Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Experimental Methods
2.3. Fermentation Characteristics of Different Yeasts
2.4. Testing Methods
2.5. Data Analysis
3. Results
3.1. Analysis of the Fermentation Ability of Different Yeasts
3.2. Analysis of the Physical and Chemical Indicators of Mulberry Wine
3.3. Analysis of the Higher Alcohol Content in Mulberry Wine
3.4. Analysis of the Free Amino Acid Content in Mulberry Wine
3.5. Analysis of the Sugar Content in Mulberry Wine
3.6. Analysis of Changes in Reducing Sugar and Higher Alcohol Content during Mulberry Wine Fermentation
3.7. Analysis of Changes in Amino Acid Content and Higher Alcohol Content during Mulberry Wine Fermentation
3.8. Correlation Analysis of Higher Alcohols, Amino Acids, and Reducing Sugars during the Fermentation of Mulberry Wine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singhal, B.K.; Khan, M.A.; Dhar, A.; Baqual, F.M.; Bindroo, B.B. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. J. Fruit Ornam. Plant Res. 2010, 18, 83–99. [Google Scholar]
- Chen-Hao, L.; Fei, L.; Liang, X. Medicinal parts of mulberry (leaf, twig, root bark, and fruit) and compounds thereof are excellent traditional Chinese medicines and foods for diabetes mellitus. J. Funct. Foods 2023, 106, 105619. [Google Scholar]
- Sun, Z.; Kumar, R.M.S.; Li, J.; Yang, G.; Xie, Y. In Silico search and biological validation of MicroR171 family related to abiotic stress response in mulberry (Morus alba). Hortic. Plant J. 2022, 8, 184–194. [Google Scholar] [CrossRef]
- Vyry, W.N.A.; Chauhan, S.; Singh, V.; Srivastava, D.; Kumar, U.; Raj, R.; Verma, A. Mulberry: From nutraceuticals to bioactive phytochemicals. Food Humanit. 2024, 2, 100272. [Google Scholar]
- Yong, Z.; Feng, Q.; Yang, L. A Research on Mulberry Wine Fermentation Condition Optimization by Means of BBD. Adv. Mater. Res. 2013, 791–793, 84–88. [Google Scholar]
- Yanan, Q.; Haotian, X.; Ya, C.; Jing, L.; Jingshuai, S.; Yan, Z.; Minwei, Z. Metabolomics-Based Analyses of Dynamic Changes in Flavonoid Profiles in the Black Mulberry Winemaking Process. Foods 2023, 12, 2221. [Google Scholar]
- Acharya, R.; Bagchi, T.; Gangopadhyay, D. Mulberry as a Valuable Resource for Food and Pharmaceutical Industries: A Review. In Medical Plants; InTechOpen: London, UK, 2022. [Google Scholar]
- Cordente, A.G.; Espinase Nandorfy, D.; Solomon, M.; Schulkin, A.; Kolouchova, R.; Francis, I.L.; Schmidt, S.A. Aromatic Higher Alcohols in Wine: Implication on Aroma and Palate Attributes during Chardonnay Aging. Molecules 2021, 16, 4979. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Khomenko, I.; Eyres, G.T.; Bremer, P.; Silcock, P.; Betta, E.; Biasioli, F. Online monitoing of higher alcohols and esters throughout beer fermentation by commercial Saccharomyces cerevisiae and Saccharomyces pastorianus yeast. J. Mass Spectrom. 2023, 58, e4959. [Google Scholar] [CrossRef]
- Lai, Y.T.; Yuan, J.F.; Chen, Z.Y.; Wang, D.H.; Sun, J.R.; Ma, J.L. Microwave irradiation: Reduction of higher alcohols in wine and the effect mechanism by employing model wine. LWT 2023, 181, 114765. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Li, X. Influence of fermentation parameters on phytochemical profile and volatile properties of mulberry (Morus nigra) wine. J. Inst. Brew. 2017, 123, 151–158. [Google Scholar] [CrossRef]
- Manetta, A.C.; Di Giuseppe, L.; Tofalo, R.; Martuscelli, M.; Schirone, M.; Giammarco, M.; Suzzi, G. Evaluation of biogenic amines in wine: Determination by an improved HPLC-PDA method. Food Control. 2016, 62, 351–3566. [Google Scholar] [CrossRef]
- Kokkinakis, M.; Tsakiris, I.; Tzatzarakis, M.; Vakonaki, E.; Alegakis, A.; Papachristou, S.; Karzi, V.; Kokkinaki, A.; Goumenou, M.; Kallionakis, M.; et al. Carcinogenic, ethanol, acetaldehyde and noncarcinogenic higher alcohols, esters, and methanol compounds found in traditional alcoholic beverages. A risk assessment approach. Toxicol. Rep. 2020, 7, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.G.; Liu, L.; Wang, Y.; Wang, X.; Xiao, D. Higher alcohols metabolism by Saccharomyces cerevisiae: A mini review. Chin. J. Biotech. 2021, 37, 429–447. (In Chinese) [Google Scholar]
- Wang, C.; Yuan, G.; He, Y.; Tang, J.; Zhou, H.; Qiu, S. The formation of higher alcohols in rice wine fermentation using different rice cultivars. Front. Microbiol. 2022, 13, 978323. [Google Scholar] [CrossRef] [PubMed]
- Greenshields, R.N. Volatiles in home-brewed beers and wines. J. Sci. Food Agric. 1974, 25, 1307–1312. [Google Scholar] [CrossRef]
- Heard, G.M. Drinking alcohol linked with lower rates of ill-health. Chem Drug 2001, 8. [Google Scholar]
- Liu, S.; Ma, D.; Li, Z.; Sun, H.; Mao, J.; Shi, Y.; Han, X.; Zhou, Z.; Mao, J. Assimilable nitrogen reduces the higher alcohols content of huangjiu. Food Control 2021, 121, 107660. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.-M.; van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, J.; Jang, Y.-S.; Lee, S.Y. Metabolic engineering of microorganisms for the production of higher alcohols. mBio 2014, 5, e01524-14. [Google Scholar] [CrossRef]
- Wu, Q.; Kong, Y.; Xu, Y. Flavor profile of Chinese liquor is altered by interactions of intrinsic and extrinsic microbes. Appl. Environ. Microbiol. 2016, 82, 422–430. [Google Scholar] [CrossRef]
- Congcong, W.; Vinothkanna, A.; Yongkun, M.; Jie, H.; Rai, A.K.; Jindong, X.; Dahai, L. Production of mulberry wine using selenium-enriched Saccharomyces cerevisiae: Implications from sensory analysis, phytochemical and antioxidant activities. J. Food Sci. Technol. 2024, 61, 366–384. [Google Scholar] [CrossRef] [PubMed]
- GB/T 15038-2006; Chinese National Standard of Food Safety on the General Analysis Methods for Wine and Fruit Wine. China Standard Press: Beijing, China, 2006.
- GB/T 5009.48-2003; Chinese National Standard of Food Safety on the Measurement of Alcohol Content. China Standard Press: Beijing, China, 2003.
- GB15037-2006; Chinese National Food Safety Standard for Wine. China Standard Press: Beijing, China, 2006.
- Wei, M.; Tian, Y.; Zhang, K.; Wang, L.; Ge, Q.; Ma, T.; Fang, Y.; Sun, X. Using abandoned unripe grape resources to solve the low-acid problem in the northwest wine region of China. Food Chem. 2023, 20, 100976. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Lin, X.; He, Z.; Li, W.; Ren, X.; Lin, X. Dynamic changes of total acid and bacterial communities during the traditional fermentation of Hong Qu glutinous rice wine. Electron. J. Biotechnol. 2020, 43, 23–31. [Google Scholar] [CrossRef]
- Peng, M.; Wang, H.; Yang, S.; Wu, D.; Yang, H.; Lu, J. Mechanism study on improving aroma quality of pineapple wine by branched-chain amino acids addition. Int. J. Food Eng. 2024, 20, 151–160. [Google Scholar] [CrossRef]
- Giudici, P.; Romano, P.; Zambonelli, C. A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can. J. Microbiol. 1990, 36, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Guymon, J.F.; Ingraham, J.L.; Crowell, E.A. The formation of n-propyl alcohol by Saccharomyces cerevisiae. Arch. Biochem. Biophys. 1961, 95, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y. Screening of Yeast Strains for Low Yield and High Alcohol Kiwifruit Wine; Jiangnan University: Wuxi, China, 2005. (In Chinese) [Google Scholar]
- Wei, Y.; Kuang, L.; Shuai, G.; Zhao, G.; Zhu, Y. Optimization of fermentation conditions for low yield high-alcohol kiwifruit yeast strain SYB2000. Brewing 2004, 1, 50–51. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, W.; Lei, J.; Han, C.; Wu, J.; Liu, Z.; Liu, W.; Jiapaer, A.; Su, H.; Xu, Y.; Chen, Y.; et al. Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine. Foods 2024, 13, 1788. https://doi.org/10.3390/foods13121788
Lian W, Lei J, Han C, Wu J, Liu Z, Liu W, Jiapaer A, Su H, Xu Y, Chen Y, et al. Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine. Foods. 2024; 13(12):1788. https://doi.org/10.3390/foods13121788
Chicago/Turabian StyleLian, Weijia, Jing Lei, Chen Han, Jiuyun Wu, Zhigang Liu, Wei Liu, Ayijiamali Jiapaer, Hanming Su, Yanjun Xu, Ya Chen, and et al. 2024. "Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine" Foods 13, no. 12: 1788. https://doi.org/10.3390/foods13121788
APA StyleLian, W., Lei, J., Han, C., Wu, J., Liu, Z., Liu, W., Jiapaer, A., Su, H., Xu, Y., Chen, Y., & Liu, F. (2024). Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine. Foods, 13(12), 1788. https://doi.org/10.3390/foods13121788