Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges
Abstract
:1. Introduction
2. The Importance of Bread in the Global Diet
2.1. Current Nutritional Value of Bread
2.2. Glycemic Index
3. Biochemistry of Gluten Synthesis
4. Physicochemical and Rheological Properties of Bread Ingredients during Elaboration
4.1. Sensory Factors That Determine Bread Acceptance
4.1.1. Kneading Technology
4.1.2. Fermentation
4.1.3. Baking
4.1.4. Crusting
4.2. Browning Reactions
4.3. Starch Gelatinization and Retrogradation
5. Bread Enrichment/Enhancement of Nutritional Value
5.1. The Use of Alternative Flours
5.2. Dietetic Fiber
5.3. Resistant Starch
5.4. Salt Reduction
5.5. Changes in Organoleptic Characteristics
5.6. Shelf-Life
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Costa Borges, V.; Fernandes, S.S.; da Rosa Zavareze, E.; Haros, C.M.; Hernandez, C.P.; Dias AR, G.; de las Mercedes Salas-Mellado, M. Production of gluten free bread with flour and chia seeds (Salvia hispânica L). Food Biosci. 2021, 43, 101294. [Google Scholar] [CrossRef]
- Madruga, K.; Rocha, M.; Fernandes, S.S.; Salas-Mellado, M.d.L.M. Properties of wheat and rice breads added with Chia (Salvia hispanica L.) protein hydrolyzate. Food Sci. Technol. 2020, 40, 596–603. [Google Scholar] [CrossRef]
- Venturi, M.; Galli, V.; Pini, N.; Guerrini, S.; Sodi, C.; Granchi, L. Influence of different leavening agents on technological and nutritional characteristics of whole grain breads obtained from ancient and modern flour varieties. Eur. Food Res. Technol. 2021, 247, 1701–1710. [Google Scholar] [CrossRef]
- Benayad, A.; Taghouti, M.; Benali, A.; Aboussaleh, Y.; Benbrahim, N. Nutritional and technological assessment of durum wheat-faba bean enriched flours, and sensory quality of developed composite bread. Saudi J. Biol. Sci. 2021, 28, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Gerardo-Rodríguez, J.E.; Ramírez-Wong, B.; Torres-Chávez, P.I.; Ledesma-Osuna, A.I.; Carvajal-Millán, E.; López-Cervantes, J.; Silvas-García, M.I. Effect of part-baking time, freezing rate and storage time on part-baked bread quality. Food Sci. Technol. 2021, 41, 352–359. [Google Scholar] [CrossRef]
- Kuligowski, M.; López Otero, R.; Polanowska, K.; Montet, D.; Jasińska-Kuligowska, I.; Nowak, J. Influence of fermentation by different microflora consortia on pulque and pulque bread properties. J. Sci. Food Agric. 2019, 99, 6307–6314. [Google Scholar] [CrossRef] [PubMed]
- Calvo Carrillo, M.d.l.C.; López Méndez, O.X.; Carranco Jáuregui, M.E.; Marines, J. Evaluación fisicoquímica y sensorial de un pan tipo baguette utilizando harinas de trigo (Triticum spp) y chícharo (Pisum sativum L.). Biotecnia 2020, 22, 116–124. [Google Scholar] [CrossRef]
- Salinas, M.V.; Puppo, M.C. Bread Staling: Changes During Storage Caused by the Addition of Calcium Salts and Inulin to Wheat Flour. Food Bioproc. Tech. 2018, 11, 2067–2078. [Google Scholar] [CrossRef]
- Huang, S.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch. Food Hydrocoll. 2021, 120, 106921. [Google Scholar] [CrossRef]
- Korompokis, K.; Deleu, L.J.; de Brier, N.; Delcour, J.A. Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chem. 2021, 362, 130203. [Google Scholar] [CrossRef]
- Lal, M.K.; Singh, B.; Sharma, S.; Singh, M.P.; Kumar, A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci. Technol. 2021, 111, 741–755. [Google Scholar] [CrossRef]
- Rai, S.; Kaur, A.; Singh, B.; Minhas, K.S. Quality characteristics of bread produced from wheat, rice and maize flours. J. Food Sci. Technol. 2012, 49, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, P.M.; Mattioni, B.; Barreto PL, M.; Montenegro, F.M.; Gomes-Ruffi, C.R.; Biondi, S.; Francisco, A.D. Effects of fat replacement on properties of whole wheat bread. Braz. J. Pharm. Sci. 2014, 50, 703–712. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Heshe, G.G.; Haki, G.D.; Woldegiorgis, A.Z.; Gemede, H.F. Effect of conventional milling on the nutritional value and antioxidant capacity of wheat types common in Ethiopia and a recovery attempt with bran supplementation in bread. Food Sci. Nutr. 2016, 4, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Skendi, A.; Papageorgiou, M.; Varzakas, T. High protein substitutes for gluten in gluten-free bread. Foods 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Han, K.N.; Feng, G.X.; Wan, Z.L.; Wang, G.S.; Yang, X.Q. Salt reduction in bread via enrichment of dietary fiber containing sodium and calcium. Food Funct. 2021, 12, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Dunteman, A.; Yang, Y.; McKenzie, E.; Lee, Y.; Lee, S.Y. Sodium reduction technologies applied to bread products and their impact on sensory properties: A review. Int. J. Food Sci. Technol. 2021, 56, 4396–4407. [Google Scholar] [CrossRef]
- Romano, A.; Gallo, V.; Ferranti, P.; Masi, P. ScienceDirect Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr. Opin. Food Sci. 2021, 40, 157–167. [Google Scholar] [CrossRef]
- Hoxha, I.; Xhabiri, G.; Deliu, R. The Impact of Flour from White Bean (Phaseolus vulgaris) on Rheological, Qualitative and Nutritional Properties of the Bread. Open Access Libr. J. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Otegbayo, B. Nutritional quality of soyplantain extruded snacks. Ecol. Food Nutr. 2002, 41, 463–474. [Google Scholar] [CrossRef]
- Mohammed, I.; Ahmed, A.R.; Senge, B. Dough rheology and bread quality of wheat-chickpea flour blends. Ind. Crops Prod. 2012, 36, 196–202. [Google Scholar] [CrossRef]
- Taghdir, M.; Mazloomi, S.M.; Honar, N.; Sepandi, M.; Ashourpour, M.; Salehi, M. Effect of soy flour on nutritional, physicochemical, and sensory characteristics of gluten-free bread. Food Sci. Nutr. 2017, 5, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, E.V.; Santos, F.G.; Krupa-Kozak, U.; Capriles, V.D. Nutritional facts regarding commercially available gluten-free bread worldwide: Recent advances and future challenges. Crit Rev. Food Sci. Nutr. 2023, 63, 693–705. [Google Scholar] [CrossRef]
- Engindeniz, S.; Bolatova, Z. A study on consumption of composite flour and bread in global perspective. Br. Food J. 2019, 123, 1962–1973. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Kubow, S.; Sadiq, F.A.; Huang, W.; Imran, M. Sourdough bread: A contemporary cereal fermented product. J. Food Process Preserv. 2019, 43, e13883. [Google Scholar] [CrossRef]
- De Boni, A.; Pasqualone, A.; Roma, R.; Acciani CTraDe Boni, A.; Pasqualone, A.; Roma, R.; Acciani, C. Traditions, health and environment as bread purchase drivers: A choice experiment on high-quality artisanal Italian bread. J. Clean Prod. 2019, 221, 249–260. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Pacheco-Vargas, G.; Gutierrez-Meraz, F.; Tovar, J.; Bello-Perez, L.A. Dietary fiber content, texture, and in vitro starch digestibility of different white bread crusts. J. Cereal Sci. 2019, 89, 102824. [Google Scholar] [CrossRef]
- Bakanach, O.V. The Statistical Assessment of The Development of Bakery Production in Russia. In Proceedings of the Global Challenges and Prospects of The Modern Economic Development Proceedings of Global Challenges and Prospects of The Modern Economic Development (GCPMED 2020), Samara, Russia, 15–16 December 2020; Samara State University of Economics: Samara, Russia, 2021; Volume 106, pp. 753–760. [Google Scholar] [CrossRef]
- Eslamizad, S.; Kobarfard, F.; Tsitsimpikou, C.; Tsatsakis, A.; Tabib, K.; Yazdanpanah, H. Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food Chem. Toxicol. 2019, 126, 162–168. [Google Scholar] [CrossRef]
- Aalipour, F. Evaluation of Salt, Sodium, and Potassium Intake Through Bread Consumption in Chaharmahal and Bakhtiari Province. Int. J. Epidemiol. Res. 2019, 6, 60–64. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Sunny, A.R. A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Romão, B.; Botelho, R.B.A.; Alencar, E.R.; da Silva, V.S.N.; Pacheco, M.T.B.; Zandonadi, R.P. Chemical composition and glycemic index of gluten-free bread commercialized in Brazil. Nutrients 2020, 12, 2234. [Google Scholar] [CrossRef] [PubMed]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Pamisetty, A.; Kumar, K.A.; Indrani, D.; Singh, R.P. Rheological, physico-sensory and antioxidant properties of punicic acid rich wheat bread. J. Food Sci. Technol. 2020, 57, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rosell, C.M. The Science of Doughs and Bread Quality. In Flour and Breads and their Fortification in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 3–14. [Google Scholar] [CrossRef]
- Dhinda, F.; Prakash, J.; Dasappa, I. Effect of Ingredients on Rheological, Nutritional and Quality Characteristics of High Protein, High Fibre and Low Carbohydrate Bread. Food Bioprocess Technol. 2012, 5, 2998–3006. [Google Scholar] [CrossRef]
- Elichalt, M.; Russo, M.; Vázquez, D.; Suburú, G.; Tihista, H.; Godiño, M. Lípidos, sodio y fibra dietética en harina de trigo y pan artesanal en Uruguay: Aporte nutricional según recomendaciones para distintos grupos de población. Rev. Chil. Nutr. 2017, 44, 71–78. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Di Pede, G.; Dodi, R.; Scarpa, C.; Brighenti, F.; Dall’asta, M.; Scazzina, F. Glycemic index values of pasta products: An overview. Foods 2021, 10, 2541. [Google Scholar] [CrossRef]
- RamyaBai, M.; Wedick, N.M.; Shanmugam, S.; Arumugam, K.; Nagarajan, L.; Vasudevan, K.; Sudha, V. Glycemic Index and Microstructure Evaluation of Four Cereal Grain Foods. J. Food Sci. 2019, 84, 3373–3382. [Google Scholar] [CrossRef]
- Korrapati, D.; Jeyakumar, S.M.; Katragadda, S.; Ponday, L.R.; Acharya, V.; Epparapalli, S.; Vajreswari, A. Development of low glycemic index foods and their glucose response in young healthy non-diabetic subjects. Prev. Nutr. Food Sci. 2018, 23, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Wyrwisz, J.; Karp, S.; Wierzbicka, A. Effect of fiber sources on fatty acids profile, glycemic index, and phenolic compound content of in vitro digested fortified wheat bread. J. Food Sci. Technol. 2018, 55, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.; Buyken, A.E. The relationship between glycemic index and health. Nutrients 2020, 12, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Jefremova, O.; Radenkovs, V.; Kunkulberga, D.; Klava, D. Technological properties of dough from wheat flour and fermented bran. Chem. Technol. 2015, 66, 13–18. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.Y.; Perera, C.O. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. J. Food Sci. 2010, 75, R163–R174. [Google Scholar] [CrossRef] [PubMed]
- Schopf, M.; Wehrli, M.C.; Becker, T.; Jekle, M.; Scherf, K.A. Fundamental characterization of wheat gluten. Eur. Food Res. Technol. 2021, 247, 985–997. [Google Scholar] [CrossRef]
- Gumienna, M.; Górna, B. Gluten hypersensitivities and their impact on the production of gluten-free beer. Eur. Food Res. Technol. 2020, 246, 2147–2160. [Google Scholar] [CrossRef]
- Žilic, S. Wheat gluten: Composition and health effects. In Gluten: Sources, Composition and Health Effects; Nova Science Publisher, Inc.: Hauppauge, NY, USA, 2013; pp. 71–86. [Google Scholar]
- Cappelli, A.; Bettaccini, L.; Cini, E. The kneading process: A systematic review of the effects on dough rheology and resulting bread characteristics, including improvement strategies. Trends Food Sci. Technol. 2020, 104, 91–101. [Google Scholar] [CrossRef]
- Cho, I.H.; Peterson, D.G. Chemistry of bread aroma: A review. Food Sci. Biotechnol. 2010, 19, 575–582. [Google Scholar] [CrossRef]
- Wang, K.; Lu, F.; Li, Z.; Zhao, L.; Han, C. Recent developments in gluten-free bread baking approaches: A review. Food Sci. Technol. 2017, 37, 1–9. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Avramenko, N.A.; Tyler, R.T.; Scanlon, M.G.; Hucl, P.; Nickerson, M.T. The chemistry of bread making: The role of salt to ensure optimal functionality of its constituents. Food Rev. Int. 2018, 34, 204–225. [Google Scholar] [CrossRef]
- Otero, M.A.; Guerrero, I.; Wagner, J.R.; Cabello, A.J.; Sceni, P.; García, R.; Almazán, O. Yeast and its derivatives as ingredients in the food industry. Biotecnol. Apl. 2011, 28, 272–275. [Google Scholar]
- Ali, A.; Shehzad, A.; Khan, M.; Shabbir, M.; Amjid, M. Yeast, its types and role in fermentation during bread making process-A. Pak. J. Food Sci. 2012, 22, 171–179. [Google Scholar]
- Struyf, N.; Van der Maelen, E.; Hemdane, S.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Bread Dough and Baker’s Yeast: An Uplifting Synergy. Compr. Rev. Food Sci. Food Saf. 2017, 16, 850–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, Y.; Sadiq, F.A.; Sakandar, H.A.; He, G. Evaluation of the effect of Saccharomyces cerevisiae on fermentation characteristics and volatile compounds of sourdough. J. Food Sci. Technol. 2018, 55, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Najafi, M.A.; Haddadi, T. Effect of fermentation process, wheat bran size and replacement level on some characteristics of wheat bran, dough, and high-fiber Tafton bread. J. Cereal Sci. 2019, 85, 56–61. [Google Scholar] [CrossRef]
- Simsek, S.; Martinez, M.O. Quality of dough and bread prepared with sea salt or sodium chloride. J. Food Process Eng. 2015, 39, 44–52. [Google Scholar] [CrossRef]
- Pasqualone, A.; Caponio, F.; Pagani, M.A.; Summo, C.; Paradiso, V.M. Effect of salt reduction on quality and acceptability of durum wheat bread. Food Chem. 2019, 289, 575–581. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, Y.; Sun, B.; Ren, F.; Zhang, H.; Chen, H.; Tang, Y. Characterization of the key taste compounds during bread oral processing by instrumental analysis and dynamic sensory evaluation. LWT 2021, 138, 110641. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.; Wang, R. Research progress on the formation mechanism and detection technology of bread flavor. J. Food Sci. 2022, 87, 3724–3736. [Google Scholar] [CrossRef]
- Heitmann, M.; Zannini, E.; Axel, C.; Arendt, E. Correlation of flavor profile to sensory analysis of bread produced with different saccharomyces cerevisiae originating from the baking and beverage industry. Cereal Chem. 2017, 94, 746–751. [Google Scholar] [CrossRef]
- Birch, A.N.; Petersen, M.A.; Hansen, Å.S. Aroma of wheat bread crumb. Cereal Chem. 2014, 91, 105–114. [Google Scholar] [CrossRef]
- Birch, A.N.; Petersen, M.A.; Hansen, Å.S. The aroma profile of wheat bread crumb influenced by yeast concentration and fermentation temperature. LWT 2013, 50, 480–488. [Google Scholar] [CrossRef]
- Crowley, P.; Schober, T.J.; Clarke, C.I.; Arendt, E.K. The effect of storage time on textural and crumb grain characteristics of sourdough wheat bread. Eur. Food Res. Technol. 2002, 214, 489–496. [Google Scholar] [CrossRef]
- Lagrain, B.; Wilderjans, E.; Glorieux, C.; Delcour, J.A. Importance of Gluten and Starch for Structural and Textural Properties of Crumb from Fresh and Stored Bread. Food Biophys. 2012, 7, 173–181. [Google Scholar] [CrossRef]
- Vanin, F.M.; Lucas, T.; Trystram, G. Crust formation and its role during bread baking. Trends Food Sci. Technol. 2009, 20, 333–343. [Google Scholar] [CrossRef]
- Culețu, A.; Mohan, G.; Duță, D.E. Rheological Characterization of the Dough with Added Dietary Fiber by Rheometer: A Review. Bull. UASVM Food Sci. Technol. 2020, 77, 13–24. [Google Scholar] [CrossRef]
- Rezaei, M.N.; Jayaram, V.B.; Verstrepen, K.J.; Courtin, C.M. The impact of yeast fermentation on dough matrix properties. J. Sci. Food Agric. 2016, 96, 3741–3748. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef]
- Xiang, H.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Cui, C.; Ruan, Z. Fermentation-enabled wellness foods: A fresh perspective. Food Sci. Hum. Wellness 2019, 8, 203–243. [Google Scholar] [CrossRef]
- Chang, X.; Huang, X.; Tian, X.; Wang, C.; Aheto, J.H.; Ernest, B.; Yi, R. Dynamic characteristics of dough during the fermentation process of Chinese steamed bread. Food Chem. 2020, 312, 126050. [Google Scholar] [CrossRef]
- Munteanu, G.M.; Voicu, G.; Ferdeș, M.; Ștefan, E.M.; Constantin, G.A.; Tudor, P. Dynamics of fermentation process of bread dough prepared with different types of yeast. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2019, 20, 575–584. [Google Scholar]
- Yue, Q.; Liu, C.; Li, L.; Zheng, X.; Bian, K. Effects of fermentation on the rheological characteristics of dough and the quality of steamed bread. J. Food Process Preserv. 2019, 43, e14115. [Google Scholar] [CrossRef]
- Kurek, M.; Wyrwisz, J. The Application of Dietary Fiber in Bread Products. J. Food Process Technol. 2015, 6, 447. [Google Scholar] [CrossRef]
- Srivastava, S.; Vaddadi, S.; Sadistap, S. Quality assessment of commercial bread samples based on breadcrumb features and freshness analysis using an ultrasonic machine vision (UVS) system. J. Food Meas. Charact. 2015, 9, 525–540. [Google Scholar] [CrossRef]
- Mesías, M.; Morales, F.J. Effect of different flours on the formation of hydroxymethylfurfural, furfural, and dicarbonyl compounds in heated glucose/flour systems. Foods 2017, 6, 14. [Google Scholar] [CrossRef]
- Wennberg, A. Food and Agriculture Organization of the United Nations. Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 628–630. [Google Scholar] [CrossRef]
- Rebholz, G.F.; Sebald, K.; Dirndorfer, S.; Dawid, C.; Hofmann, T.; Scherf, K.A. Impact of exogenous α-amylases on sugar formation in straight dough wheat bread. Eur. Food Res. Technol. 2021, 247, 695–706. [Google Scholar] [CrossRef]
- Çelik, E.E.; Gökmen, V. Formation of Maillard reaction products in bread crust-like model system made of different whole cereal flours. Eur. Food Res. Technol. 2020, 246, 1207–1218. [Google Scholar] [CrossRef]
- Nor Qhairul Izzreen, M.N.; Hansen, Å.S.; Petersen, M.A. Volatile compounds in whole meal bread crust: The effects of yeast level and fermentation temperature. Food Chem. 2016, 210, 566–576. [Google Scholar] [CrossRef]
- Soleimani Pour-Damanab, A.; Jafary, A.; Rafiee, S. Kinetics of the crust thickness development of bread during baking. J. Food Sci. Technol. 2014, 51, 3439–3445. [Google Scholar] [CrossRef]
- Kirit, A.B.; Erdogdu, F.; Ozdemir, Y. Accumulation of 5-hydroxymethyl-2-furfural during toasting of white bread slices. J. Food Process Eng. 2012, 36, 241–246. [Google Scholar] [CrossRef]
- Papasidero, D.; Giorgi, A.; Rocchi, E.; Piazza, L. Bread as a Chemical Reactor: Triggering the Aroma Production through Chemical Kinetics. Chem. Eng. Trans. 2016, 52, 985–990. [Google Scholar] [CrossRef]
- Quality, F.; Campus, B. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar] [CrossRef]
- Shen, Y.; Tebben, L.; Chen, G.; Li, Y. Effect of amino acids on Maillard reaction product formation and total antioxidant capacity in white pan bread. Int. J. Food Sci. Technol. 2019, 54, 1372–1380. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, R.; Yang, F.; Xie, Y.; Guo, Y.; Yao, W.; Zhou, W. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Das, R.S.; Tiwari, B.K.; Garcia-Vaquero, M. The Fundamentals of Bread. In Traditional European Breads: An Illustrative Compendium of Ancestral Knowledge and Cultural Heritage; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 1–40. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Helou, C.; Jacolot, P.; Niquet-Léridon, C.; Gadonna-Widehem, P.; Tessier, F.J. Maillard reaction products in bread: A novel semi-quantitative method for evaluating melanoidins in bread. Food Chem. 2016, 190, 904–911. [Google Scholar] [CrossRef]
- Kukuminato, S.; Koyama, K.; Koseki, S. Antibacterial Properties of Melanoidins Produced from Various Combinations of Maillard Reaction against Pathogenic Bacteria. Microbiol. Spectr. 2021, 9, e01142-21. [Google Scholar] [CrossRef]
- Singh, K.; Tripathi, S.; Chandra, R. Maillard reaction product and its complexation with environmental pollutants: A comprehensive review of their synthesis and impact. Bioresour. Technol Rep. 2021, 15, 100779. [Google Scholar] [CrossRef]
- Dubois, C.; Fradin, C.; Prost-camus, E.; Prost, M.; Haumont, M.; Nigay, H. Investigation of the antioxidant capacity of caramels: Combination of laboratory assays and C. elegans model. J. Funct. Foods 2021, 78, 104308. [Google Scholar] [CrossRef]
- Matignon, A.; Tecante, A. Starch retrogradation: From starch components to cereal products. Food Hydrocoll. 2017, 68, 43–52. [Google Scholar] [CrossRef]
- Dergal, S.B. Química Alimentos, 4th ed.; Pearson Educacion: Mexico City, Mexico, 2006; 736p, ISBN 970-26-0670-5. [Google Scholar]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Tebben, L.; Chen, G.; Tilley, M.; Li, Y. Individual effects of enzymes and vital wheat gluten on whole wheat dough and bread properties. J. Food Sci. 2020, 85, 4201–4208. [Google Scholar] [CrossRef]
- Zain, M.Z.M.; Baba, A.S.; Shori, A.B. Effect of polyphenols enriched from green coffee bean on antioxidant activity and sensory evaluation of bread. J. King Saud. Univ. Sci. 2018, 30, 278–282. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Tang, X. Effects of whey and soy protein addition on bread rheological property of wheat flour. J. Texture Stud. 2018, 49, 38–46. [Google Scholar] [CrossRef]
- Codină, G.G. Recent Advances in Cereals, Legumes and Oilseeds Grain Products Rheology and Quality. Appl. Sci. 2022, 12, 10–13. [Google Scholar] [CrossRef]
- Man, S.; Păucean, A.; Muste, S.; Pop, A. Effect of the Chickpea (Cicer arietinum L.) Flour Addition on Physicochemical Properties of Wheat Bread. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2015, 72, 41–49. [Google Scholar] [CrossRef]
- Ajo Radwan, Y. Characteristics of thick kmaj bread enrichment with faba bean (Vicia faba) flour. Qual. Assur. Saf. Crops Foods 2013, 5, 369–374. [Google Scholar] [CrossRef]
- Miranda-Ramos, K.C.; Sanz-Ponce, N.; Haros, C.M. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT 2019, 114, 108418. [Google Scholar] [CrossRef]
- Sabanis, D.; Tzia, C. Effect of rice, corn and soy flour addition on characteristics of bread produced from different wheat cultivars. Food Bioproc. Tech. 2009, 2, 68–79. [Google Scholar] [CrossRef]
- Bojnanska, T.; Francakova, H.; Liskova, M.; Tokar, M. Legumes—The Alternative Raw Materials for Bread Production. J. Microbiol. Biotechnol. Food Sci. 2016, 7, 876–886. [Google Scholar]
- Al-Qubati, A.A.M.M. Quality characteristics and nutritional value of pearl millet composite bread supplemented with soy flour. J. Saudi Soc. Food Nutr. 2021, 14, 94–100. [Google Scholar]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit Rev. Food Sci. Nutr. 2015, 55, 1137–1145. [Google Scholar] [CrossRef]
- Shrivastava, C.; Chakraborty, S. Bread from Wheat Flour Partially Replaced by Fermented Chickpea Flour: Optimizing the Formulation and Fuzzy Analysis of Sensory Data. LWT 2018, 90, 215–223. [Google Scholar] [CrossRef]
- Portman, D.; Blanchard, C.; Maharjan, P.; McDonald, L.S.; Mawson, J.; Naiker, M.; Panozzo, J.F. Blending studies using wheat and lentil cotyledon flour—Effects on rheology and bread quality. Cereal Chem. 2018, 95, 849–860. [Google Scholar] [CrossRef]
- Marchini, M.; Carini, E.; Cataldi, N.; Boukid, F.; Blandino, M.; Ganino, T.; Pellegrini, N. The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough? LWT 2021, 136, 110299. [Google Scholar] [CrossRef]
- Atudorei, D.; Codina, G.G. Perspectives on the use of germinated legumes in the bread making process, a review. Appl. Sci. 2020, 10, 6244. [Google Scholar] [CrossRef]
- Sparvoli, F.; Giofré, S.; Cominelli, E.; Avite, E.; Giuberti, G.; Luongo, D.; Predieri, S. Sensory characteristics and nutritional quality of food products made with a biofortified and lectin free common bean (Phaseolus vulgaris L.) flour. Nutrients 2021, 13, 4517. [Google Scholar] [CrossRef] [PubMed]
- Gouseti, O.; Lovegrove, A.; Kosik, O.; Fryer, P.J.; Mills, C.; Gates, F.; Bakalis, S. Exploring the role of cereal dietary fiber in digestion. J. Agric. Food Chem. 2019, 67, 8419–8424. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Sun, Y.; Fan, M.; Li, Y.; Wang, L.; Qian, H. Wheat bran, as the resource of dietary fiber: A review. Crit Rev. Food Sci. Nutr. 2021, 62, 7269–7281. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Arp, C.G.; Correa, M.J.; Ferrero, C. Resistant starches: A smart alternative for the development of functional bread and other starch-based foods. Food Hydrocoll. 2021, 121, 106949. [Google Scholar] [CrossRef]
- Navrotskyi, S.; Guo, G.; Baenziger, P.S.; Xu, L.; Rose, D.J. Impact of wheat bran physical properties and chemical composition on whole grain flour mixing and baking properties. J. Cereal Sci. 2019, 89, 102790. [Google Scholar] [CrossRef]
- Liu, N.; Ma, S.; Li, L.; Wang, X. Study on the effect of wheat bran dietary fiber on the rheological properties of dough. Grain Oil Sci. Technol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Rieder, A.; Holtekjølen, A.K.; Sahlstrøm, S.; Moldestad, A. Effect of barley and oat flour types and sourdoughs on dough rheology and bread quality of composite wheat bread. J. Cereal Sci. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Tobiasz-Salach, R.; Kaszuba, J. The effect of adding oat flour on the nutritional and sensory quality of wheat bread. Br. Food J. 2020, 122, 2329–2339. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, K.; Kumar, S.; Kumar, H. Effect of incorporation of oat flour on nutritional and organoleptic characteristics of bread and noodles. Curr. Res. Nutr. Food Sci. 2018, 6, 148–156. [Google Scholar] [CrossRef]
- Aydogdu, A.; Sumnu, G.; Sahin, S. Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes. J. Food Sci. Technol. 2018, 55, 667–677. [Google Scholar] [CrossRef]
- Costa, R.T.D.; Silva, S.C.D.; Silva, L.S.; Silva, W.A.D.; Gonçalves, A.C.A.; Pires, C.V.; Martins, A.M.D.; Chavez, D.W.H.; Trombete, F.M. Whole chickpea flour as an ingredient for improving the nutritional quality of sandwich bread: Effects on sensory acceptance, texture profile, and technological properties. Rev. Chil. Nutr. 2020, 47, 933–940. [Google Scholar] [CrossRef]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Roman, L.; Martinez, M.M. Structural Basis of Resistant Starch (RS) in Bread: Natural and Commercial Alternatives. Foods 2019, 8, 267. [Google Scholar] [CrossRef]
- Kahraman, K.; Aktas-Akyildiz, E.; Ozturk, S.; Koksel, H. Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. J. Cereal Sci. 2019, 90, 102851. [Google Scholar] [CrossRef]
- Barros, J.H.T.; Telis, V.R.N.; Taboga, S.; Franco, C.M.L. Resistant starch: Effect on rheology, quality, and staling rate of white wheat bread. J. Food Sci. Technol. 2018, 55, 4578–4588. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.A.; Maiya, M.; Stewart, M.L. Resistant Starch Content in Foods Commonly Consumed in the United States: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Bede, D.; Zaixiang, L. Recent Developments in Resistant Starch as a Functional Food. Starch/Staerke 2021, 73, 2000139. [Google Scholar] [CrossRef]
- Arp, C.G.; Correa, M.J.; Ferrero, C. Kinetic study of staling in breads with high-amylose resistant starch. Food Hydrocoll. 2020, 106, 105879. [Google Scholar] [CrossRef]
- Belz, M.C.E.; Ryan, L.A.M.; Arendt, E.K. The Impact of Salt Reduction in Bread: A Review. Crit Rev. Food Sci. Nutr. 2012, 52, 514–524. [Google Scholar] [CrossRef]
- Al Jawaldeh, A.; Al-Khamaiseh, M. Assessment of salt concentration in bread commonly consumed in the eastern mediterranean region. East. Mediterr. Health J. 2018, 24, 18–24. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiatkowska, K.; Kwiecień, M.; Baranowska-Wójcik, E.; Wójcik, G.; Krusiński, R. Analysis of the intake of sodium with cereal products by the population of Poland. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2019, 36, 884–892. [Google Scholar] [CrossRef] [PubMed]
- WHO. Reducing Salt Intake in Populations Report of a WHO Forum and Technical Meeting; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Kourkouta, L.; Koukourikos, K.; Iliadis, C.; Ouzounakis, P.; Monios, A.; Tsaloglidou, A. Bread and Health. J. Pharm. Pharmacol. 2017, 5, 821–826. [Google Scholar] [CrossRef]
- Raffo, A.; Carcea, M.; Moneta, E.; Narducci, V.; Nicoli, S.; Peparaio, M.; Turfani, V. Influence of different levels of sodium chloride and of a reduced-sodium salt substitute on volatiles formation and sensory quality of wheat bread. J. Cereal Sci. 2018, 79, 518–526. [Google Scholar] [CrossRef]
- Reißner, A.M.; Wendt, J.; Zahn, S.; Rohm, H. Sodium-chloride reduction by substitution with potassium, calcium and magnesium salts in wheat bread. LWT 2019, 108, 153–159. [Google Scholar] [CrossRef]
- Antúnez, L.; Giménez, A.; Vidal, L.; Ares, G. Partial replacement of NaCl with KCl in bread: Effect on sensory characteristics and consumer perception. J. Sens. Stud. 2018, 33, e12441. [Google Scholar] [CrossRef]
- Krasnikova, E.S.; Krasnikov, A.V.; Babushkin, V.A. The influence of composite flour mixtures on Saccharomyces cerevisiae biotechnological properties and bread quality. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 421. [Google Scholar] [CrossRef]
- Belc, N.; Duta, D.E.; Culetu, A.; Stamatie, G.D. Type and amount of legume protein concentrate influencing the technological, nutritional, and sensorial properties of wheat bread. Appl. Sci. 2021, 11, 436. [Google Scholar] [CrossRef]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; McCarthy, S.; Gallagher, E. Dough properties and baking characteristics of white bread, as affected by addition of raw, germinated and toasted pea flour. Innov. Food Sci. Emerg. Technol. 2019, 56, 102189. [Google Scholar] [CrossRef]
- Moneim, A.; Sulieman, E.; Sinada, E.A.; Ali, A.O. Quality Characteristics of Wheat Bread Supplemented with Chickpea (Cicer arietinum) Flour. Int. J. Food Sci. Nutr. Eng. 2013, 2013, 85–90. [Google Scholar] [CrossRef]
- Tamba-Berehoiu, R.M.; Turtoi, M.O.; Popa, C.N. Assessment of quinoa flours effect on wheat flour dough rheology and bread quality. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2019, 43, 173–188. [Google Scholar] [CrossRef]
- Sehn, G.A.R.; Steel, C.J. Staling kinetics of whole wheat pan bread. J. Food Sci. Technol. 2020, 57, 557–563. [Google Scholar] [CrossRef]
- Dong, Y.N.; Karboune, S. A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Compr Rev Food Sci Food Saf. 2021, 20, 1937–1981. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.G.; Aguiar, E.V.; Centeno, A.C.L.S.; Rosell, C.M.; Capriles, V.D. Effect of added psyllium and food enzymes on quality attributes and shelf life of chickpea-based gluten-free bread. LWT 2020, 134, 110025. [Google Scholar] [CrossRef]
- Kurek, M.A.; Krzemińska, A. Effect of modified atmosphere packaging on quality of bread with amaranth flour addition. Food Sci. Technol. Int. 2020, 26, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F. Strategies to extend bread and GF bread shelf-life: From Sourdough to antimicrobial active packaging and nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef]
- Sachdeva, A.; Chopra, R.; Vashist, S.; Puri, D. Antimicrobial activity of active packaging film to prevent bread spoilage. Int. J. Food Sci. Nutr. 2017, 2, 29–37. Available online: https://www.researchgate.net/publication/319176445 (accessed on 1 May 2024).
- Noshirvani, N.; Ghanbarzadeh, B.; Rezaei Mokarram, R.; Hashemi, M. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life 2017, 11, 106–114. [Google Scholar] [CrossRef]
Formulations Wheat Breads | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | Control | 15% Faba Bean Flour | Control | 20% Chickpea Flour | Control | 15% Soy Flour | Control | 25% Amaranth Flour |
Moisture (%) | 32.20 | 26.55 | 12.70 | 11.40 | 27.90 | 26.51 | 27.80 | 28.60 |
Protein (%) | 12.89 | 19.69 | 8.90 | 15.30 | 9.80 | 12.9 | 16.50 | 18.10 |
Fat (%) | 1.06 | 1.23 | 1.80 | 2.90 | 3.30 | 4.1 | 0.07 | 0.70 |
Ash (%) | 0.96 | 2.55 | 0.67 | 2.11 | 1.70 | 2.2 | 1.70 | 3.00 |
Fiber (%) | 0.43 | 1.00 | 0.60 | 4.70 | 0.29 | 0.38 | 3.90 | 6.30 |
Carbohydrate (%) | 52.46 | 48.98 | ------ | ------ | 58.30 | 52.3 | ------ | ------ |
Reference | [107] | [106] | [23] | [108] |
Flour Mixed with Wheat | Amount Added (%) | Organoleptic Changes | Water Absorption (%) | Protein (%) | Reference |
---|---|---|---|---|---|
Soy protein | 15 | Increment in hardness. Specific volume reduction. | 61.60 | 10.20 | [145] |
Lentil (Lens Culinaris Medik) | 20 | Irregular and thick crumb. Decrease in dough stability and bread volume. | 66.30 | 16.35 | [114] |
White bean (Phaseolus vulgaris L.) | 20 | Volume reduction. Increase moisture. | 56.60 | 12.80 | [20] |
Faba beans (Vicia faba L.) | 15 | Increment in water absorption. Volume reduction Bread heaviness | 67.30 | 19.69 | [107] |
Chickpea (Cicer arietinum L.) | 15 | Decreased dough stability. Decreased crumb texture. Reduced taste acceptance and color. | 59.80 | ------- | [147] |
White quinoa | 30 | Reduced porosity. Darker. Crumb hardness increment. | 59.43 | 12.10 | [148] |
Amaranth flour | 25 | Volume reduction. Increase in firmness. Darker crumb. | 60.50 | 18.10 | [108] |
Chickpea (Cicer arietinum L.) | 30 | More water absorption in the dough. Sticky and hard-to-handle dough. Volume reduction. Firmness in crumb. Darker crust and crumbs. | 62.50 | ------ | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesta-Corral, M.; Gómez-García, R.; Balagurusamy, N.; Torres-León, C.; Hernández-Almanza, A.Y. Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges. Foods 2024, 13, 2062. https://doi.org/10.3390/foods13132062
Mesta-Corral M, Gómez-García R, Balagurusamy N, Torres-León C, Hernández-Almanza AY. Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges. Foods. 2024; 13(13):2062. https://doi.org/10.3390/foods13132062
Chicago/Turabian StyleMesta-Corral, Mariana, Ricardo Gómez-García, Nagamani Balagurusamy, Cristian Torres-León, and Ayerim Y. Hernández-Almanza. 2024. "Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges" Foods 13, no. 13: 2062. https://doi.org/10.3390/foods13132062
APA StyleMesta-Corral, M., Gómez-García, R., Balagurusamy, N., Torres-León, C., & Hernández-Almanza, A. Y. (2024). Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges. Foods, 13(13), 2062. https://doi.org/10.3390/foods13132062