Dynamic Changes in Qidan Aroma during Roasting: Characterization of Aroma Compounds and Their Kinetic Fitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tea Samples
2.2. Chemicals and Reagents
2.3. E-Nose Analysis
2.4. Solid-Phase Microextraction (SPME)
2.5. GC×GC–O–MS Analysis
2.6. Aroma Extraction Dilution Analysis (AEDA)
2.7. Odor Activity Value (OAV)
2.8. Qualitative and Quantitative Analysis
2.9. Kinetic Studies Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Results of E-Nose Analysis
3.2. Analysis of Aroma-Active Compounds in Qidan
3.3. Analysis of Maillard Reaction-Related Products in Qidan
3.4. Modeling the Generation of Characteristic Differential Aroma Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, P.; Song, H.; Lin, Y.; Guo, T.; Wang, L.; Granvogl, M.; Xu, Y. Differences of characteristic aroma compounds in Rougui tea leaves with different roasting temperatures analyzed by switchable GC-O-MS and GC × GC-O-MS and sensory evaluation. Food Funct. 2021, 11, 4109. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, M.; Tang, Y.; Wang, Y.; Xia, T.; Song, H. Characterization of odor-active compounds in Dahongpao Wuyi Rock Tea (Camellia sinensis) by sensory-directed flavor analysis. J. Food Compos. Anal. 2023, 123, 105612. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Zhang, L.; Granvogl, M.; Ho, C.-T.; Wan, X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Cao, H.; Zhang, S.; Hao, Z.; Wu, Z.; Luo, L.; Zeng, L. Aroma characteristics of Wuyi rock tea prepared from 16 different tea plant varieties. Food Chem. X 2023, 17, 100586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, Q.; Wu, Y.; Dai, Y.; Cui, F. Effect of Different Drying Technologies on Qualities of Jinmudan Oolong Tea. Mod. Food Sci. Technol. 2013, 8, 1916–1920. [Google Scholar]
- Zhang, L.; Lin, Y.Q.; Zeng, L. Effects of backing degrees on quality characteristics of Wuyi Rock Tea. Food Mach. 2017, 9, 41–46. [Google Scholar]
- Xiang, L.W.; Chen, W.T. Effect of Meladic reaction on the quality formation of oolong tea. Chem. Eng. Equip. 2012, 7, 13–17. [Google Scholar]
- Martins, S.; Jongen, W.; Boekel, M. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Z.J.; Li, B. Progress of Functional Properties and Safety of Maillard Reaction Products. Food Ind. 2016, 10, 258–262. [Google Scholar]
- Ho, C.T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Yang, P.; Yu, M.; Song, H.; Xu, Y.; Lin, Y.; Granvogl, M. Characterization of Key Aroma-Active Compounds in Rough and Moderate Fire Rougui Wuyi Rock Tea (Camellia sinensis) by Sensory-Directed Flavor Analysis and Elucidation of the Influences of Roasting on Aroma. J. Agric. Food Chem. 2021, 70, 267–278. [Google Scholar] [CrossRef]
- Guo, X.; Song, C.; Ho, C.T. Contribution of l-theanine to the formation of 2,5dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes. Food Chem. 2018, 263, 18–28. [Google Scholar] [CrossRef]
- Yue, Z.; Suyoung, K.; Han, Y. Insights into Characteristic Volatiles in Wuyi Rock Teas with Different Cultivars by Chemometrics and Gas Chromatography Olfactometry/Mass Spectrometry. Foods 2022, 11, 4109. [Google Scholar]
- GB/T18745-2006; Product of Geographical Indication-Wuyi Rock-Essence Tea. Standardization Administration of China: Beijing, China, 2006.
- GB/T23776-2018; Methodology for Sensory Evaluation of Tea. Standardization Administration of China: Beijing, China, 2018.
- Yang, P. Formation Pathway of Key Aroma-Active Compounds Generated by Maillard Reaction during Roasting of Wuyi Rock Tea. Ph.D. Thesis, Beijing Technology and Business University, Beijing, China, 2022. [Google Scholar]
- Gemert, L.J.V. Odour Thresholds-Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Ge, Y.J. Study on the Aroma Produced in Maillard Reaction during Brown Sugar Evaporation Concentration Process. Master’s Thesis, Guangxi University, Guangxi, China, 2020. [Google Scholar]
- Yu, M.; Li, T.; Wan, S.; Song, H.; Zhang, Y.; Raza, A.; Wang, H. Study of aroma generation pattern during boiling of hot pot seasoning. J. Food Compos. Anal. 2022, 114, 104844. [Google Scholar] [CrossRef]
- Zhu, J.C.; Chen, F.; Wang, L.Y.; Xiao, Z.B. Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Peng, Z.; Jiang, X. Metabolomics analysis of flavor differences in Shuixian (Camellia sinensis) tea from different production regions and their microbial associations. Food Chem. 2024, 443, 138542. [Google Scholar] [CrossRef]
- Christian, S.; Peter, S. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 2006, 54, 916–924. [Google Scholar]
- Maga, J.A.; Katz, I. Pyrazines in foods: An update. Crit. Rev. Food Sci. Nutr. 2009, 4, 1–48. [Google Scholar] [CrossRef]
- Lin, Y.P.; Liu, B.S.; Huang, Y.B.; Zhan, S.Q.; Zhang, J.M.; Chen, R.B. Effect of Baking Degrees on the Quality of Wuyi Rock Tea “Dahongpao”. Food Res. Dev. 2020, 22, 49–54. [Google Scholar]
- Zhan, B.Z.; Wu, Z.F.; Ma, C.H.; Lin, Z.L.; Lin, H.T. Effects of roasting time on the aroma quality of Wuyi rock tea Rougui. J. Food Saf. Qual. 2022, 3, 811–819. [Google Scholar] [CrossRef]
- Zamora, R.; León, M.M.; Hidalgo, F.J. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems. J. Agric. Food Chem. 2015, 63, 8037–8043. [Google Scholar] [CrossRef] [PubMed]
CAS | Compound | Perception 1 | RI 2 | Concentration (μg/kg) | Identification Method 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 8 h | 10 h | 12 h | |||||
Aldehyde | |||||||||||
96-17-3 | 2-Methylbutanal | cocoa, almond | 901 | - | 8 | 8 | 32 | 32 | 64 | 128 | MS/RI/O/STD |
590-86-3 | 3-Methylbutanal | cocoa | 910 | - | 8 | 16 | 16 | 32 | 32 | 128 | MS/RI/O/STD |
110-62-3 | Pentanal | cocoa | 935 | 16 | 16 | 16 | 8 | 8 | 16 | 8 | MS/RI/O |
66-25-1 | Hexanal | grass, fatty | 1083 | 32 | 32 | 16 | 16 | 8 | 8 | 8 | MS/RI/O |
1576-87-0 | (E)-2-pentenal | fruity | 1131 | 32 | 16 | 16 | 16 | 8 | 2 | 2 | MS/RI/O |
111-71-7 | Heptanal | fatty | 1181 | 64 | 64 | 32 | 32 | 16 | 16 | 8 | MS/RI/O |
6728-26-3 | (E)-2-hexenal | fruity | 1201 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | MS/RI/O |
505-57-7 | 2-Hexenal | fruity | 1216 | 8 | 8 | 8 | 16 | 16 | 16 | 8 | MS/RI/O |
6728-31-0 | 4-Heptenal | creamy | 1236 | 32 | 32 | 16 | 16 | 16 | 8 | 8 | MS/RI/O |
18829-55-5 | (E)-2-heptenal | fatty | 1243 | 8 | 8 | 4 | 4 | 4 | 2 | 2 | MS/RI/O |
124-13-0 | Octanal | fatty | 1280 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | MS/RI/O |
124-19-6 | Nonanal | fatty | 1385 | 16 | 16 | 16 | 8 | 8 | 8 | 4 | MS/RI/O |
142-83-6 | (E,E)-2,4-Hexadienal | sweet | 1397 | 32 | 32 | 32 | 16 | 16 | 8 | 8 | MS/RI/O |
2548-87-0 | (E)-2-octenal | fatty | 1434 | 8 | 8 | 16 | 16 | 16 | 8 | 4 | MS/RI/O |
98-01-1 | Furfural | bread | 1455 | 16 | 64 | 64 | 128 | 128 | 64 | 64 | MS/RI/O/STD |
4313-03-5 | (E,E)-2,4-heptadienal | fatty | 1493 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | MS/RI/O |
112-31-2 | Decanal | orange | 1500 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | MS/RI/O |
100-52-7 | Benzaldehyde | almond | 1534 | 64 | 64 | 64 | 64 | 64 | 128 | 128 | MS/RI/O/STD |
620-02-0 | 5-Methylfurfural | caramel | 1560 | - | 32 | 64 | 64 | 64 | 128 | 128 | MS/RI/O/STD |
18829-56-6 | (E)-2-nonenal | soapy, cucumber | 1582 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | MS/RI/O |
432-25-7 | β-Cyclocitral | herbal | 1590 | 16 | 8 | 8 | 16 | 16 | 16 | 32 | MS/RI/O |
2167-14-8 | 1-Ethyl-1H-pyrrole-2-carboxaldehyde | burnt | 1616 | - | 8 | 16 | 16 | 32 | 64 | 64 | MS/RI/O/STD |
122-78-1 | Phenylethanal | honey, sweet | 1625 | 32 | 64 | 64 | 64 | 64 | 64 | 32 | MS/RI/O/STD |
25152-84-5 | (E,E)-2,4-decadienal | fatty | 1819 | 16 | 16 | 8 | 8 | 4 | 4 | 2 | MS/RI/O |
2363-88-4 | 2,4-Decadienal | orange | 1824 | 8 | 8 | 8 | 16 | 8 | 16 | 8 | MS/RI/O |
4411-89-6 | α-Ethylidenbenzeneacetaldehyde | floral | 1907 | 16 | 8 | 8 | 4 | 8 | 16 | 16 | MS/RI/O |
Alcoholic | |||||||||||
616-25-1 | 1-Penten-3-ol | pungent | 1158 | 8 | 8 | 8 | 16 | 16 | 16 | 8 | MS/RI/O |
71-41-0 | 1-Pentanol | fusel | 1255 | 16 | 8 | 8 | 8 | 8 | 4 | 2 | MS/RI/O |
1576-95-0 | (Z)-2-penten-1-ol | green, spicy | 1310 | 16 | 8 | 8 | 8 | 4 | 4 | 4 | MS/RI/O |
111-27-3 | 1-Hexanol | resin, flower | 1363 | 32 | 32 | 32 | 32 | 64 | 32 | 8 | MS/RI/O |
544-12-7 | 3-Hexen-1-ol | green leafy | 1384 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | MS/RI/O |
928-95-0 | (E)-2-hexenol | green | 1392 | 16 | 8 | 8 | 4 | 4 | 2 | 2 | MS/RI/O |
3391-86-4 | 1-Octen-3-ol | mushroom | 1394 | 32 | 16 | 16 | 8 | 8 | 4 | 2 | MS/RI/O |
5989-33-3 | (Z)-linalool oxide | flower | 1420 | 32 | 8 | 8 | 8 | 4 | 4 | 2 | MS/RI/O |
111-70-6 | Heptanol | green | 1447 | 32 | 32 | 16 | 16 | 16 | 8 | 4 | MS/RI/O |
104-76-7 | 2-Ethyl-1-hexanol | fatty | 1487 | 16 | 16 | 16 | 16 | 16 | 8 | 4 | MS/RI/O |
78-70-6 | Linalool | flower | 1537 | 32 | 32 | 16 | 16 | 8 | 8 | 4 | MS/RI/O |
111-87-5 | 1-Octanol | chemical | 1545 | 16 | 16 | 16 | 16 | 16 | 8 | 8 | MS/RI/O |
29957-43-5 | Dehydrolinalool | moldy | 1648 | 32 | 32 | 32 | 16 | 16 | 16 | 32 | MS/RI/O |
98-00-0 | Furfuryl alcohol | burnt | 1659 | 64 | 64 | 64 | 128 | 128 | 256 | 256 | MS/RI/O |
39028-58-5 | (E)-linalool oxide (pyranoid) | woody | 1741 | 32 | 32 | 16 | 16 | 8 | 8 | 2 | MS/RI/O |
106-25-2 | Nerol | sweet | 1767 | 256 | 256 | 256 | 128 | 128 | 64 | 64 | MS/RI/O |
106-24-1 | Geraniol | floral | 1860 | 128 | 128 | 128 | 64 | 64 | 32 | 8 | MS/RI/O |
100-51-6 | Benzyl alcohol | sweet, flower | 1877 | 128 | 128 | 128 | 128 | 64 | 64 | 128 | MS/RI/O |
60-12-8 | Phenethyl alcohol | rosy | 1912 | 128 | 64 | 64 | 64 | 32 | 32 | 32 | MS/RI/O |
40716-66-3 | α-Nerolidol | floral | 2017 | 128 | 128 | 64 | 64 | 32 | 32 | 16 | MS/RI/O |
Ketone | |||||||||||
1629-58-9 | 1-Penten-3-one | pungent | 973 | 32 | 32 | 16 | 16 | 8 | 16 | 8 | MS/RI/O |
2408-37-9 | 2,2,6-Trimethyl-cyclohexanone | honey | 1335 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | MS/RI/O |
1669-44-9 | 3-Octen-2-one | creamy | 1414 | 16 | 16 | 8 | 8 | 8 | 8 | 4 | MS/RI/O |
14309-57-0 | 3-Nonen-2-one | spicy | 1506 | 8 | 8 | 4 | 4 | 4 | 2 | 2 | MS/RI/O |
30086-02-3 | (E,E)-3,5-octadien-2-one | fruity | 1590 | 8 | 8 | 4 | 2 | 2 | 2 | 2 | MS/RI/O |
127-41-3 | α-Ionone | floral | 1863 | 32 | 16 | 16 | 16 | 8 | 8 | 2 | MS/RI/O |
79-77-6 | β-Lonone | floral | 1917 | 64 | 16 | 16 | 16 | 8 | 8 | 2 | MS/RI/O |
488-10-8 | (Z)-jasmone | floral | 1972 | 64 | 16 | 16 | 16 | 16 | 8 | 2 | MS/RI/O |
14901-07-6 | β-Ionone | floral | 1977 | 16 | 8 | 16 | 8 | 8 | 8 | 8 | MS/RI/O |
Esters | |||||||||||
13894-62-7 | Methyl (Z)-3-hexenoate | fruity | 1253 | - | 2 | 2 | 2 | 2 | 2 | 2 | MS/RI/O |
35154-45-1 | (Z)-3-Hexen-1-yl isovalerate | fruity | 1440 | 32 | 16 | 16 | 16 | 16 | 16 | 8 | MS/RI/O |
6378-65-0 | Hexyl Hexanoate | fruity | 1599 | 16 | 8 | 8 | 8 | 4 | 4 | 2 | MS/RI/O |
31501-11-8 | 3-Hexenyl hexanoate | fatty | 1646 | 64 | 64 | 32 | 32 | 32 | 32 | 16 | MS/RI/O |
53398-86-0 | (E)-2-hexen-1-yl hexanoate | fruity | 1660 | 16 | 16 | 16 | 16 | 8 | 8 | 4 | MS/RI/O |
695-06-7 | γ-Caprolactone | creamy | 1694 | 16 | 16 | 16 | 8 | 8 | 4 | 4 | MS/RI/O |
61444-38-0 | (Z)-(Z)-Hex-3-en-1-yl hex-3-enoate | fruity | 1715 | 8 | 8 | 4 | 4 | 2 | 2 | 2 | MS/RI/O |
119-36-8 | Methyl salicylate | peppermint | 1745 | 64 | 64 | 32 | 32 | 16 | 8 | 2 | MS/RI/O |
101-41-7 | Methyl 2-phenylacetate | floral | 1749 | 8 | 8 | 8 | 4 | 16 | 16 | 8 | MS/RI/O |
103-45-7 | Phenylethyl acetate | floral | 1829 | 8 | 8 | 16 | 16 | 8 | 8 | 8 | MS/RI/O |
103-48-0 | β-Phenylethyl isobutyrate | fruity | 1877 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | MS/RI/O |
103-52-6 | 2-Phenylethyl butanoate | fruity | 1958 | 8 | 8 | 4 | 4 | 4 | 4 | 2 | MS/RI/O |
Acid | |||||||||||
109-52-4 | Pentanoic acid | sweat | 1090 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | MS/RI/O |
142-62-1 | Hexanoic acid | sour fatty | 1829 | 8 | 8 | 4 | 4 | 4 | 2 | 2 | MS/RI/O |
112-05-0 | Nonanoic acid | cheesy, fat | 2174 | 16 | 16 | 8 | 8 | 4 | 4 | 2 | MS/RI/O |
25524-95-2 | (Z)-7-Decen-5-olide | fatty | 2273 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | MS/RI/O |
334-48-5 | Decanoic acid | rancid, fat | 2316 | 8 | 8 | 4 | 4 | 2 | 2 | 2 | MS/RI/O |
79-09-4 | Propanoic acid | acidic | 1525 | 16 | 8 | - | - | - | - | - | MS/RI/O |
Alkene | |||||||||||
123-35-3 | β-Myrcene | woody, citrus | 1170 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | MS/RI/O |
5989-27-5 | (+)-Limonene | citrus | 1201 | 8 | 8 | 8 | 4 | 4 | 2 | 2 | MS/RI/O |
28973-97-9 | β-(Z)-Farnesene | citrus | 1660 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | MS/RI/O |
502-61-4 | α-Farnesene | herbal | 1748 | 8 | 4 | 4 | 4 | 2 | 2 | 2 | MS/RI/O |
Heterocyclic | |||||||||||
534-22-5 | 2-Methylfuran | chocolate | 876 | - | 2 | 4 | 8 | 8 | 16 | 16 | MS/RI/O |
109-08-0 | 2-Methylpyrazine | nutty | 1176 | 16 | 32 | 63 | 128 | 128 | 128 | 256 | MS/RI/O/STD |
3777-69-3 | 2-Pentylfuran | fruity | 1250 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | MS/RI/O |
13925-00-3 | 2-Ethylpyrazine | nutty | 1333 | - | - | - | - | - | 8 | 64 | MS/RI/O/STD |
13925-03-6 | 2-Ethyl-6-methylpyrazine | roasted hazelnut | 1385 | - | - | - | - | 16 | 8 | - | MS/RI/O/STD |
13360-64-0 | 2-Ethyl-5-methylpyrazine | nutty | 1392 | - | 16 | 16 | 16 | 64 | 64 | 128 | MS/RI/O/STD |
15707-23-0 | 2-Ethyl-3-methylpyrazine | nutty | 1414 | - | - | - | - | 16 | 32 | 32 | MS/RI/O/STD |
4177-16-6 | Ethenylpyrazine | burnt nutty | 1434 | - | - | - | - | 8 | 16 | 32 | MS/RI/O/STD |
13360-65-1 | 2-Ethyl-3,6-dimethylpyrazine | hazelnut | 1435 | - | - | - | - | - | 8 | 16 | MS/RI/O/STD |
13925-07-0 | 2-Ethyl-3,5-dimethylpyrazine | coffee | 1464 | - | - | - | - | - | - | 64 | MS/RI/O/STD |
1192-62-7 | 2-Furyl methyl | nutty | 1490 | - | - | - | 8 | 8 | 32 | 64 | MS/RI/O/STD |
18138-05-1 | 2-Methyl-3,5-diethylpyrazine | nutty | 1497 | - | 8 | 16 | 16 | 32 | 32 | 64 | MS/RI/O/STD |
1438-94-4 | 1-Furfurylpyrrole | metallic | 1833 | - | 16 | 16 | 32 | 32 | 64 | 64 | MS/RI/O/STD |
1072-83-9 | Methyl pyrrol-2-yl ketone | fruity | 1971 | 8 | 8 | 8 | 16 | 32 | 32 | 32 | MS/RI/O/STD |
120-72-9 | Indole | perfumy | 2448 | 64 | 64 | 32 | 32 | 16 | 16 | 4 | MS/RI/O |
No. | Compounds | Standard Curves | R2 | Quota Selected Ions (m/z) * | Concentration (μg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 8 h | 10 h | 12 h | |||||
1 | 2-Methylbutanal | y = 0.3645x + 0.0164 | 0.997 | 44, 58, 86 | - | 16.96 ± 1.13 e | 34.20 ± 4.51 d | 39.95 ± 3.31 d | 47.39 ± 4.04 c | 53.34 ± 5.14 b | 82.84 ± 7.66 a |
2 | 3-Methylbutanal | y = 0.3645x + 0.0164 | 0.997 | 44, 58, 86 | - | 9.18 ± 0.46 e | 28.48 ± 3.83 d | 30.06 ± 4.58 d | 40.14 ± 1.60 c | 50.7 ± 2.48 b | 113.62 ± 14.73 a |
3 | 2-Methylpyrazine | y = 0.79991x + 0.7851 | 0.9721 | 53, 67, 94 | 16.53 ± 2.42 f | 66.99 ± 8.74 e | 89.88 ± 9.76 e | 142.29 ± 5.47 d | 180.05 ± 13.56 c | 258.08 ± 17.05 b | 293.05 ± 8.42 a |
4 | 2-Ethylpyrazine | y = 0.1241x − 0.1042 | 0.9952 | 53, 80, 107 | - | - | - | - | - | 36.25 ± 4.18 b | 137.98 ± 14.47 a |
5 | 2-Ethyl-6-methylpyrazine | y = 0.3296x + 0.0012 | 0.9973 | 56, 94, 121 | - | - | - | - | 55.67 ± 7.79 a | 12.81 ± 1.91 b | - |
6 | 2-Ethyl-5-methylpyrazine | y = 0.3296x + 0.0012 | 0.9964 | 56, 94, 121 | - | 24.6 ± 2.22 e | 27.46 ± 1.31 e | 39.29 ± 5.67 d | 66.58 ± 8.62 c | 75.01 ± 7.57 b | 127.42 ± 11.86 a |
7 | 2-Ethyl-3-methylpyrazine | y = 0.4531x + 0.1372 | 0.9924 | 67, 93, 121 | - | - | - | - | 27.9 ± 2.28 b | 56.24 ± 4.16 a | 68.62 ± 5.93 a |
8 | Ethenylpyrazine | y = 0.3032x + 0.0309 | 0.9932 | 52, 79, 106 | - | - | - | - | 10.68 ± 1.81 c | 21.94 ± 3.39 b | 71.64 ± 5.09 a |
9 | 2-Ethyl-3,6-dimethylpyrazine | y = 0.5021x + 0.0924 | 0.9917 | 81, 108, 135 | - | - | - | - | - | 12.98 ± 1.37 b | 35.3 ± 6.17 a |
10 | Furfural | y = 0.3999x + 0.0182 | 0.9947 | 67, 96 | 84.61 ± 8.87 f | 118.14 ± 17.43 ef | 207.59 ± 16.52 d | 411.76 ± 61.81 c | 683.08 ± 28.66 a | 553.27 ± 43.85 b | 492.95 ± 76.03 c |
11 | 2-Ethyl-3,5-dimethylpyrazine | y = 0.4171x + 0.0201 | 0.985 | 80, 108, 135 | - | - | - | - | - | - | 162.88 ± 16.66 |
12 | 2-Furyl methyl | y = 0.2485x − 0.0005 | 0.991 | 43, 67, 95 | - | - | - | 11.64 ± 0.75 d | 26.4 ± 2.32 c | 60.68 ± 5.94 b | 100.64 ± 13.53 a |
13 | 2-Methyl-3,5-diethylpyrazine | y = 0.4196x + 0.0009 | 0.9913 | 67, 122, 149 | - | 5.31 ± 0.37 f | 33.11 ± 2.53 e | 50.68 ± 2.72 d | 69.66 ± 4.53 c | 81.33 ± 7.32 b | 101.71 ± 12.29 a |
14 | Benzaldehyde | y = 0.223x + 0.0674 | 0.9964 | 51, 77, 106 | 244.92 ± 14.68 d | 379.99 ± 11.65 c | 433.91 ± 19.77 b | 507.83 ± 44.48 b | 572.92 ± 56.56 b | 620.59 ± 80.64 a | 736.85 ± 72.86 a |
15 | 2-Methyl-5-formylfuran | y = 1.0196x + 0.0019 | 0.9997 | 53, 81, 110 | - | 76.91 ± 12.9 de | 135.25 ± 23.12 d | 305.05 ± 44.45 c | 356.02 ± 25.44 b | 458.28 ± 36.72 b | 555.78 ± 63.86 a |
16 | 1-Ethyl-1H-pyrrole-2-carboxaldehyde | y = 1.8519x + 0.0059 | 0.9967 | 66, 94, 123 | - | 18.99 ± 1.99 f | 36.76 ± 4.75 e | 60.56 ± 10.39 d | 77.45 ± 13.67 c | 116.01 ± 32.92 b | 145.6 ± 16.24 a |
17 | Benzeneacetaldehyde | y = 0.9824x + 0.0112 | 0.9941 | 65, 91, 120 | 122.28 ± 17.84 d | 138.94 ± 22.29 d | 125.17 ± 17.09 d | 208.35 ± 23.54 c | 404.2 ± 12.15 a | 444.44 ± 18.94 a | 319.07 ± 35.06 b |
18 | 1-Furfurylpyrrole | y = 1.2413x − 0.0521 | 0.9973 | 53, 81, 141 | - | 24.02 ± 1.05 f | 41.19 ± 2.57 e | 60.9 ± 4.23 d | 71.14 ± 6.92 c | 94.07 ± 13.73 b | 101.05 ± 24.28 a |
19 | Methyl pyrrol-2-yl ketone | y = 1.19171x + 0.0022 | 0.9966 | 66, 94, 109 | 1.69 ± 0.13 f | 13.44 ± 0.98 e | 24.2 ± 1.74 d | 35.24 ± 0.18 c | 42.45 ± 2.09 b | 47.03 ± 2.13 b | 56.2 ± 5.16 a |
20 | Pyrrole-2-carboxaldehyde | y = 0.4578x − 0.0984 | 0.9932 | 39, 66, 95 | - | 0.36 ± 0.05 e | 5.67 ± 0.42 d | 11.97 ± 1.47 c | 16.34 ± 2.19 b | 20.27 ± 2.53 a | 23.48 ± 1.31 a |
No. | Compounds | Perception | Odor Threshold in Water (μg/kg) | OAV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 8 h | 10 h | 12 h | ||||
1 | 2-Methylbutanal | cocoa, coffee | 0.35 | - | 48 | 97 | 114 | 135 | 152 | 236 |
2 | 3-Methylbutanal | cocoa | 0.35 | - | 26 | 81 | 85 | 114 | 144 | 324 |
3 | 2-Methylpyrazine | nutty, popcorn | 60 | <1 | 1 | 1 | 2 | 3 | 4 | 4 |
4 | 2-Ethylpyrazine | nutty | 4000 | - | - | - | - | - | <1 | <1 |
5 | 2-Ethyl-6-methylpyrazine | nutty | 40 | - | - | - | - | 1 | <1 | - |
6 | 2-Ethyl-5-methylpyrazine | coffee, nutty | 16 | - | 1 | 1 | 2 | 4 | 4 | 7 |
7 | 2-Ethyl-3-methylpyrazine | roasted | 130 | - | - | - | - | <1 | <1 | <1 |
8 | Ethenylpyrazine | roasted nutty | 700 | - | - | - | - | <1 | <1 | <1 |
9 | 2-Ethyl-3,6-dimethylpyrazine | roasted | 0.4 | - | - | - | - | - | 32 | 88 |
10 | Furfural | toast | 770 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
11 | 2-Ethyl-3,5-dimethylpyrazine | roasted, nutty | 0.04 | - | - | - | - | - | - | 4072 |
12 | 2-Furyl methyl | cocoa, coffee | 10,000 | - | - | - | <1 | <1 | <1 | <1 |
13 | 2-Methyl-3,5-diethylpyrazine | nutty | 1040 | - | <1 | <1 | <1 | <1 | <1 | <1 |
14 | Benzaldehyde | bitter almond | 24 | 10 | 15 | 18 | 21 | 23 | 25 | 30 |
15 | 2-Methyl-5-formylfuran | caramel | 500 | - | <1 | <1 | <1 | <1 | <1 | 1 |
16 | 1-Ethyl-1H-pyrrole-2-carboxaldehyde | burnt | - | - | - | - | - | - | - | - |
17 | Benzeneacetaldehyde | honey, floral | 0.2 | 611 | 694 | 625 | 1041 | 2021 | 2222 | 1595 |
18 | 1-Furfurylpyrrole | coffee | 100 | - | <1 | <1 | <1 | <1 | <1 | 1 |
19 | Methyl pyrrol-2-yl ketone | moldy, nutty | 58,585 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
20 | Pyrrole-2-carboxaldehyde | beef, coffee | 65,000 | - | <1 | <1 | <1 | <1 | <1 | <1 |
No. | CAS | Compounds | Fitted Equation | R2 |
---|---|---|---|---|
1 | 96-17-3 | 2-Methylbutanal | y = −1.568 + 14.870x − 2.051x2 + 0.116x3 | 0.989 |
2 | 590-86-3 | 3-Methylbutanal | y = −3.453 + 15.924x − 3.057x2 + 0.210x3 | 0.973 |
3 | 109-08-0 | 2-Methylpyrazine | y = 20.909 + 15.898x + 0.799x2 − 0.016x3 | 0.991 |
4 | 13360-64-0 | 2-Ethyl-5-methylpyrazine | y = 0.990 + 12.785x − 1.779x2 + 0.132x3 | 0.981 |
5 | 100-52-7 | Benzaldehyde | y = 247.772 + 73.734x − 7.445x2 + 0.39x3 | 0.996 |
6 | 122-78-1 | Benzeneacetaldehyde | y = 145.001 − 73.599x + 23.595x2 − 1.346x3 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Duan, Y.; Song, H. Dynamic Changes in Qidan Aroma during Roasting: Characterization of Aroma Compounds and Their Kinetic Fitting. Foods 2024, 13, 1611. https://doi.org/10.3390/foods13111611
Wang Y, Duan Y, Song H. Dynamic Changes in Qidan Aroma during Roasting: Characterization of Aroma Compounds and Their Kinetic Fitting. Foods. 2024; 13(11):1611. https://doi.org/10.3390/foods13111611
Chicago/Turabian StyleWang, Ying, Yue Duan, and Huanlu Song. 2024. "Dynamic Changes in Qidan Aroma during Roasting: Characterization of Aroma Compounds and Their Kinetic Fitting" Foods 13, no. 11: 1611. https://doi.org/10.3390/foods13111611
APA StyleWang, Y., Duan, Y., & Song, H. (2024). Dynamic Changes in Qidan Aroma during Roasting: Characterization of Aroma Compounds and Their Kinetic Fitting. Foods, 13(11), 1611. https://doi.org/10.3390/foods13111611