylenediamine as the Derivatization Reagent. J. Agric. Food Chem. 2012, 60, 3013–3019. [Google Scholar] [CrossRef]
- Kroh, L.W. Caramelisation in food and beverages. Food Chem. 1994, 51, 373–379. [Google Scholar] [CrossRef]
- Hellwig, M.; Degen, J.; Henle, T. 3-Deoxygalactosone, a “new” 1,2-dicarbonyl compound in milk products. J. Agric. Food Chem. 2010, 58, 10752–10760. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Hayase, F.; Nishimura, T.; Kato, H. Purification and Characterization of NADPH-dependent 2-Oxoaldehyde Reductase from Parsley. Agric. Biol. Chem. 1990, 54, 319–328. [Google Scholar] [CrossRef]
- Sengupta, D.; Naik, D.; Reddy, A.R. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. J. Plant Physiol. 2015, 179, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Vemanna, R.S.; Babitha, K.C.; Solanki, J.K.; Amarnatha Reddy, V.; Sarangi, S.K.; Udayakumar, M. Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds. Plant Physiol. Biochem. 2017, 113, 177–186. [Google Scholar] [CrossRef]
- Kou, X.; Feng, Y.; Yuan, S.; Zhao, X.; Wu, C.; Wang, C.; Xue, Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: A review. Plant Mol. Biol. 2021, 107, 477–497. [Google Scholar] [CrossRef]
- Yun, Z.; Gao, H.; Jiang, Y. Insights into metabolomics in quality attributes of postharvest fruit. Curr. Opin. Food Sci. 2022, 45, 100836. [Google Scholar] [CrossRef]
- Niwa, T. 3-Deoxyglucosone: Metabolism, analysis, biological activity, and clinical implication. J. Chromatogr. B Biomed. Sci. Appl. 1999, 731, 23–36. [Google Scholar] [CrossRef]
- Paravisini, L.; Peterson, D.G. Role of Reactive Carbonyl Species in non-enzymatic browning of apple juice during storage. Food Chem. 2018, 245, 1010–1017. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Effect of Roasting and Storage on the Formation of Maillard Reaction and Sugar Degradation Products in Hazelnuts (Corylus avellana L.). J. Agric. Food Chem. 2019, 67, 415–424. [Google Scholar] [CrossRef]
- Gobert, J.; Glomb, M.A. Degradation of glucose: Reinvestigation of reactive alpha-Dicarbonyl compounds. J. Agric. Food Chem. 2009, 57, 8591–8597. [Google Scholar] [CrossRef]
- Błaszczak, W.; Latocha, P.; Jeż, M.; Wiczkowski, W. The impact of high-pressure processing on the polyphenol profile and anti-glycaemic, anti-hypertensive and anti-cholinergic activities of extracts obtained from kiwiberry (Actinidia arguta) fruits. Food Chem. 2021, 343, 128421. [Google Scholar] [CrossRef]
- Khan, M.; Liu, H.; Wang, J.; Sun, B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, C.-T. Flavour chemistry of methylglyoxal and glyoxal. Chem. Soc. Rev. 2012, 41, 4140–4149. [Google Scholar] [CrossRef]
- Andreu Coll, L.; García Pastor, M.E.; Valero, D.; Amorós, A.; Almansa, M.S.; Legua, P.; Hernández, F. Influence of Storage on Physiological Properties, Chemical Composition, and Bioactive Compounds on Cactus Pear Fruit (Opuntia ficus-indica (L.) Mill.). Agriculture 2021, 11, 62. [Google Scholar] [CrossRef]
- Hollnagel, A.; Kroh, L.W. Formation of α-dicarbonyl fragments from mono- and disaccharides under caramelization and Maillard reaction conditions. Z. Lebensm. Unters. Forsch. 1998, 207, 50–54. [Google Scholar] [CrossRef]
- Li, Z.G. Methylglyoxal and Glyoxalase System in Plants: Old Players, New Concepts. Bot. Rev. 2016, 82, 183–203. [Google Scholar] [CrossRef]
- Verzelloni, E.; Tagliazucchi, D.; Del Rio, D.; Calani, L.; Conte, A. Antiglycative and antioxidative properties of coffee fractions. Food Chem. 2011, 124, 1430–1435. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Zhang, M.; Zhang, Y.; Wang, Q. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse. Food Chem. 2014, 153, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Paravisini, L.; Peterson, D.G. Mechanisms non-enzymatic browning in orange juice during storage. Food Chem. 2019, 289, 320–327. [Google Scholar] [CrossRef] [PubMed]
Climacteric Fruits | Non-Climacteric Fruits | |||||
---|---|---|---|---|---|---|
3-DG | Apricot | Plum | Nectarine | Mango | Orange | Grape |
Initial value (μg/g) | 1.58 | 1.64 | 1.65 | 2.45 | 1.78 | 3.33 |
Peak value at rt (μg/g) | 2.73 | 2.49 | 2.82 | 3.77 | 8.46 | 6.06 |
Peak time at rt (day) | 4 | 5 | 4 | 9 | 4 | 4 |
Maximum increase rate at rt (%) a | 72.61 | 51.99 | 70.53 | 53.82 | 374.86 | 82.04 |
Peak value at 4 °C (μg/g) | 2.44 | 2.20 | 2.30 | NA b | 10.00 | 7.23 |
Peak time at 4 °C (day) | 9 | 6 | 9 | NA | 4 | NO c |
Maximum increase rate at 4 °C (%) a | 54.35 | 34.61 | 39.28 | NA | 461.32 | 117.36 |
GO | ||||||
Initial value (μg/g) | 0.65 | 1.16 | 0.45 | 0.81 | 0.77 | 0.66 |
Peak value at rt (μg/g) | 1.31 | 1.84 | 2.32 | 1.23 | 3.23 | 0.81 |
Peak time at rt (day) | 3 | 5 | 5 | 8 | 4 | NO c |
Maximum increase rate at rt (%) a | 100.39 | 58.94 | 414.93 | 52.44 | 318.90 | 22.55 |
Peak value at 4 °C (μg/g) | 1.11 | ND d | ND | NA | 2.97 | 0.74 |
Peak time at 4 °C (day) | 5 | ND | ND | NA | 4 | 5 |
Maximum increase rate at 4 °C (%) a | 69.48 | ND | ND | NA | 285.15 | 12.32 |
MGO | ||||||
Initial value (μg/g) | 0.16 | 0.11 | 0.10 | 0.20 | 0.18 | 0.16 |
Peak value at rt (μg/g) | 0.34 | 0.19 | 0.25 | 0.27 | 0.32 | 0.21 |
Peak time at rt (day) | 5 | 3 | 5 | 2 | 5 | 3 |
Maximum increase rate at rt (%) a | 105.71 | 64.53 | 145.15 | 36.08 | 77.70 | 32.47 |
Peak value at 4 °C (μg/g) | 0.31 | 0.16 | 0.19 | NA | 0.27 | ND |
Peak time at 4 °C (day) | 5 | 7 | 6 | NA | 4 | ND |
Maximum increase rate at 4 °C (%) a | 86.96 | 36.61 | 85.61 | NA | 46.00 | ND |
Apple | Mango | Orange | Grape | Pineapple | Peach | |
---|---|---|---|---|---|---|
3-DG | ||||||
Initial value (μg/mL) | 55.39 | 6.74 | 13.59 | 65.61 | 8.28 | 32.41 |
Maximum increase rate at rt (%) | 60.98 | 116.80 | 38.27 | 8.40 | 108.82 | 86.77 |
Maximum increase rate at 4 °C (%) | 29.63 | 63.50 | NC a | NC | 63.04 | 43.13 |
GO | ||||||
Initial value (μg/mL) | 0.19 | 0.36 | 0.40 | 0.27 | 0.28 | 0.12 |
Maximum increase rate at rt (%) | 110.53 | 197.22 | 149.59 | 151.85 | 113.25 | 314.69 |
Maximum increase rate at 4 °C (%) | 52.63 | 75.00 | 77.50 | 188.89 | 60.71 | 141.67 |
MGO | ||||||
Initial value (μg/mL) | 0.56 | 0.51 | 0.25 | 0.28 | 0.28 | 0.83 |
Maximum increase rate at rt (%) | 52.74 | 58.79 | 126.32 | 68.84 | 120.63 | 42.58 |
Maximum increase rate at 4 °C (%) | 25.96 | 23.78 | 58.04 | 22.47 | 43.05 | 36.86 |
Apple | Mango | Orange | Grape | Pineapple | Peach | |
---|---|---|---|---|---|---|
3-DG | ||||||
Initial value (μg/mL) | 4.65 (55.39) a | 3.09 (6.74) | 1.97 (13.59) | 3.60 (65.61) | 4.15 (8.28) | 3.52 (32.41) |
Maximum increase rate at 4 °C (%) | 16.72 (26.41) | 45.10 (35.33) | NC (NC) b | NC (NC) | 18.16 (22.28) | 14.20 (18.82) |
GO | ||||||
Initial value a (μg/mL) | 0.22 (0.19) | 0.98 (0.36) | 0.85 (0.40) | 0.72 (0.27) | 0.68 (0.28) | 0.62 (0.12) |
Maximum increase rate at 4 °C (%) | 106.25 (23.53) | 59.75 (26.23) | 67.87 (57.39) | 40.72 (92.09) | 52.20 (38.92) | 80.00 (105.22) |
MGO | ||||||
Initial value (μg/mL) | ND c (0.56) | 0.26 (0.51) | 0.21 (0.25) | 0.17 (0.28) | 0.12 (0.28) | 0.50 (0.83) |
Maximum increase rate at 4 °C (%) | ND (15.69) | 17.28 (13.58) | 16.25 (22.91) | NC (NC) | 33.33 (35.29) | 14.00 (23.56) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, X.-Y.; Zhao, Q.; Wu, D.; Ren, J.-T.; Ma, M.; Li, P.-Y.; Wu, J.-C.; Gao, W.-Y.; Li, H. Changes in α-Dicarbonyl Compound Contents during Storage of Various Fruits and Juices. Foods 2024, 13, 1509. https://doi.org/10.3390/foods13101509
Yang Y, Liu X-Y, Zhao Q, Wu D, Ren J-T, Ma M, Li P-Y, Wu J-C, Gao W-Y, Li H. Changes in α-Dicarbonyl Compound Contents during Storage of Various Fruits and Juices. Foods. 2024; 13(10):1509. https://doi.org/10.3390/foods13101509
Chicago/Turabian StyleYang, Yang, Xue-Yi Liu, Qian Zhao, Dan Wu, Jin-Tao Ren, Meng Ma, Pei-Yun Li, Jia-Cai Wu, Wen-Yun Gao, and Heng Li. 2024. "Changes in α-Dicarbonyl Compound Contents during Storage of Various Fruits and Juices" Foods 13, no. 10: 1509. https://doi.org/10.3390/foods13101509
APA StyleYang, Y., Liu, X.-Y., Zhao, Q., Wu, D., Ren, J.-T., Ma, M., Li, P.-Y., Wu, J.-C., Gao, W.-Y., & Li, H. (2024). Changes in α-Dicarbonyl Compound Contents during Storage of Various Fruits and Juices. Foods, 13(10), 1509. https://doi.org/10.3390/foods13101509