The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparing the Algae and Yeast
2.3. Fermentation Procedure
2.4. Sensory Evaluation of Odor
2.5. GC-MS Analysis
2.6. Analysis of odor Activity Value (OAV)
2.7. Statistical Analysis
3. Results
3.1. Sensory Evaluation of S. japonica seedling before and after Fermentation
3.2. Qualitative and Quantitative Analysis of Volatile Compounds before and after Fermentation
3.3. OAV Analysis of Volatile Compounds of S. japonica Seedling before and after Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. World cuisine of seaweeds: Science meets gastronomy. Int. J. Gastron. Food S. 2018, 14, 55–65. [Google Scholar] [CrossRef]
- Park, E.; Yu, H.; Lim, J.-H.; Hee Choi, J.; Park, K.-J.; Lee, J. Seaweed metabolomics: A review on its nutrients, bioactive compounds and changes in climate change. Food Res. Int. 2023, 163, 112221. [Google Scholar] [CrossRef] [PubMed]
- Aoe, S.; Yamanaka, C.; Ohtoshi, H.; Nakamura, F.; Fujiwara, S. Effects of Daily Kelp (Laminaria japonica) Intake on Body Composition, Serum Lipid Levels, and Thyroid Hormone Levels in Healthy Japanese Adults: A Randomized, Double-Blind Study. Mar. Drugs 2021, 19, 352. [Google Scholar] [CrossRef] [PubMed]
- Miyai, K.; Tokushige, T.; Kondo, M.; Iodine Res, G. Suppression of Thyroid Function during Ingestion of Seaweed "Kombu" (Laminaria japonoca) in Normal Japanese Adults. Endocr. J. 2008, 55, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, H.; Liu, Y.; Xu, B.; Du, B.; Yang, Y. Effect of Ultrasonic Irradiation on the Physicochemical and Structural Properties of Laminaria japonica Polysaccharides and Their Performance in Biological Activities. Molecules 2023, 28, 8. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-Y.; Khan, M.N.A.; Hong, Y.-K. Anti-inflammatory Activities of Undaria pinnatifida and Laminaria japonica (Phaeophyta). Can. J. Fish. Aquat.Sci 2007, 10, 127–132. [Google Scholar] [CrossRef]
- Kim, K.-B.-W.-R.; Kim, M.-J.; Ahn, D.-H. Anti-inflammatory Activity of an Ethanol Extract of Laminaria japonica Root on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells. Korean J. Food Sci. Technol. 2014, 46, 729–733. [Google Scholar] [CrossRef]
- Tong, A.; Li, Z.; Liu, X.; Ge, X.; Zhao, R.; Liu, B.; Zhao, L.; Zhao, C. Laminaria japonica polysaccharide alleviates type 2 diabetes by regulating the microbiota-gut-liver axis: A multi-omics mechanistic analysis. Int. J. Biol. Macromol. 2023, 258, 128853. [Google Scholar] [CrossRef] [PubMed]
- Patra, K.; Das, G.; Baek, H. Chemical composition and antioxidant and antibacterial activities of an essential oil extracted from an edible seaweed, Laminaria japonica L. Molecules 2015, 20, 12093–12113. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Tong, Y.; Xia, Z.; Tong, Y.; Sun, Y.; Cao, J.; Zhang, J.; Liu, J.; Zhao, S.; et al. A review of volatile compounds in edible macroalgae. Food Res. Int. 2023, 165, 112559. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Yu, M.; Jiang, S.; Qi, H. Effects of Different Processing Methods on the Quality and Physicochemical Characteristics of Laminaria japonica. Foods 2023, 12, 1619. [Google Scholar] [CrossRef] [PubMed]
- Ferraces-Casais, P.; Lage-Yusty, M.A.; Rodríguez-Bernaldo de Quirós, A.; López-Hernández, J. Rapid identification of volatile compounds in fresh seaweed. Talanta 2013, 115, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Wang, Z.; Cai, S.; Zhu, B.; Dong, X. Recent advances in fishy odour in aquatic fish products, from formation to control. Int. J. Food Sci. Tech. 2021, 56, 4959–4969. [Google Scholar] [CrossRef]
- Seo, Y.-S.; Bae, H.-N.; Eom, S.-H.; Lim, K.-S.; Yun, I.-H.; Chung, Y.-H.; Jeon, J.-M.; Kim, H.-W.; Lee, M.-S.; Lee, Y.-B.; et al. Removal of off-flavors from sea tangle (Laminaria japonica) extract by fermentation with Aspergillus oryzae. Bioresour. Technol. 2012, 121, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Wang, Z.; Yu, F.; Tang, X.; Su, L.; Zhang, S.; Sun, X.; Li, K.; Zhao, C.; Zhao, L. Changes in metabolite profiles and antioxidant and hypoglycemic activities of Laminaria japonica after fermentation. LWT Food Sci. Technol. 2022, 158, 113–122. [Google Scholar] [CrossRef]
- Nie, J.; Fu, X.; Wang, L.; Xu, J.; Gao, X. Impact of Monascus purpureus fermentation on antioxidant activity, free amino acid profiles and flavor properties of kelp (Saccharina japonica). Food Chem. 2023, 400, 133990. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Jiang, B.; Zhong, F.; Chen, J.; Zhang, T. Effect of Microbial Fermentation on the Fishy-Odor Compounds in Kelp (Laminaria japonica). Foods 2021, 10, 2532. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xiao, N.; Xu, J.; Guo, Q.; Shi, W. Effect of Lactobacillus plantarum and flavourzyme on physicochemical and safety properties of grass carp during fermentation. Food Chem. X 2022, 15, 100392. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, H.; Zhang, K.; Wang, M. Headspace Solid-Phase Microextraction Analysis of Volatile Compounds in Hawthorn Vinegars Fermented by two Strains of Acetobacter. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010), Yantai University, Yantai, China, 16–18 October 2010; pp. 2057–2061. [Google Scholar]
- Du, X.; Xu, Y.; Jiang, Z.; Zhu, Y.; Li, Z.; Ni, H.; Chen, F. Removal of the fishy malodor from Bangia fusco-purpurea via fermentation of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum. J. Food Biochem. 2021, 45, e13728. [Google Scholar] [CrossRef]
- Hosoglu, M.I. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2018, 240, 1210–1218. [Google Scholar] [CrossRef]
- Ni, H.; Wang, X.; Jiang, Z. Nutritional, taste and texture characteristics of juvenile and adult kelp. Food Sci. 2022, 43, 34–40. [Google Scholar] [CrossRef]
- Xu, Y.-X.; Jiang, Z.-D.; Du, X.-P.; Zheng, M.-J.; Fan-Yang, Y.; Ni, H.; Chen, F. The identification of biotransformation pathways for removing fishy malodor from Bangia fusco-purpurea using fermentation with Saccharomyces cerevisiae. Food Chem. 2022, 380, 132103. [Google Scholar] [CrossRef] [PubMed]
- ISO PN-EN ISO 13299:2016-05; Sensory Analysis-Methodology-General Guidelines for Determining the Sensory Profile. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13299:ed-2:v1:en (accessed on 15 June 2024).
- Van Gemert, L.J. OdourThesholds. Compilation of Odour Threshold Values in Air, Water and Other Media, 2011 Ed.; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Duan, R.; Wang, Y.; He, Y.; Li, C.; Shen, X.; Li, Y. Effects of different drying temperatures on the profile and sources of flavor in semi-dried golden pompano (Trachinotus ovatus). Food Chem. 2023, 401, 134112. [Google Scholar] [CrossRef] [PubMed]
- Van Durme, J.; Goiris, K.; De Winne, A.; De Cooman, L.; Muylaert, K. Evaluation of the Volatile Composition and Sensory Properties of Five Species of Microalgae. J. Agric. Food Chem. 2013, 61, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Chen, X.; Yang, K.; Yu, J.; Liang, F.; Wang, C.; Yang, B.; Chen, T.; Li, Z.; Li, X.; et al. Identification and evaluation of fishy odorants produced by four algae separated from drinking water source during low temperature period: Insight into odor characteristics and odor contribution of fishy odor-producing algae. Chemosphere 2023, 324, 138328. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Gonçalves, A.M.M. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022, 11, 2654. [Google Scholar] [CrossRef]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, C.; He, Z.; Lin, X.; Chen, B.; Li, W. Changes in characteristic volatile aroma substances during fermentation and deodorization of Gracilaria lemaneiformis by lactic acid bacteria and yeast. Food Chem. 2023, 405, 134971. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Wu, Y.; Yu, W.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Efficient synthesis of limonene in Saccharomyces cerevisiae using combinatorial metabolic engineering strategies. J. Agr. Food Chem. 2023, 71, 7752–7764. [Google Scholar] [CrossRef]
- Tricarico, M.; Crovella, S.; Celsi, F. Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: A possible link. Int. J. Mol. Sci. 2015, 16, 16067–16084. [Google Scholar] [CrossRef] [PubMed]
- Miziorko, M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys. 2011, 505, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chhatwal, H.; Pandey, A. Deciphering the Complexity of Terpenoid Biosynthesis and Its Multi-level Regulatory Mechanism in Plants. J. Plant Growth Regul. 2024. [Google Scholar] [CrossRef]
- Ma, R.; Liu, X.; Tian, H.; Han, B.; Li, Y.; Tang, C.; Zhu, K.; Li, C.; Meng, Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes. Aquacult. Rep. 2020, 17, 100312. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, P.; Xia, W.; Jiang, Q.; Liu, S.; Xu, Y. Characterization of key aroma compounds in low-salt fermented sour fish by gas chromatography-mass spectrometry, odor activity values, aroma recombination and omission experiments. Food Chem. 2022, 397, 133773. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, S.; Peng, Y.; Jin, Y.; Xu, D.; Xu, X. Effect of lactic acid bacteria on mackerel (Pneumatophorus japonicus) seasoning quality and flavor during fermentation. Food Biosci. 2021, 41, 100971. [Google Scholar] [CrossRef]
- López-Pérez, O.; Picon, A.; Nuñez, M. Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds. Food Res. Int. 2017, 99, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Foo, J.L.; Susanto, A.V.; Keasling, J.D.; Leong, S.S.J.; Chang, M.W. Whole-Cell Biocatalytic and De Novo Production of Alkanes From Free Fatty Acids in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2017, 114, 232–237. [Google Scholar] [CrossRef]
- Park, Y.C.; Shaffer, C.E.H.; Bennett, G.N. Microbial formation of esters. Appl. Microbiol. Biot. 2009, 85, 13–25. [Google Scholar] [CrossRef]
- Vermeulen, N.; Czerny, M.; Gaenzle, M.G.; Schieberle, P.; Vogel, R.F. Reduction of (E)-2-nonenal and (E,E)-2,4-decadienal during sourdough fermentation. J. Cereal Sci. 2007, 45, 78–87. [Google Scholar] [CrossRef]
NO. | RT/min | Compounds | RI a | RI b | Ion Fragment | Identification | Standard Curves | R2 | Concentration (µg/g) | |
---|---|---|---|---|---|---|---|---|---|---|
SJS | FSJS | |||||||||
Alcohols | ||||||||||
1 | 9.79 | 1-Octen-3-ol | 979 | 976 | 57 72 | MS, RI, Std | Y = 1.490988X − 0.071092 | 0.999 | 62.4 ± 3.0 | - |
2 | 11.37 | 2-Octen-1-ol | 1067 | 1069 | 57 68 | MS, RI, Std | Y = 6.551167X − 1.078406 | 0.999 | 4.6 ± 1.3 | - |
3 | 12.22 | 1-Octanol | 1198 | 1194 | 79 91 | MS, RI, Std | Y = 1.087064X − 7.655122 | 0.989 | 2.6 ± 0.4 | - |
4 | 16.18 | Cis-Anethol | 1214 | 1213 | 117 147 148 | MS, RI, Std | Y = 1.325534X − 2.097888 | 0.998 | 0.5 ± 0.3 | - |
5 | 16.31 | Trans-2-decen-1-ol | 1265 | 1273 | 57 67 | MS, RI, Std | Y = 3.258641X − 0.458222 | 0.994 | 32.1 ± 3.4 | - |
6 | 19.03 | Phenethyl alcohol | 1299 | 1277 | 57 71 | MS, RI, Std | Y = 1.505271X − 1.243503 | 0.999 | - | 3.8 ± 1.1 |
7 | 25.08 | 1-Nonanol | 1568 | 1569 | 55 56 70 | MS, RI, Std | Y = 2.986852X − 1.702484 | 0.993 | 0.6 ± 0.1 | - |
8 | 27.50 | Cedrol | 1601 | 1601 | 95 150 222 | MS, RI, Std | Y = 2.743444X − 1.758543 | 0.994 | - | 8.2 ± 0.2 |
Aldehydes | ||||||||||
1 | 5.81 | Hexanal | 801 | 800 | 56 72 | MS, RI, Std | Y = 15.83681X − 0.051104 | 0.995 | 24.5 ± 0.5 | - |
2 | 10.55 | 1-Nonanal | 1103 | 1102 | 57 71 | MS, RI, Std | Y = 6.034336X − 0.225634 | 0.993 | 47.4 ± 1.7 c | 11.6 ± 1.5 d |
3 | 10.68 | 2-Nonenal | 1157 | 1158 | 55 70 | MS, RI, Std | Y = 11.75698X − 0.063402 | 0.995 | 1.3 ± 0.7 | - |
4 | 10.93 | 2,4-Dimethylbenzaldehyde | 1168 | 1175 | 105 133 134 | MS, RI, Std | Y = 2.029053X − 3.532768 | 0.994 | 0.8 ± 0.1 | - |
5 | 13.50 | Oct-2-Enal | 1192 | 1196 | 41 81 110 | MS, RI, Std | Y =1.023356X − 5.775350 | 0.999 | 2.8 ± 0.6 c | 12.0 ± 2.2 d |
6 | 14.93 | Decyl aldehyde | 1204 | 1204 | 57 70 | MS, RI, Std | Y = 1.649864X − 3.354954 | 0.997 | 3.0 ± 0.8 c | 7.1 ± 0.4 d |
7 | 15.59 | β-Cyclocitral | 1212 | 1214 | 109 137 152 | MS, RI, Std | Y = 3.236918X + 0.228739 | 0.993 | 3.8 ± 0.3 c | 20.5 ± 2.9 d |
8 | 18.94 | 2,6,6-Trimethyl-1-Cyclohexene-1-Acetaldehyde | 1248 | 1251 | 107 151 166 | MS, RI | Estimated | - | 1.3 ± 0.4 c | 8.1 ± 1.2 d |
9 | 19.25 | Undecanal | 1305 | 1308 | 57 82 | MS, RI, Std | Y =1.493987X − 0.218564 | 0.996 | 0.9 ± 0.1 | - |
10 | 25.06 | Trans-2,4-decadienal | 1403 | 1402 | 81 95 152 | MS, RI, Std | Y = 2.045690X + 0.061021 | 0.999 | 3.4 ± 0.3 | - |
11 | 26.03 | Dodecyl aldehyde | 1412 | 1412 | 57 82 | MS, RI, Std | Y = 0.743598X − 0.101732 | 0.993 | 2.3 ± 0.6 c | 4.1 ± 0.4 c |
Ketones | ||||||||||
1 | 10.13 | 1-Octen-3-one | 973 | 974 | 30 41 43 | MS, RI, Std | Y = 0.396353X − 3.222123 | 0.999 | 7.1 ± 0.1 | - |
2 | 10.15 | 2,2,6-Trimethylcyclohexanone | 1030 | 1027 | 56 82 140 | MS, RI, Std | Y = 3.682041X − 1.250163 | 0.993 | 49.3 ± 1.7 | - |
3 | 11.59 | 3-Methyl-2-cyclohexen-1-one | 1053 | 1055 | 54 82 110 | MS, RI, Std | Y = 0.721058X − 3.702106 | 0.999 | 19.3 ± 0.4 | - |
4 | 11.89 | 3,5-Octadien-2-one | 1090 | 1081 | 81 95 124 | MS, RI, Std | Y = 4.146752X − 0.034237 | 0.995 | 8.1 ± 2.2 | - |
5 | 12.15 | 3-Acetyl-2-octanone | 1114 | 1118 | 54 82 138 | MS, RI, Std | Y = 2.084362X − 0.239612 | 0.994 | 1.3 ± 0.5 | - |
6 | 12.74 | 2,6,6-Trimethyl-2- cyclohexanedione | 1139 | 1139 | 68 96 152 | MS, RI | Estimated | - | 3.8 ± 0.4 | - |
7 | 21.85 | 2-Methyloctan-3-one | 1400 | 1407 | 58 71 198 | MS, RI, Std | Y = 6.201378X − 0.920482 | 0.998 | 3.0 ± 0.3 d | 1.3 ± 0.6 d |
8 | 21.92 | β-Ionone | 1415 | 1412 | 135 177 192 | MS, RI, Std | Y = 4.936785X − 0.014371 | 0.997 | 42.8 ± 3.1 c | 108.4 ± 5.6 d |
9 | 22.14 | 4-(2,6,6-trimethylcyclohexen-1-yl) butan-2-one | 1425 | 1433 | 121 161 194 | MS, RI | Estimated | - | 2.8 ± 0.7 | - |
10 | 23.23 | 5,9-Undecadien-2-one, 6,10-dimethyl- | 1443 | 1451 | 69 136 194 | MS, RI | Estimated | - | 6.3 ± 0.8 | - |
Alkanes | - | |||||||||
1 | 21.64 | n-Pentadecane | 1499 | 1500 | 57 71 212 | MS, RI | Estimated | - | 2.0 ± 0.2 c | 5.2 ± 1.7 c |
2 | 21.82 | n-Hexadecane | 1600 | 1600 | 57 71 226 | MS, RI | Estimated | - | 0.9 ± 0.1 c | 4.7 ± 1.5 d |
3 | 21.87 | n-Heptadecane | 1700 | 1700 | 57 71 240 | MS, RI | Estimated | - | 37.8 ± 8.5 c | 23.3 ± 4.2 d |
4 | 24.97 | n-Dodecane | 1199 | 1200 | 57 71 170 | MS, RI | Estimated | - | - | 6.1 ± 2.0 |
5 | 26.55 | Iodoheptane | 1261 | 1260 | 57 71 85 | MS, RI | Estimated | - | 5.2 ± 1.0 | - |
6 | 27.13 | 2,6,11-Trimethyldodecane | 1274 | 1275 | 57 71 212 | MS, RI | Estimated | - | - | 20.7 ± 4.2 |
7 | 27.94 | Butyl-nonane | 1282 | - | 57 71 184 | MS, RI | Estimated | - | - | 2.5 ± 1.4 |
8 | 28.68 | 4,6-Dimethyl dodecane | 1320 | 1325 | 57 71 113 | MS, RI | Estimated | - | - | 7.6 ± 2.3 |
9 | 32.01 | Tetradecane | 1399 | 1400 | 57 71 198 | MS, RI | Estimated | - | - | 3.8 ± 1.4 |
Alkenes | ||||||||||
1 | 4.05 | 5,5-Dimethyl-2-ethyl-1,3-cyclopentadiene | 835 | 840 | 79 107 122 | MS, RI | Estimated | - | 5.4 ± 1.3 | - |
2 | 8.32 | 3,5,5-Trimethyl-1-hexene | 967 | 968 | 57 70 126 | MS, RI, Std | Y = 0.985246X − 0.512014 | 0.999 | 3.9 ± 0.6 | - |
3 | 8.91 | 3,5,5-Trimethyl-2-hexene | 971 | 985 | 57 72 | MS, RI, Std | Y = 2.150213X − 3.251024 | 0.997 | 68.4 ± 10.4 | - |
4 | 10.13 | Limonene | 997 | 995 | 68 93 136 | MS, RI, Std | Y = 1.494374X − 0.117216 | 0.998 | 7.4 ± 1.0 | - |
5 | 10.65 | α-Terpinene | 1012 | 1014 | 55 69 | MS, RI, Std | Y = 2.10673X − 0.0584598 | 0.998 | 10.4 ± 0.4 | - |
6 | 29.87 | 3-Methyl-6-(1-methyl vinyl)-cyclohexene | 1680 | 1680 | 55 69 238 | MS, RI | Estimated | - | 13.7 ± 20.7 | - |
7 | 30.28 | 1,3-Octadiene | 1692 | 1692 | 55 97 238 | MS, RI, Std | Y = 6.231025X − 0.045231 | 0.999 | 7.8 ± 0.2 | - |
8 | 34.69 | D-limonene | 1729 | 1728 | 68 93 136 | MS, RI, Std | Y = 6.131623X − 3.776805 | 0.997 | - | 8.3 ± 3.5 |
9 | 37.83 | 1-Undecene | 1791 | 1791 | 55 69 97 | MS, RI, Std | Estimated | - | - | 3.2 ± 0.3 |
10 | 38.23 | 4-Methyl-1-hendecene | 1799 | 1785 | 57 71 | MS, RI, Std | Y = 0.453254X − 4.741452 | 0.995 | - | 15.5 ± 2.6 |
11 | 40.28 | Heptadecene | 1821 | 1822 | 55 97 238 | MS, RI, Std | Y = 4.965865X − 0.552135 | 0.998 | 31.0 ± 3.1 | - |
Esters | ||||||||||
1 | 12.52 | Hexyl acetate | 1004 | 1004 | 43 56 84 | MS, RI, Std | Y = 0.886523X − 2.443578 | 0.999 | 5.1 ± 1.3 | - |
2 | 16.87 | Phenethyl acetate | 1283 | 1281 | 43 91 105 | MS, RI, Std | Y = 3.412776X − 0.743251 | 0.999 | - | 8.7 ± 2.4 |
3 | 18.12 | Hexyl butyrate | 1282 | 1284 | 33 61 92 | MS, RI, Std | Y = 5.120312X − 0.635227 | 0.996 | 0.6 ± 1.5 | - |
4 | 18.43 | Ethyl caprate | 1289 | 1287 | 43 58 97 | MS, RI, Std | Y = 1.523712X − 0.641224 | 0.998 | - | 2.3 ± 1.2 |
5 | 23.31 | Ethyl laurate | 1724 | 1725 | 45 63 112 | MS, RI, Std | Y = 3.265843X − 0.536241 | 0.999 | - | 3.6 ± 1.4 |
6 | 32.03 | Methyl palmitate | 1827 | 1827 | 43 60 102 | MS, RI, Std | Y = 4.776543X − 3.156005 | 0.993 | 65.3 ± 8.2 c | 44.3 ± 10.7 d |
Others | ||||||||||
1 | 9.62 | 2-Pentylfuran | 988 | 987 | 81 138 | MS, RI, Std | Y = 1.063317X − 0.033126 | 0.994 | 18.9 ± 3.1 | - |
2 | 18.81 | 2-Methyl-2-allylphenol | 1343 | 1349 | 105 133 148 | MS, RI | Estimated | - | - | 2.7 ± 0.6 |
3 | 22.16 | 1,6-Dimethylnaphthalene | 1503 | 1502 | 141 155 156 | MS, RI | Estimated | - | 0.4 ± 0.5 | - |
No. | Volatile Compounds | Odor Description a | Threshold Value b (μg/kg) | OAV Value | |
---|---|---|---|---|---|
SJS | FSJS | ||||
1 | 1-Octen-3-ol | Mushroom, fatty, fishy | 1.5 | 41,603 ± 1.995 | - |
2 | 2-Octen-1-ol | Mushroom, fatty | 840 | 5 ± 1.538 | - |
3 | 1-Octanol | Lemon, floral | 0.13 | 20 ± 3.204 | - |
4 | 1-Nonanol | Earthy, fatty | 280 | 2 ± 0.355 | - |
5 | Hexanal | Herbal, fishy | 5 | 4895 ± 0.104 | - |
6 | 1-Nonanal | Herbal, paint, fatty, fishy | 1.1 | 43,093 ± 1.628 c | 10,541 ± 1.355 d |
7 | 2-Nonenal | Fishy, herbal | 0.4 | 3253 ± 1.751 | - |
8 | 2,4-Dimethylbenzaldehyde | Bitter Almond | 200 | 4 ± 0.500 | - |
9 | Decyl aldehyde | Ocean, cucumber, herbal | 1.97 | 1.11 ± 0.30 c | 2.615 ± 0.138 d |
10 | β-Cyclocitral | Liquorice, fruity, fresh | 3 | 1274 ± 0.103 c | 6831 ± 0.974 d |
11 | Undecanal | Fruity | 12.5 | 72 ± 0.004 | - |
12 | Trans-2,4-decadienal | Fishy, fatty | 10 | 340 ± 30.002 | - |
13 | Dodecyl aldehyde | Herbal, fatty, soap | 2 | 1150 ± 0.295 c | 2050 ± 0.201 d |
14 | 3,5-Octadien-2-one | Woody, sweet | 150 | 54 ± 0.006 | - |
15 | β-Ionone | Floral, raspberry | 2 | 21,431 ± 0.441 c | 54,243 ± 0.803 d |
16 | D-Limonene | Lemon, citrusy | 200 | - | 42 ± 0.015 |
17 | Methyl palmitate | Fatty | 2000 | 33 ± 0.006 c | 22 ± 0.013 d |
18 | 2-Pentylfuran | Beany, spicy | 5.8 | 3204 ± 0.521 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Wang, X.; Ni, H.; Wang, Y. The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling. Foods 2024, 13, 1992. https://doi.org/10.3390/foods13131992
Gong J, Wang X, Ni H, Wang Y. The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling. Foods. 2024; 13(13):1992. https://doi.org/10.3390/foods13131992
Chicago/Turabian StyleGong, Jingni, Xiaolin Wang, Hui Ni, and Yonghua Wang. 2024. "The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling" Foods 13, no. 13: 1992. https://doi.org/10.3390/foods13131992
APA StyleGong, J., Wang, X., Ni, H., & Wang, Y. (2024). The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling. Foods, 13(13), 1992. https://doi.org/10.3390/foods13131992