Mechanistic and Functional Studies on the Microbial Induction of Wolfiporia cocos Liquid Fermentation Products
Abstract
:1. Introduction
2. Materials and Instrumentation
Experimental Materials
3. Experimental Methods
3.1. Strain Preparation
3.2. Microbial Source Screening
3.2.1. Optimal Microbial Source Screening
3.2.2. Determination of Intracellular Polysaccharide Content
3.3. Microbial Diversity in ITS Second-Generation Sequencing
3.4. Effects of Exogenous Substances on the Antioxidant Activity of Intracellular Polysaccharides in W. cocos Bodies
3.4.1. Extraction of Intracellular Polysaccharides and Preparation of Some Reagents
3.4.2. Determination of DPPH Scavenging Ability
3.4.3. Determination of Scavenging Ability for ABTS
3.4.4. Determination of Hydroxyl Radical Scavenging Ability
3.5. In Vitro Inhibition of Cell Proliferation Activity and Inhibition of Cell Migration Activity
3.5.1. Cell Culture
3.5.2. Cell Proliferation Assay via MTT Method
3.5.3. Cell Migration Assay via the Cell Scratching Method
4. Transcriptomics Analysis of Significant Differences in W. cocos Gene Expression Induced by Exogenous Substances
4.1. Sample RNA Extraction, Quality Testing and Library Sequencing
4.2. Differential Gene Screening
4.3. GO Clustering Analysis and KEGG Enrichment Analysis
5. Data Processing and Analysis
6. Results and Analysis
6.1. Microbial Source Screening
6.1.1. Ganoderma-Wolfiporia cocos Co-culture
6.1.2. Screening Results of Wolfiporia cocos-Trametes lactinea and Wolfiporia cocos-Phellinus igniarius Co-Culture Methods
6.2. Effect of Exogenous Substances on the Antioxidant Activity of Intracellular Polysaccharides in Wolfiporia Bodies
6.3. Evaluation of Tumor Cell Proliferation-Inhibition Activity
6.4. In Vitro Evaluation of Breast Cancer Cell Migration-Inhibition Activity
6.4.1. Transcriptome Sequencing Quality Analysis
6.4.2. Inter-Sample Correlation Analysis
6.5. Screening of Differentially Expressed Genes
6.6. GO Enrichment Analysis of Differentially Expressed Genes
6.7. KEGG Enrichment Analysis of Differentially Expressed Genes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, L.; Hou, J.; Wang, W.; Ding, C.; Wang, Q.; Dai, J. Investigation and analysis on the current status of production technology of Poria cocos in China. China Mod. Chin. Med. 2015, 17, 195–199. [Google Scholar]
- Li, B.; Deng, Y.; Lin, X.; Wan, X.; Liu, J. Preclinical study of pachyman inducing ferroptosis against ovarian cancer: Biological targets and underlying mechanisms. Food Sci. Nutr. 2023, 11, 5999–6009. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L.; Tang, J.F.; Tan, W.L.; Zhang, T.; Zeng, D.; Zhao, S.; Ran, J.H.; Li, J.; Wang, Y.P.; Chen, D.L. The anti-hepatocellular carcinoma effects of polysaccharides from Ganoderma lucidum by regulating macrophage polarization via the MAPK/NF-κB signaling pathway. Food Funct. 2023, 14, 3155–3168. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhong, C.; Xie, J.; Liu, H.; Liang, X.; Ye, H.; Chen, G.; Zhou, W.; Zhang, S. Current status and prospect of Poria cocos concoction processing and product development in China. Chin. Mod. Tradit. Med. 2020, 22, 1441–1446. [Google Scholar]
- Li, H.; Dai, J.; Wang, J.; Lu, C.; Luo, Z.; Zheng, X.; Lu, Z.; Yang, Z. Comparative Transcriptomic Analyses Propose the Molecular Regulatory Mechanisms Underlying 1,8-Cineole from Cinnamomum kanehirae Hay and Promote the Asexual Sporulation of Antrodia cinnamomea in Submerged Fermentation. Molecules 2023, 28, 7511. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Huang, J.; Ren, G.; Jin, J.; Chen, L.; Zhong, C.; Cai, Y.; Liu, H.; Zhou, R.; Qin, Y.; et al. Determination of Cultivation Regions and Quality Parameters of Poria cocos by Near-Infrared Spectroscopy and Chemometrics. Foods 2022, 11, 892. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Wang, J.-B.; Zhou, F.; Wang, W.-Z.; Zhang, J.-P.; Fang, H. A preliminary report on the cultivation technology of Poria cocos in bags. Chin. Agron. Bull. 2022, 38, 33–38. [Google Scholar]
- Pinheiro Upiragibe, V.; Wancura João, H.C.; Brondani, M.; da Silva Camila, M.; Mainardi Marco, A.; Gai Rafaela, M.; Jahn Sérgio, L. Production of Gibberellic Acid by Solid-State Fermentation Using Wastes from Rice Processing and Brewing Industry. Appl. Biochem. Biotechnol. 2023, 196, 1493–1508. [Google Scholar] [CrossRef] [PubMed]
- Rigling, M.; Liu, Z.; Hofele, M.; Prozmann, J.; Zhang, C.; Ni, L.; Fan, R.; Zhang, Y. Aroma and catechin profile and in vitro antioxidant activity of green tea infusion as affected by submerged fermentation with Wolfiporia cocos (Fu Ling). Food Chem. 2021, 361, 130065. [Google Scholar] [CrossRef]
- Mahmoud, A.; Karaman, E.F.; Sibel, O. Mechanisms underlying citrinin−induced toxicity via oxidative stress and apoptosis−mediated by mitochondrial−dependent pathway in SH−SY5Y cells. Drug Chem. Toxicol. 2022, 46, 944–954. [Google Scholar]
- Zhang, S.; Guo, Y.; Wang, Z.; Zeng, B.; Wang, X.; Wu, P. Optimization of culture conditions for liquid fermentation of Poria cocos. Food Ind. 2020, 41, 135–138. [Google Scholar]
- Wang, Y.; Ye, F.; Zhou, B.; Liang, Y.; Lin, Q.; Lu, D.; Zhou, X.; Liu, J. Comparative analysis of different rice substrates for solid-state fermentation by a citrinin-free Monascus purpureus mutant strain with high pigment production. Food Biosci. 2023, 56, 103245. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Q.; Yang, Y.; Zhang, X.; Wang, J.; Jia, J.; Wu, Q. Bidirectional fermentation of Monascus and Mulberry leaves enhances GABA and pigment contents: Establishment of strategy, studies of bioactivity and mechanistic. Prep. Biochem. Biotechnol. 2023, 54, 11–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Y.; Xie, X.; Zhang, L. Origin, development, advantages and potential of two-way fermentation of medicinal fungi. Chin. Edible Fungi 2007, 26, 3–6. [Google Scholar]
- Liu, J.; Wei, B.-H.; Bi, W.-H.; Yang, W.-Z.; Yang, X.; Li, X.; Wang, C.-Y.; Ma, X.-Q.; Hu, S.-M. Chemical composition and antitumor activity of bi-directional fermented mycoplasm of Sanghuang-Kombucha. Food Res. Dev. 2023, 44, 61–67. [Google Scholar]
- Koshy, J.; Sangeetha, D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int. J. Biol. Macromol. 2023, 257, 128594. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Han, T.; Wang, X.; Chen, Y.; Wang, X.; Yang, S. Preparation of two-way fermentation liquid of traditional Chinese medicine and its anti-aging, moisturizing and whitening efficacy. Dly. Chem. Ind. 2023, 53, 523–531, (In Chinese and English). [Google Scholar]
- Qu, Q.; Li, Z.; Zhou, Q.; Yang, C.; Shi, X.; Qiao, Y. Progress of research on fermented traditional Chinese medicine and exploration of the theory of “fermentation compounding”. Chin. Herb. Med. 2023, 54, 2262–2273. [Google Scholar]
- Jiang, H. Optimization of Poria cocos Polysaccharide Fermentation, Extraction Process and Modification by Sulfate Esterification. Master’s Thesis, Henan University, Kaifeng, China, 2009. [Google Scholar]
- Mansfield, T.; Hardy, G.; Fleming, P.; Standish, R. Recruitment failure of keystone trees in Phytophthora infested forest. Austral Ecol. 2024, 49, e13500. [Google Scholar] [CrossRef]
- Jiang, X.; Han, W.; Liu, Y.; Tang, C.; Feng, J.; Zhang, J. Progress of key factors affecting the synthesis of triterpenoids in Ganoderma lucidum by liquid fermentation. Microbiol. Bull. 2023, 50, 2155–2172. [Google Scholar]
- Duan, Y. Comparative Study on the Structural Characteristics and Immunological Activity of Extracellular Polysaccharides from the Liquid Fermentation of Ganoderma lucidum Parents and Its Hybrid Strains. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2023. [Google Scholar]
- Lu, S.; Zhang, X.; Zhou, Y.; Wang, X.; Hu, P.; Guo, L.; Chen, J.; Yang, G.; Zhong, L.; Pan, Y. Process optimization of Ganoderma lucidum-croton bi-directional fermentation and its antioxidant activity. Chin. Wild Plant Resour. 2023, 42, 17–24+37. [Google Scholar]
- Li, J.; Jia, S.; Ma, D.; Deng, X.; Tian, J.; Wang, R.; Li, J.; Shan, A. Effects of citric acid and heterofermentative inoculants on anaerobic co-fermentation of Chinese cabbage waste and wheat bran. Bioresour. Technol. 2023, 377, 128942. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Sun, C.; Huang, Q.; Zhang, C.; Lin, M.; Xu, J.; Huang, X.; Deng, W. Gut microbiota and metabolite insights into anti-obesity effect of carboxymethyl pachymaran in high-fat diet mice. J. Funct. Foods 2023, 111, 105898. [Google Scholar]
- Wu, K.; Qin, J.; Liu, M.; Yan, X.; Guo, C. Bioinformatics approach and experimental validation reveal the hepatoprotective effect of pachyman against acetaminophen-associated liver injury. Aging 2023, 15, 8800. [Google Scholar] [CrossRef]
- Qin, Z.; Tang, J.; Ruan, J. Optimization of crude polysaccharide extraction method for the determination of crude polysaccharides in edible mushrooms. J. Prev. Med. Intell. 2021, 37, 275–280. [Google Scholar]
- Du, J.; Song, Y.; Li, X.; Liu, N.; An, X.; Qi, J. Dynamic Changes and Correlation Analysis of Polysaccharide Content and Color Parameters in Glycyrrhiza Stems and Leaves during Fermentation. Fermentation 2023, 9, 900. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Jin, W.; Wang, Y.; Yang, L.; Zhang, Z.; Yan, Z. Preparation and characterization of zein–lecithin–total flavonoids from Smilax glabra complex nanoparticles and the study of their antioxidant activity on HepG2 cells. Food Chem. X 2023, 17, 100579. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, C.; Rahaman, M.; Bhattacharya, S.; Mukherjee, M.; Chakravorty, N.; Dutta, P.K.; Mahadevappa, M. Identification of hub genes to determine drug-disease correlation in breast carcinomas. Med. Oncol. 2023, 41, 36. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yang, K.; Zhang, Y.; Zhou, R.; Zhang, F.; Zhan, G.; Guo, Z. Metabolites with antioxidant and α-glucosidase inhibitory activities produced by the endophytic fungi Aspergillus niger from Pachysandra terminalis. Biosci. Biotechnol. Biochem. 2022, 86, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, J.; Sun, M.; Duan, Y.; Wang, L.; Yu, N.; Peng, D.; Chen, W.; Wang, Y. Preparation, characterization, antioxidant and antianemia activities of Poria cocos polysaccharide iron (III) complex. Heliyon 2023, 9, e12819. [Google Scholar] [CrossRef]
- Ye, G.; Zhang, J.; Xu, X.; Zeng, C.; Ye, Q.; Wang, Z. Comparative Analysis of Water-Soluble Polysaccharides from Dendrobium Second Love ‘Tokimeki’ and Dendrobium nobile in Structure, Antioxidant, and Anti-tumor Activity In Vitro. Int. J. Mol. Sci. 2023, 24, 10361. [Google Scholar] [CrossRef]
- Baranyika, J.B.; Bakire, S.; Shoucheng, P.; Hirwa, H.; Uwagaba, J.; Meihao, S. Optimization of ultrasonic extraction, structural characterization, and antioxidant activities of polysaccharides from Radix Pueraria Lobata, a Chinese medicinal plant. Results Chem. 2023, 5, 100989. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Adhikari, B.; Zhang, L. Determination of polysaccharide content in shiitake mushroom beverage by NIR spectroscopy combined with machine learning: A comparative analysis. J. Food Compos. Anal. 2023, 122, 105460. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, W.; Lei, S.; Guo, C.; Chen, X. Progress on the pharmacological effects of Poria cocos polysaccharides and triterpenoids. Shandong Chem. Ind. 2023, 52, 82–85+88. [Google Scholar]
- Xiao, Z.; Liu, M.; He, H. Domestication and cultivation of Pseudomushroom and its antioxidant activity. Mycosystema 2017, 36, 358–366. [Google Scholar]
- Petersen Kevin, E.; Asangba Abigail, E.; Walther Antonio, M. Multi-chamber microcapsule generation for cell culture using a high- and low-volume centrifuge-based droplet shooting device. Microfluid. Nanofluidics 2023, 27, 40. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W. Biosynthesis of a Novel Ganoderic Acid in Saccharomyces cerevisiae and Research of its Antitumor Activity. Appl. Biochem. Microbiol. 2023, 59, 184–189. [Google Scholar] [CrossRef]
- Luo, Y.; Chu, Z.; Wang, Z.; Huang, J.; Wang, H.; Zhu, H. Pachymic Acid Inhibits the Migration and Epithelial–Mesenchymal Transition of Renal Cell Carcinoma. Nat. Prod. Commun. 2022, 17, 1934578X221132038. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Z.; Xu, J.; Liang, X.; Zhao, Q. Poricoic acid A induces apoptosis and autophagy in ovarian cancer via modulating the mTOR/p70s6k signaling axis. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas Biol. 2021, 54, e11183. [Google Scholar] [CrossRef]
- Guo, X.; Chen, L.; Lü, Q.; Du, R.; Luo, Q.; Zhang, Y.; Bian, H.; Han, L. Guizhi Fuling Capsule inhibits migration and induces apoptosis of human ovarian cancer cells by regulating the NF-κB signaling pathway. Nan Fang Yi Ke Da Xue Xue Bao J. South. Med. Univ. 2023, 43, 1315–1321. [Google Scholar]
- Zhang, C.; Chen, L.; Chen, M.; Xu, Z. First report on the regulation and function of carbon metabolism during large sclerotia formation in medicinal fungus Wolfiporia cocos. Fungal Genet. Biol. 2023, 166, 103793. [Google Scholar] [CrossRef]
Name | Sources |
---|---|
P·P | Mycelial polysaccharides from Wolfiporia cocos fermentation without the addition of any exogenous inducing substances |
G·P | Mycelial polysaccharides from Ganoderma lucidum fermentation without adding any exogenous inducing substances |
T·P | Mycelial polysaccharides from the fermentation of Trametes lactinea without the addition of any exogenous inducing substances |
Pi·P | Mycelial polysaccharides from Phellinus igniarius fermentation without the addition of any exogenous inducing substances |
PG3·P | Mycelial polysaccharides from co-cultures of Ganoderma lucidum and Wolfiporia cocos |
PT0·P | Mycelial polysaccharides from co-cultures of Trametes lactinea and Wolfiporia cocos |
PPi3·P | Mycelial polysaccharides from co-cultures of Phellinus igniarius and Wolfiporia cocos |
P_G·P | Mixed mycelial polysaccharides from separate fermentations of Ganoderma lucidum and Wolfiporia cocos in the ratio of 1:1 |
P_T·P | Mix of mycelial polysaccharides from separate fermentations of Trametes lactinea, Wolfiporia cocos in a ratio of 1:1 |
P_Pi·P | Mixed mycelial polysaccharides from separate fermentations of Phellinus igniarius and Wolfiporia cocos in the ratio of 1:1 |
Polysaccharide Name | EC50 (mg/mL) | ||
---|---|---|---|
DPPH | ABTS | Hydroxyl Radical | |
PG3·P | 0.118 | 0.111 | 0.125 |
P·P | 0.18 | 0.074 | 0.165 |
P_G·P | 0.116 | 0.097 | 0.284 |
PT0·P | 0.161 | 0.163 | 0.142 |
P·P | 0.18 | 0.074 | 0.165 |
P_T·P | 0.178 | 0.133 | 0.152 |
PPi3·P | 0.076 | 0.077 | 0.101 |
P·P | 0.18 | 0.074 | 0.165 |
P_Pi·P | 0.203 | 0.227 | 0.203 |
Polysaccharide Name | IC50 (mg/mL) |
---|---|
PT0·P | 7.194 |
P_T·P | 3.519 |
P·P | 3.318 |
PPi3·P | 7.701 |
P_Pi·P | 4.020 |
P·P | 3.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Su, C.; Xu, Z.; Liu, Y.; Chen, J.; Wu, X. Mechanistic and Functional Studies on the Microbial Induction of Wolfiporia cocos Liquid Fermentation Products. Foods 2024, 13, 1578. https://doi.org/10.3390/foods13101578
Yang Z, Su C, Xu Z, Liu Y, Chen J, Wu X. Mechanistic and Functional Studies on the Microbial Induction of Wolfiporia cocos Liquid Fermentation Products. Foods. 2024; 13(10):1578. https://doi.org/10.3390/foods13101578
Chicago/Turabian StyleYang, Zhikang, Congbao Su, Zhoujie Xu, Yiting Liu, Jianhui Chen, and Xiaoping Wu. 2024. "Mechanistic and Functional Studies on the Microbial Induction of Wolfiporia cocos Liquid Fermentation Products" Foods 13, no. 10: 1578. https://doi.org/10.3390/foods13101578
APA StyleYang, Z., Su, C., Xu, Z., Liu, Y., Chen, J., & Wu, X. (2024). Mechanistic and Functional Studies on the Microbial Induction of Wolfiporia cocos Liquid Fermentation Products. Foods, 13(10), 1578. https://doi.org/10.3390/foods13101578