Fatty Acids Profile and Consumers’ Preferences of Pecorino Cheese Manufactured from Milk of Sheep Supplemented with Flaxseed and Ascophyllum nodosum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling and Chemical Analyses of Milk and Pecorino Cheese
2.3. Fatty Acids Profile of Pecorino Curd and Cheese
2.4. Descriptive Sensory Analysis and Consumer Test
2.5. Statistical Analysis
3. Results and Discussion
3.1. Milk Chemical Composition
3.2. Pecorino Curd Chemical and Fatty Acids Composition
3.3. Pecorino Cheese Chemical and Fatty Acids Composition
3.4. Descriptive Sensory Analysis and Consumer Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caridi, A.; Micari, P.; Caparra, P.; Cufari, A.; Sarullo, V. Ripening and seasonal changes in microbial groups and in physico-chemical properties of the ewes’ cheese Pecorino del Poro. Int. Dairy J. 2003, 13, 191–200. [Google Scholar] [CrossRef]
- Pirisi, A.; Comunian, R.; Urgeghe, P.P.; Scintu, M.F. Sheep’s and goat’s dairy products in Italy: Technological, chemical, microbiological, and sensory aspects. Small Rumin. Res. 2011, 101, 102–112. [Google Scholar] [CrossRef]
- Braghieri, A.; Girolami, A.; Riviezzi, A.M.; Piazzolla, N.; Napolitano, F. Liking of traditional cheese and consumer willingness to pay. Ital. J. Anim. Sci. 2014, 13, 3029. [Google Scholar] [CrossRef]
- Ference, B.A.; Kastelein, J.J.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S. Association of triglyceride-lowering LPL variants and LDL-C–lowering LDLR variants with risk of coronary heart disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Polyunsaturated fatty acid supplementation: Effects of seaweed Ascophyllum nodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer. J. Dairy Res. 2016, 83, 289–297. [Google Scholar] [CrossRef]
- Bodas, R.; Manso, T.A.; Mantecon, R.; Juarez, M.; De la Fuente, M.A.; Gómez-Cortés, P. Comparison of the fatty acid profiles in cheeses from ewes fed diets supplemented with different plant oils. J. Agric. Food Chem. 2010, 58, 10493–10502. [Google Scholar] [CrossRef] [PubMed]
- EU Directive 2010/63/EU 2010 on the Protection of Animals Used for Scientific Purposes, pp. 33–79. Official Journal L 276, European Communities Publication Office: Luxembourg. Available online: http://data.europa.eu/eli/dir/2010/63/oj (accessed on 12 May 2024).
- O’Fallon, J.V.; Busboom, J.; Nelson, M.; Gaskins, C. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef]
- FIL-IDF Standard no. 141B; International Dairy Federation. Determination of Milk Fat, Protein & Lactose Content—Guide for the Operation of Mid-Infrared Instruments. IDF: Brussels, Belgium, 1990.
- Santillo, A.; Caroprese, M.; Marino, R.; Muscio, A.; Sevi, A.; Albenzio, M. Influence of lamb rennet paste on composition and proteolysis during ripening of Pecorino Foggiano cheese. Int. Dairy J. 2007, 17, 535–546. [Google Scholar] [CrossRef]
- Gripon, J.; Desmazeaud, M.; Le Bars, D.; Bergere, J. Etude du rôle des micro-organismes et des enzymes au cours de la maturation des fromages. II.-Influence de la présure commerciale. Le Lait 1975, 55, 502–516. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santillo, A.; Caroprese, M.; Ruggieri, D.; Marino, R.; Sevi, A.; Albenzio, M. Consumer acceptance and sensory evaluation of Monti Dauni Meridionali Caciocavallo cheese. J. Dairy Sci. 2012, 95, 4203–4208. [Google Scholar] [CrossRef]
- Lawlor, J.B.; Delahunty, C.M. The sensory profile and consumer preference for ten speciality cheeses. Int. J. Dairy Technol. 2000, 53, 28–36. [Google Scholar] [CrossRef]
- Muir, D.D.; Hunter, E.A. Sensory evaluation of Cheddar cheese: Order of tasting and carryover effects. Food Qual. Prefer. 1991, 3, 141–145. [Google Scholar] [CrossRef]
- SAS Institute, I.N.C. 2013. SAS (University Edition). Available online: https://www.sas.com/it_it/software/on-demand-for-academics.html (accessed on 12 May 2024).
- National Research Council; Committee on Animal Nutrition; Subcommittee on Dairy Cattle Nutrition. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Capper, J.; Wilkinson, R.; Mackenzie, A.; Sinclair, L. The effect of fish oil supplementation of pregnant and lactating ewes on milk production and lamb performance. Animal 2007, 1, 889–898. [Google Scholar] [CrossRef]
- Reynolds, C.; Cannon, V.; Loerch, S. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Anim. Feed Sci. Technol. 2006, 131, 333–357. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Goulas, C.; Apostolaki, E.; Abril, R. Effects of dietary supplements of algae, containing polyunsaturated fatty acids, on milk yield and the composition of milk products in dairy ewes. J. Dairy Res. 2002, 69, 357–365. [Google Scholar] [CrossRef]
- Pulina, G.; Nudda, A.; Battacone, G.; Cannas, A. Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol. 2006, 131, 255–291. [Google Scholar] [CrossRef]
- Brito, A. Effects of Seaweeds on Dairy Production. 2022. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/72e08088-d98c-447c-98af-b8058f5bd86a/content (accessed on 12 May 2024).
- Newton, E.; Theodoridou, K.; Terré, M.; Huws, S.; Ray, P.; Reynolds, C.; Prat, N.; Sabrià, D.; Stergiadis, S. Effect of dietary seaweed (Ascophyllum nodosum) supplementation on milk mineral concentrations, transfer efficiency, and hematological parameters in lactating Holstein cows. J. Dairy Sci. 2023, 106, 6880–6893. [Google Scholar] [CrossRef] [PubMed]
- Chia, J.; Burrow, K.; Carne, A.; McConnell, M.; Samuelsson, L.; Day, L.; Young, W.; Bekhit, A.E.-D.A. Minerals in sheep milk. In Nutrients in Dairy and their Implications on Health and Disease, 1st ed.; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 345–362. [Google Scholar]
- Caroprese, M.; Ciliberti, M.G.; Annicchiarico, G.; Albenzio, M.; Muscio, A.; Sevi, A. Hypothalamic-pituitary-adrenal axis activation and immune regulation in heat-stressed sheep after supplementation with polyunsaturated fatty acids. J. Dairy Sci. 2014, 97, 4247–4258. [Google Scholar] [CrossRef]
- Ohlsson, L. Dairy products and plasma cholesterol levels. Food Nutr. Res. 2010, 54, 5124. [Google Scholar] [CrossRef]
- Santillo, A.; Caroprese, M.; Marino, R.; Sevi, A.; Albenzio, M. Quality of buffalo milk as affected by dietary protein l level and flaxseed supplementation. J. Dairy Sci. 2016, 99, 7725–7732. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Petit, H. Feed intake, milk production and milk composition of dairy cows fed flaxseed. Can. J. Anim. Sci. 2010, 90, 115–127. [Google Scholar] [CrossRef]
- Rymer, C.; Givens, D.; Wahle, K. Dietary strategies for increasing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations in bovine milk: A review. Nutr. Abstr. Rev. Ser. B Livest. Feed. Feed. 2003, 73, 9R–25R. [Google Scholar]
- Torri, L.; Piochi, M.; Marchiani, R.; Zeppa, G.; Dinnella, C.; Monteleone, E. A sensory-and consumer-based approach to optimize cheese enrichment with grape skin powders. J. Dairy Sci. 2016, 99, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Branciari, R.; Valiani, A.; Trabalza-Marinucci, M.; Miraglia, D.; Ranucci, D.; Acuti, G.; Esposto, S.; Mughetti, L. Consumer acceptability of ovine cheese from ewes fed extruded linseed-enriched diets. Small Rumin. Res. 2012, 106, S43–S48. [Google Scholar] [CrossRef]
- Mughetti, L.; Sinesio, F.; Acuti, G.; Antonini, C.; Moneta, E.; Peparaio, M.; Trabalza-Marinucci, M. Integration of extruded linseed into dairy sheep diets: Effects on milk composition and quality and sensorial properties of Pecorino cheese. Anim. Feed Sci. Technol. 2012, 178, 27–39. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Biochemistry of Cheese Ripening. In Fundamentals of Cheese Science, 2nd ed.; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L., Eds.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Dubroeucq, H.; Martin, B.; Ferlay, A.; Pradel, P.; Verdier-Metz, I.; Chilliard, Y.; Agabriel, J.; Coulon, J. Cow’s feeding may modify sensory properties of milk. In 9èmes Rencontres autour des Recherches sur les Ruminants; Institut National de la Recherche Agronomique: Paris, France, 2002; Record Number: 20033018539. [Google Scholar]
- Gaborit, P.; Raynal-Ljutovac, K.; Lauret, A.; Chabosseau, J.; Rouel, J.; Chilliard, Y. Flavour of goat milk and cheeses according to feeding: Alfalfa hay or maize silage with oleic sunflower or linseed oil supplementation. In Multi-Function Grasslands: Quality Forages, Animal Products and Landscapes, Proceedings of the 19th General Meeting of the European Grassland Federation, La Rochelle, France, 27–30 May 2002; Organizing Committee of the European Grassland Federation: Versailles, France, 2002; pp. 562–563. [Google Scholar]
- Caccamo, M.; Valenti, B.; Luciano, G.; Priolo, A.; Rapisarda, T.; Belvedere, G.; Marino, V.M.; Esposto, S.; Taticchi, A.; Servili, M. Hazelnut as ingredient in dairy sheep diet: Effect on sensory and volatile profile of cheese. Front. Nutr. 2019, 6, 125. [Google Scholar] [CrossRef]
- Napolitano, F.; Girolami, A.; Braghieri, A. Consumer liking and willingness to pay for high welfare animal-based products. Trends Food Sci. Technol. 2010, 21, 537–543. [Google Scholar] [CrossRef]
Attributes | Definition |
---|---|
Appeareance | |
Chalky | Resembling chalk in appearance |
Uniformity | Absence of cracks, pinholes, irregular-shaped holes |
Grainy | The extent to which granular structures are formed as the sample breaks down (perceived in the second half of chewing) |
Colour | |
Mottling | The evenness of color shading within the cheese sample, with the most uniformly coloured cheese being free of mottling, marbling, or any other deficiencies in color |
Colour Intensity | The color of cheese, ranging from pale yellow to orange, with the palest of yellow representing the start of the scale |
Odour | |
Strength | The overall intensity of aroma and flavor; the degree of mildness and maturity |
Acidic | The smell associated with lactic and citric acids |
Rancid | The smell associated with sour milk and oxidised fats, having the rank of an unpleasant aroma characteristic of oils and fats when no longer fresh |
Flavour | |
Strength | The overall intensity of aroma and flavor; the degree of mildness and maturity |
Salty | The fundamental taste sensation of which sodium chloride is typical |
Acidic | The fundamental taste sensation of which lactic and citric acids are typical |
Piquant | The taste associated with an irritating or aggressive sensation perceived in the mouth or in the throat |
Bitter | The fundamental taste sensation of which caffeine and quinine are typical |
Sweet | The fundamental taste sensation of which sucrose is typical |
Mouldy | The taste associated with moulds, usually earthy, dirty, stale, musty, and slightly sour |
Rancid | The taste associated with sour milk and oxidised fats, having the rank of an unpleasant aroma or taste characteristic of oils and fats when no longer fresh |
Experimental Diets 1 | ||||||
---|---|---|---|---|---|---|
Items | CON | AN | FS | FS + AN | SEM | p-Value |
pH | 6.57 | 6.60 | 6.64 | 6.57 | 0.029 | NS |
Fat, % | 5.75 b | 6.78 a | 5.74 b | 6.72 a | 0.204 | * |
Protein, % | 5.37 b | 5.85 a | 5.64 ab | 5.83 a | 0.084 | <0.10 |
Lactose, % | 4.26 | 4.64 | 4.56 | 4.66 | 0.074 | NS |
Casein, % | 3.95 b | 4.57 a | 4.30 a | 4.55 a | 0.100 | * |
SCC 2, log10 n. cell/mL | 2.81 | 3.10 | 3.04 | 2.89 | 2.31 | NS |
r 3, min | 6.45 | 6.73 | 7.45 | 5.80 | 0.458 | NS |
a30 4, mm | 50.50 | 51.51 | 59.16 | 54.80 | 1.901 | NS |
k20 5, min | 1.30 | 1.23 | 1.30 | 1.23 | 0.032 | NS |
Experimental Diets 1 | ||||||
---|---|---|---|---|---|---|
Item | CON | AN | FS | FS + AN | SEM | p-Value |
FA, g/100 g of FA | ||||||
C4:0 | 3.38 | 4.28 | 3.58 | 3.99 | 0.233 | NS |
C6:0 | 1.69 b | 2.56 a | 1.42 b | 1.79 b | 0.144 | * |
C8:0 | 1.58 b | 2.54 a | 1.24 b | 1.59 b | 0.150 | * |
C10:0 | 4.54 b | 7.14 a | 3.47 b | 4.38 b | 0.401 | ** |
C12:0 | 3.14 b | 4.32 a | 2.64 b | 2.98 b | 0.181 | ** |
C14:0 | 10.52 a | 11.15 a | 8.37 b | 8.64 b | 0.327 | * |
C16:0 | 28.51 a | 26.04 b | 22.54 c | 21.99 c | 0.746 | *** |
C16:1c | 1.32 a | 1.25 a | 1.07 b | 0.98 b | 0.037 | *** |
C18:0 | 8.59 b | 7.26 b | 9.71 ab | 10.54 a | 0.361 | ** |
C18:1t11 | 2.11 c | 3.28 b | 6.21 a | 3.79 b | 0.411 | *** |
C18:1c9 | 23.81 b | 20.10 c | 25.78 ab | 26.90 a | 0.733 | *** |
C18:2t9t12 | 0.13 b | 0.11 b | 0.18 a | 0.13 b | 0.008 | * |
C18:2c9c12 | 2.85 a | 2.73 ab | 2.43 c | 2.55 bc | 0.050 | ** |
C18:3n3 | 0.76 b | 0.98 b | 2.07 a | 2.05 a | 0.163 | *** |
CLA9c11t | 0.64 c | 0.93 bc | 1.93 a | 1.31 b | 0.139 | *** |
CLAt10c12 | 0.04 c | 0.05 b | 0.11 a | 0.04 c | 0.007 | *** |
C22:0 | 0.10 a | 0.04 b | 0.05 ab | 0.04 b | 0.009 | * |
C20:4n6 | 0.20 ab | 0.23 b | 0.19 a | 0.17 b | 0.008 | <0.10 |
C20:5n3 | 0.08 a | 0.05 b | 0.07 ab | 0.06 ab | 0.005 | NS |
C22:5n3 | 0.08 a | 0.06 b | 0.09 a | 0.09 a | 0.003 | ** |
Experimental Diets 1 | ||||||
---|---|---|---|---|---|---|
Item | CON | AN | FS | FS + AN | SEM | p-Value |
SCFA 2 | 13.34 b | 20.84 a | 12.35 b | 14.74 b | 1.32 | ** |
MCFA 3 | 42.45 a | 40.14 a | 33.80 b | 33.25 b | 0.75 | *** |
LCFA 4 | 39.92 b | 36.70 b | 50.85 a | 49.44 a | 1.06 | *** |
SFA 5 | 64.57 b | 67.48 a | 55.47 d | 58.15 c | 1.289 | *** |
MUFA 6 | 30.30 b | 27.12 c | 37.07 a | 35.16 a | 1.059 | *** |
PUFA 7 | 5.13 c | 5.41 c | 7.45 a | 6.70 b | 0.260 | *** |
P/S 8 | 0.08 c | 0.08 c | 0.13 a | 0.12 b | 0.006 | *** |
n-6 | 4.15 b | 4.29 b | 5.18 a | 4.46 b | 0.123 | ** |
n-3 | 0.97 b | 1.13 b | 2.27 a | 2.24 a | 0.165 | *** |
n-3/n-6 | 0.24 b | 0.26 b | 0.44 a | 0.50 a | 0.031 | *** |
AI 9 | 2.08 b | 2.32 a | 1.32 c | 1.43 c | 0.113 | *** |
TI 10 | 2.34 a | 2.30 a | 1.43 b | 1.53 b | 0.111 | *** |
Experimental Diets 1 | ||||||
---|---|---|---|---|---|---|
Item | CON | AN | FS | FS + AN | SEM | p-Value |
FA, g/100 g of FA | ||||||
C4:0 | 3.63 | 3.45 | 2.53 | 2.98 | 0.244 | NS |
C6:0 | 1.85 ab | 2.13 a | 1.19 b | 1.41 ab | 1.449 | NS |
C8:0 | 1.78 ab | 2.2 a | 1.18 b | 1.4 b | 0.137 | * |
C10:0 | 5.03 ab | 6.26 a | 3.47 c | 3.9 bc | 0.348 | ** |
C12:0 | 3.62 ab | 3.93 a | 2.80 b | 2.96 b | 0.178 | <0.10 |
C14:0 | 12.71 a | 10.71 ab | 9.49 b | 9.46 b | 0.549 | <0.10 |
C16:0 | 28.11 | 26.75 | 27.96 | 26.64 | 2.458 | NS |
C16:1c | 1.63 a | 1.23 ab | 1.26 ab | 1.12 b | 0.087 | NS |
C18:0 | 10.91 b | 8.13 c | 12.52 b | 14.72 a | 0.697 | ** |
C18:1t11 | 3.36 b | 3.79 b | 9.21 a | 5.73 b | 1.05 | ** |
C18:1c9 | 29.47 | 21.43 | 13.64 | 14.34 | 3.095 | NS |
C18:1c11 | 0.44 | 0.42 | 0.57 | 0.49 | 0.032 | NS |
C18:2t9t12 | 0.18 b | 0.17 b | 0.63 a | 0.68 a | 0.077 | ** |
C18:2c9c12 | 3.67 | 2.92 | 3.07 | 3.23 | 0.176 | NS |
C18:3n3 | 0.79 b | 0.80 b | 1.93 a | 2.16 a | 0.182 | ** |
CLA9c11t | 0.93 b | 0.89 b | 1.97 a | 1.77 a | 0.165 | * |
CLAt10c12 | 0.05 b | 0.06 b | 0.11 a | 0.06 b | 0.007 | ** |
C22:0 | 0.12 a | 0.07 b | 0.10 ab | 0.08 ab | 0.009 | NS |
C20:4n-6 | 0.21 a | 0.18 ab | 0.16 b | 0.17 ab | 0.008 | NS |
C20:5n-3 | 0.09 | 0.06 | 0.07 | 0.09 | 0.007 | NS |
C22:5n-3 | 0.09 ab | 0.07 b | 0.10a | 0.11 a | 0.006 | * |
Experimental Diets 1 | ||||||
---|---|---|---|---|---|---|
Item | CON | AN | FS | FS + AN | SEM | p-Value |
SCFA 2 | 15.91 ab | 17.96 a | 11.18 b | 12.75 ab | 1.67 | * |
MCFA 3 | 30.93 | 40.50 | 41.07 | 39.28 | 3.96 | NS |
LCFA 4 | 53.90 | 43.35 | 54.65 | 51.17 | 3.37 | NS |
SFA 5 | 56.48 | 65.56 | 63.76 | 65.97 | 2.066 | NS |
MUFA 6 | 37.05 | 28.95 | 28.17 | 25.27 | 2.376 | NS |
PUFA 7 | 6.48 ab | 5.49 b | 8.59 a | 8.76 a | 0.531 | * |
P/S 8 | 0.12 ab | 0.08 b | 0.14 a | 0.13 a | 0.008 | * |
n-6 | 5.43 | 4.52 | 6.43 | 6.34 | 0.380 | NS |
n-3 | 1.05 b | 0.97 b | 2.16 a | 2.42 a | 0.189 | *** |
n-3/n-6 | 0.21 b | 0.21 b | 0.34 a | 0.39 a | 0.023 | *** |
AI 9 | 1.62 | 2.14 | 2.1 | 2.15 | 0.162 | NS |
TI 10 | 1.62 | 2.3 | 2.21 | 2.22 | 0.160 | NS |
Experimental Diets 1 | ||||||
---|---|---|---|---|---|---|
Attributes | CON | AN | FS | FS + AN | SEM | p-Value |
Appeareance | ||||||
Chalky | 5.05 | 5.21 | 4.95 | 4.53 | 0.15 | 0.405 |
Uniformity | 5.97 a | 5.215 b | 6.19 a | 6.19 a | 0.14 | * |
Grainy | 5.19 ab | 5.55 a | 4.83 b | 4.24 b | 0.15 | * |
Colour | ||||||
Colour Uniformity | 6.39 | 6.03 | 6.45 | 6.47 | 0.12 | NS |
Colour intensity | 5.69 a | 4.53 b | 6.03 a | 5.48 a | 0.14 | ** |
Odour | ||||||
Strength | 5.92 | 5.66 | 5.53 | 5.91 | 0.12 | NS |
Acidic | 3.28 | 3.64 | 3.00 | 3.07 | 0.15 | NS |
Rancid | 2.14 | 2.19 | 2.05 | 2.02 | 0.15 | NS |
Flavour | ||||||
Strength | 6.31 ab | 6.60 a | 5.72 b | 6.36 a | 0.12 | <0.10 |
Salty | 5.76 | 5.52 | 5.34 | 5.12 | 0.13 | NS |
Acidic | 3.91 | 4.26 | 3.53 | 3.90 | 0.16 | NS |
Piquant | 2.40 | 2.79 | 2.78 | 2.29 | 0.15 | NS |
Bitter | 2.83 | 3.31 | 2.84 | 3.24 | 0.16 | NS |
Sweet | 2.60 | 2.76 | 3.48 | 2.93 | 0.17 | NS |
Mould | 1.41 | 1.55 | 1.17 | 1.21 | 0.13 | NS |
Rancid | 2.19 | 2.24 | 1.62 | 1.86 | 0.16 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santillo, A.; Ciliberti, M.G.; Caroprese, M.; Sevi, A.; Albenzio, M. Fatty Acids Profile and Consumers’ Preferences of Pecorino Cheese Manufactured from Milk of Sheep Supplemented with Flaxseed and Ascophyllum nodosum. Foods 2024, 13, 2165. https://doi.org/10.3390/foods13142165
Santillo A, Ciliberti MG, Caroprese M, Sevi A, Albenzio M. Fatty Acids Profile and Consumers’ Preferences of Pecorino Cheese Manufactured from Milk of Sheep Supplemented with Flaxseed and Ascophyllum nodosum. Foods. 2024; 13(14):2165. https://doi.org/10.3390/foods13142165
Chicago/Turabian StyleSantillo, Antonella, Maria Giovanna Ciliberti, Mariangela Caroprese, Agostino Sevi, and Marzia Albenzio. 2024. "Fatty Acids Profile and Consumers’ Preferences of Pecorino Cheese Manufactured from Milk of Sheep Supplemented with Flaxseed and Ascophyllum nodosum" Foods 13, no. 14: 2165. https://doi.org/10.3390/foods13142165
APA StyleSantillo, A., Ciliberti, M. G., Caroprese, M., Sevi, A., & Albenzio, M. (2024). Fatty Acids Profile and Consumers’ Preferences of Pecorino Cheese Manufactured from Milk of Sheep Supplemented with Flaxseed and Ascophyllum nodosum. Foods, 13(14), 2165. https://doi.org/10.3390/foods13142165