Assessment of Peanut Protein Powder Quality by Near-Infrared Spectroscopy and Generalized Regression Neural Network-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Peanut Protein Powder Collection
2.3. Compositional Analysis
2.3.1. Fat Determination
2.3.2. Protein Content Determination
2.3.3. Moisture Content Determination
2.4. Near-Infrared Spectrum Acquisition
2.5. Principal Component Analysis
2.6. Spectral Preprocessing
2.7. Model Establishment
2.8. Method of Evaluating Model
3. Results
3.1. Chemical Indexes Analysis of Peanut Protein Powder
3.2. Near-Infrared (NIR) Spectral Data
3.3. Principal Component Analysis (PCA)
3.4. PLS Model
3.5. Generalized Regression Neural Network (GRNN) Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farag, M.A.; Xiao, J.; Abdallah, H.M. Nutritional value of barley cereal and better opportunities for its processing as a value-added food: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 64, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Qu, Y.; Hua, X.; Wang, F.; Jia, X.; Yin, L. Recent advances in soybean protein processing technologies: A review of preparation, alterations in the conformational and functional properties. Int. J. Biol. Macromol. 2023, 248, 125862. [Google Scholar] [CrossRef] [PubMed]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed proteins—Properties and application as a food ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of plant protein in nutrition, wellness, and health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for plant-based diets: Challenges and innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Guo, X.; Wu, B.; Jiang, Y.; Zhang, Y.; Jiao, B.; Wang, Q. Improving enzyme accessibility in the aqueous enzymatic extraction process by microwave-induced porous cell walls to increase oil body and protein yields. Food Hydrocoll. 2024, 147, 109407. [Google Scholar] [CrossRef]
- Toomer, O.T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 2017, 58, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, H.; Shi, A.; Hu, H.; Liu, L.; Wang, L.; Yu, H. Review on the processing characteristics of cereals and oilseeds and their processing suitability evaluation technology. J. Integr. Agric. 2017, 16, 2886–2897. [Google Scholar] [CrossRef]
- Asen, N.D.; Badamasi, A.T.; Gborigo, J.T.; Aluko, R.E.; Girgih, A.T. Comparative evaluation of the antioxidant properties of whole peanut flour, defatted peanut protein meal, and peanut protein concentrate. Front. Sustain. Food Syst. 2021, 5, 765364. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Liu, H.; Wang, Q. Recent advances for the developing of instant flavor peanut powder: Generation and challenges. Foods 2022, 11, 1544. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Peanut Processing Characteristics and Quality Evaluation; Chapter 4; Springer: Singapore, 2018. [Google Scholar]
- Zhang, J.; Li, T.; Chen, Q.; Liu, H.; Kaplan, D.L.; Wang, Q. Application of transglutaminase modifications for improving protein fibrous structures from different sources by high-moisture extruding. Food Res. Int. 2023, 166, 112623. [Google Scholar] [CrossRef] [PubMed]
- Alamar, P.D.; Carames, E.T.S.; Poppi, R.J.; Pallone, J.A.L. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics. Food Res. Int. 2016, 85, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.R.; Tonoli, G.H.D.; Milagres, F.R.; Hein, P.R.G. Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near infrared spectroscopic data. Carbohydr. Polym. 2019, 224, 115186. [Google Scholar] [CrossRef] [PubMed]
- Rasooli Sharabiani, V.; Soltani Nazarloo, A.; Taghinezhad, E.; Veza, I.; Szumny, A.; Figiel, A. Prediction of winter wheat leaf chlorophyll content based on VIS/NIR spectroscopy using ANN and PLSR. Food Sci. Nutr. 2023, 11, 2166–2175. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Kim, D.; Choul Choi, M.; Lee, J.; Kim, B.; Min Choi, C.; Kim, S. Weight interpretation of artificial neural network model for analysis of rice (Oryza sativa L.) with near-infrared spectroscopy. Food Chem. X 2022, 15, 100430. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Patti, A.; Arora, A. Functional proteins from biovalorization of peanut meal: Advances in process technology and applications. Plant Foods Hum. Nutr. 2023, 78, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev Food Sci. Nutr. 2020, 61, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Yu, X. Determination and Properties of Peanut Protein Powder. Food Ind. 2021, 42, 163–168. [Google Scholar]
- Chen, J.; Zhu, S.; Zhao, G. Rapid determination of total protein and wet gluten in commercial wheat flour using siSVR-NIR. Food Chem. 2017, 221, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Tirado, J.P.; Vieira, M.S.d.S.; Amigo, J.M.; Siche, R.; Barbin, D.F. Prediction of protein and lipid content in black soldier fly (Hermetia illucens L.) larvae flour using portable NIR spectrometers and chemometrics. Food Control 2023, 153, 109969. [Google Scholar] [CrossRef]
- Golea, C.M.; Codină, G.G.; Oroian, M. Prediction of wheat flours composition using fourier transform infrared spectrometry (FT-IR). Food Control 2023, 143, 109318. [Google Scholar] [CrossRef]
- Li, Q.; XiaoJia, S.; JinHong, C. Determination of protein and gossypol content in cotton kernel powder with Near Infrared Reflectance spectroscopy. Spectrosc. Spectr. Anal. 2010, 30, 635–639. [Google Scholar]
- De Géa Neves, M.; Poppi, R.J.; Breitkreitz, M.C. Authentication of plant-based protein powders and classification of adulterants as whey, soy protein, and wheat using FT-NIR in tandem with OC-PLS and PLS-DA models. Food Control 2022, 132, 108489. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Liu, H.; Liu, L.; Du, Y. Determining the contents of protein and amino acids in peanuts using near-infrared reflectance spectroscopy. J. Sci. Food Agric. 2013, 93, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Zou, M. Production technology and practice of peanut protein powder by low temperature pressing. China Oils Fats 2008, 7, 35–36. [Google Scholar]
- GB5009.6; National Food Safety Standard-Determination of Fat in Foods. Standard Press of China: Beijing, China, 2016.
- GB5009.5; National Food Safety Standard-Determination of Protein in Foods. Standard Press of China: Beijing, China, 2016.
- Yu, H.; Liu, H.; Erasmus, S.W.; Zhao, S.; Wang, Q.; van Ruth, S.M. Rapid high-throughput determination of major components and amino acids in a single peanut kernel based on portable near-infrared spectroscopy combined with chemometrics. Ind. Crops Prod. 2020, 158, 112956. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Wang, Q.; Ruth, S.V. Evaluation of portable and benchtop NIR for classification of high oleic acid peanuts and fatty acid quantitation. LWT Food Sci. Technol. 2020, 128, 109398. [Google Scholar] [CrossRef]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef]
- Zhao, S.M.; Yu, H.W.; Gao, G.Y.; Chen, N.; Wang, B.Y.; Wang, Q.; Liu, H.Z. Rapid determination of protein components and their subunits in peanut based on near infrared technology. Spectrosc. Spectr. Anal. 2021, 41, 912–917. [Google Scholar]
- Yu, H.; Liu, H.Z.; Wang, N.; Yang, Y.; Shi, A.M.; Liu, L.; Hu, H.; Mzimbiri, R.I.; Wang, Q. Rapid and visual measurement of fat content in peanuts by using the hyperspectral imaging technique with chemometrics. Anal. Methods 2016, 8, 7482–7492. [Google Scholar] [CrossRef]
- Mishra, P.; Lohumi, S. Improved prediction of protein content in wheat kernels with a fusion of scatter correction methods in NIR data modelling. Biosyst. Eng. 2021, 203, 93–97. [Google Scholar] [CrossRef]
- Agelet, L.E.; Hurburgh, C.R. A Tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem. 2010, 11, 246–260. [Google Scholar] [CrossRef]
- Genisheva, Z.; Quintelas, C.; Mesquita, D.P.; Ferreira, E.C.; Oliveira, J.M.; Amaral, A.L. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR). Food Chem. 2017, 246, 172–178. [Google Scholar] [CrossRef] [PubMed]
- de Lima, A.B.S.; Batista, A.S.; de Jesus, J.C.; de Jesus Silva, J.; de Araújo, A.C.M.; Santos, L.S. Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control 2020, 107, 106802. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Williams, P. Tutorial: Calibration development and evaluation methods B. Set-up and evaluation. NIR News 2013, 6, 20–24. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Geladi, P. Principles of Proper Validation: Use and abuse of re-sampling for validation. J. Chemom. 2010, 24, 168–187. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, Y.; Liu, Q.; Xu, L.; Bao, H.; Ren, X.; Jin, Z.; Jiao, A. Effect of wheat gluten and peanut protein ratio on the moisture distribution and textural quality of high-moisture extruded meat analogs from an extruder response perspective. Foods 2023, 12, 1696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Q.; Kamruzzaman, M. Portable NIR spectroscopy and PLS based variable selection for adulteration detection in quinoa flour. Food Control 2022, 138, 108970. [Google Scholar] [CrossRef]
- Beć, K.B.; Huck, C.W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem. 2019, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, W.; Ni, X.; Chu, X.; Li, Y.F.; Sun, C. Evaluation of near-infrared hyperspectral imaging for detection of peanut and walnut powders in whole wheat flour. Appl. Sci. 2018, 8, 1076. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Lohumi, S.; Kim, G.; Joshi, R.; Lee, H.; Kim, M.S.; Cho, B.K. Hyperspectral shortwave infrared image analysis for detection of adulterants in almond powder with one-class classification method. Sensors 2020, 20, 5855. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.L.; Hu, M.H.; Chen, S.W.; Wang, Q.; Zhu, S.; Dai, J.; Li, X.Z. Identification of adulterated cocoa powder using chromatographic fingerprints of polysaccharides coupled with principal component analysis. Food Anal. Methods 2015, 8, 2360–2367. [Google Scholar] [CrossRef]
- Zhang, H.; Dean, L.; Wang, M.L.; Dang, P.; Lamb, M.; Chen, C. GWAS with principal component analysis identify QTLs associated with main peanut flavor-related traits. Front. Plant Sci. 2023, 14, 1204415. [Google Scholar] [CrossRef]
- Bilal, M.; Zhu, X.B.; Arslan, M.; Tahir, H.E.; Azam, M.; Junjun, Z. Rapid determination of the chemical compositions of peanut seed (Arachis hypogaea). Using portable near-infrared spectroscopy. Vib. Spectrosc. 2020, 110, 103138. [Google Scholar] [CrossRef]
- Song, H.; Li, F.; Guang, P.; Yang, X.; Pan, H.; Huang, F. Detection of aflatoxin b1 in peanut oil using attenuated total reflection fourier transform infrared spectroscopy combined with partial least squares discriminant analysis and support vector machine models. J. Food Prot. 2021, 84, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Haruna, S.A.; Li, H.; Wei, W.; Geng, W.; Adade, S.Y.-S.S.; Zareef, M.; Ivane, N.M.A.; Isa, A.; Chen, Q. Intelligent evaluation of free amino acid and crude protein content in raw peanut seed kernels using NIR spectroscopy paired with multivariable calibration. Anal Methods 2022, 14, 2989–2999. [Google Scholar] [CrossRef] [PubMed]
- Ingle, P.D.; Christian, R.; Purohit, P.; Zarraga, V.; Handley, E.; Freel, K.; Abdo, S. Determination of protein content by NIR spectroscopy in protein powder mix products. J. AOAC Int. 2016, 99, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, J.; Wang, R.; Chen, Y.; Luo, S.; Wang, W.; Zhang, Y. Research on detection of soybean meal quality by NIR based on PLS-GRNN. Spectrosc. Spectr. Anal. 2022, 42, 1433–1438. [Google Scholar]
No. | Variety Name | No. | Variety Name | No. | Variety Name |
---|---|---|---|---|---|
1 | Jihua 1353 | 18 | Jihua 13 | 35 | Minhua 825 |
2 | Jihua 443 | 19 | Jihua 16 | 36 | Puhua 28 |
3 | Dawuxiaoguo | 20 | Jihua 18 | 37 | Jihua 97 |
4 | Fuhua 22 | 21 | Jihua 19 | 38 | Yuhua 93 |
5 | Fuhua 24 | 22 | Jihua 52 | 39 | Yueyou 1826 |
6 | Fuhua 35 | 23 | Jihua 915 | 40 | Qinghua 6 |
7 | Heihuasheng | 24 | Weihua 30 | 41 | Qinghua 308 |
8 | Huayu 16 | 25 | Puhua 85 | 42 | Quanhonghua 1 |
9 | Huayu 22 | 26 | Huayu 666 | 43 | Quanhua 551 |
10 | Huayu 23 | 27 | Jinonghua 20 | 44 | Shanhua 13 |
11 | Xvhuatian 29 | 28 | Jinonghua 6 | 45 | Silihong |
12 | Yuhua 22 | 29 | Jihuatian 1 | 46 | Tianfu 3 |
13 | Yuhua 37 | 30 | Kainong 1715 | 47 | Tianfu 39 |
14 | Huayu 917 | 31 | Kainong 1760 | 48 | Weihua 25 |
15 | Huayu 9118 | 32 | Kainong 308 | 49 | Weihua 29 |
16 | Qihua 1 | 33 | Kainong 311 | 50 | Yunhuasheng 15 |
17 | Jihua 9 | 34 | Kainong 61 | 51 | Yuhua 65 |
Index | Details |
---|---|
Light source | Dual integrated vacuum tungsten lamps |
Spectroscopic element | Linear Various Fitter (LVF) |
Detector | InGaAs diode array |
Wavelength range | 900–1700 nm |
Spectral bandwidth | Less than 1.25% of center wavelength |
Display controller | Surface line of Microsoft Corp., Redmond, WA, USA. |
Component | Min | Max | Mean | S.D. | C.V. | P25 | P50 | P75 |
---|---|---|---|---|---|---|---|---|
fat | 0.83% | 29.17% | 10.81% | 6.48% | 59.92% | 4.67% | 10.8% | 14.9% |
protein | 36.19% | 58.78% | 47.80% | 5.56% | 11.63% | 43.8% | 48.5% | 51.8% |
moisture | 5.34% | 11.60% | 7.70% | 1.17% | 15.24% | 6.89% | 7.45% | 8.34% |
Pretreatment | Fat | Protein | Moisture | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rcal | SEC | Rcv | SECV | Rcal | SEC | Rcv | SECV | Rcal | SEC | Rcv | SECV | |
Raw spectrum | 0.9041 | 0.0261 | 0.8924 | 0.0276 | 0.9393 | 0.0191 | 0.9249 | 0.0212 | 0.8973 | 0.0054 | 0.8618 | 0.0063 |
Normalize | 0.9029 | 0.0263 | 0.8899 | 0.0279 | 0.9445 | 0.0183 | 0.9298 | 0.0206 | 0.8872 | 0.0057 | 0.8536 | 0.0064 |
FD | 0.9080 | 0.0256 | 0.8896 | 0. 0280 | 0.9491 | 0.0176 | 0.9292 | 0.0207 | 0.9132 | 0.0050 | 0.8793 | 0.0059 |
SD | 0.9064 | 0.0258 | 0.8896 | 0.0280 | 0.9542 | 0.0167 | 0.9331 | 0.0201 | 0.9169 | 0.0049 | 0.8746 | 0.0060 |
Baseline | 0.9036 | 0.0262 | 0.8851 | 0.0285 | 0.9426 | 0.0186 | 0.9298 | 0.0206 | 0.9007 | 0.0053 | 0.8694 | 0.0061 |
SNV | 0.9057 | 0.0260 | 0.8905 | 0.0279 | 0.9500 | 0.0174 | 0.9367 | 0.0196 | 0.9099 | 0.0051 | 0.8831 | 0.0058 |
Detrending | 0.9021 | 0.0264 | 0.8840 | 0.0286 | 0.9429 | 0.0186 | 0.9294 | 0.0206 | 0.8980 | 0.0054 | 0.8607 | 0.0063 |
MSC | 0.9056 | 0.0260 | 0.8904 | 0.0279 | 0.9499 | 0.0174 | 0.9368 | 0.0195 | 0.9092 | 0.0051 | 0.8827 | 0.0058 |
Deresolve | 0.9037 | 0.0262 | 0.8919 | 0.0277 | 0.9383 | 0.0193 | 0.9238 | 0.0214 | 0.8964 | 0.0055 | 0.8613 | 0.0063 |
Component | Pretreatment | Factor | Calibration Set Sample | Rcal | SEC | Rcv | SECV | Validation Set Sample | Rcp | SEP | RPD |
---|---|---|---|---|---|---|---|---|---|---|---|
fat | FD | 3 | 88 | 0.9750 | 0.0138 | 0.9695 | 0.0153 | 31 | 0.9849 | 0.0129 | 5.77 |
protein | SD | 6 | 89 | 0.9771 | 0.0114 | 0.9571 | 0.0148 | 31 | 0.9660 | 0.0148 | 3.80 |
moisture | SD | 6 | 89 | 0.9428 | 0.0039 | 0.9138 | 0.0048 | 26 | 0.9106 | 0.0038 | 2.37 |
Component | Smoothing Parameters | Rcal | SEC | Rcp | SEP | RPD |
---|---|---|---|---|---|---|
fat | 0.02 | 0.9952 | 0.0145 | 0.9915 | 0.0022 | 10.82 |
protein | 0.015 | 0.9904 | 0.0231 | 0.9900 | 0.0219 | 10.03 |
moisture | 0.02 | 0.9896 | 0.0179 | 0.9859 | 0.0221 | 8.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Gu, F.; Qin, J.; Li, Z.; Zhang, Y.; Guo, Q.; Wang, Q. Assessment of Peanut Protein Powder Quality by Near-Infrared Spectroscopy and Generalized Regression Neural Network-Based Approach. Foods 2024, 13, 1722. https://doi.org/10.3390/foods13111722
Cui H, Gu F, Qin J, Li Z, Zhang Y, Guo Q, Wang Q. Assessment of Peanut Protein Powder Quality by Near-Infrared Spectroscopy and Generalized Regression Neural Network-Based Approach. Foods. 2024; 13(11):1722. https://doi.org/10.3390/foods13111722
Chicago/Turabian StyleCui, Haofan, Fengying Gu, Jingjing Qin, Zhenyuan Li, Yu Zhang, Qin Guo, and Qiang Wang. 2024. "Assessment of Peanut Protein Powder Quality by Near-Infrared Spectroscopy and Generalized Regression Neural Network-Based Approach" Foods 13, no. 11: 1722. https://doi.org/10.3390/foods13111722
APA StyleCui, H., Gu, F., Qin, J., Li, Z., Zhang, Y., Guo, Q., & Wang, Q. (2024). Assessment of Peanut Protein Powder Quality by Near-Infrared Spectroscopy and Generalized Regression Neural Network-Based Approach. Foods, 13(11), 1722. https://doi.org/10.3390/foods13111722