Effects of Consuming White Button and Oyster Mushrooms within a Healthy Mediterranean-Style Dietary Pattern on Changes in Subjective Indexes of Brain Health or Cognitive Function in Healthy Middle-Aged and Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Eligibility Criteria
2.3. Dietary Intervention and Baseline Dietary Assessment
2.4. Clinical Assessments
2.4.1. Assessment of Symptoms of Generalized Anxiety
2.4.2. Assessment of Symptoms of Depression
2.4.3. Assessment of Mood
2.4.4. Assessment of Perceptions of Health
2.4.5. Neuropsychological Assessment
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Adherence to the Dietary Intervention
3.3. Anxiety and Depression
3.4. Mood
3.5. Perceptions of Health
3.6. Neuropsychological Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puri, S.; Shaheen, M.; Grover, B. Nutrition and cognitive health: A life course approach. Front. Public Health 2023, 11, 1023907. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mardi, P.; Hejrani, B.; Mahdavi, F.S.; Ghoreshi, B.; Gohari, K.; Heidari-Beni, M.; Qorbani, M. Association between junk food consumption and mental health problems in adults: A systematic review and meta-analysis. BMC Psychiatry 2024, 24, 438. [Google Scholar] [CrossRef]
- Gómez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef]
- Hecht, E.M.; Rabil, A.; Steele, E.M.; Abrams, G.A.; Ware, D.; Landy, D.C.; Hennekens, C.H. Cross-sectional examination of ultra-processed food consumption and adverse mental health symptoms. Public Health Nutr. 2022, 25, 3225–3234. [Google Scholar] [CrossRef]
- Joseph, J.; Cole, G.; Head, E.; Ingram, D. Nutrition, Brain Aging, and Neurodegeneration: Table 1. J. Neurosci. 2009, 29, 12795–12801. [Google Scholar] [CrossRef]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef]
- Selvaraj, R.; Selvamani, T.Y.; Zahra, A.; Malla, J.; Dhanoa, R.K.; Venugopal, S.; Shoukrie, S.I.; Hamouda, R.K.; Hamid, P. Association between Dietary Habits and Depression: A Systematic Review. Cureus [Internet]. 2022. Available online: https://www.cureus.com/articles/91449-association-between-dietary-habits-and-depression-a-systematic-review (accessed on 6 March 2024).
- Park, S.K.; Oh, C.-M.; Ryoo, J.-H.; Jung, J.Y. The protective effect of mushroom consumption on depressive symptoms in Korean population. Sci. Rep. 2022, 12, 21914. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.E.; Chinchilli, V.M.; Beelman, R.B.; Richie, J.P. Mushroom intake and depression: A population-based study using data from the US National Health and Nutrition Examination Survey (NHANES), 2005–2016. J. Affect. Disord. 2021, 294, 686–692. [Google Scholar] [CrossRef]
- Nanri, A.; Kimura, Y.; Matsushita, Y.; Ohta, M.; Sato, M.; Mishima, N.; Sasaki, S.; Mizoue, T. Dietary patterns and depressive symptoms among Japanese men and women. Eur. J. Clin. Nutr. 2010, 64, 832–839. [Google Scholar] [CrossRef]
- Konishi, K. Associations between healthy Japanese dietary patterns and depression in Japanese women. Public Health Nutr. 2021, 24, 1753–1765. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kitamura, A.; Yoshizaki, T.; Nishi, M.; Seino, S.; Taniguchi, Y.; Amano, H.; Narita, M.; Shinkai, S. Score-Based and Nutrient-Derived Dietary Patterns Are Associated with Depressive Symptoms in Community-DwellingOlder Japanese: A Cross-Sectional Study. J. Nutr. Health Aging 2019, 23, 896–903. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, M.-S.; Lee, H.-J. The association between dietary pattern and depression in middle-aged Korean adults. Nutr. Res. Pract. 2019, 13, 316. [Google Scholar] [CrossRef]
- Miki, T.; Eguchi, M.; Akter, S.; Kochi, T.; Kuwahara, K.; Kashino, I.; Hu, H.; Kabe, I.; Kawakami, N.; Nanri, A.; et al. Longitudinal adherence to a dietary pattern and risk of depressive symptoms: The Furukawa Nutrition and Health Study. Nutrition 2018, 48, 48–54. [Google Scholar] [CrossRef]
- Blumfield, M.; Abbott, K.; Duve, E.; Cassettari, T.; Marshall, S.; Fayet-Moore, F. Examining the health effects and bioactive components in Agaricus bisporus mushrooms: A scoping review. J. Nutr. Biochem. 2020, 84, 108453. [Google Scholar] [CrossRef]
- Feeney, M.J.; Miller, A.M.; Roupas, P. Mushrooms—Biologically Distinct and Nutritionally Unique: Exploring a “Third Food Kingdom”. Nutr. Today 2014, 49, 301–307. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine—A diet-derived antioxidant with therapeutic potential. FEBS Lett. 2018, 592, 3357–3366. [Google Scholar] [CrossRef]
- Kalaras, M.D.; Richie, J.P.; Calcagnotto, A.; Beelman, R.B. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry 2017, 233, 429–433. [Google Scholar] [CrossRef]
- Ey, J.; Schömig, E.; Taubert, D. Dietary Sources and Antioxidant Effects of Ergothioneine. J. Agric Food Chem. 2007, 55, 6466–6474. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I.K.; Drum, C.L. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis. Biochem. Biophys. Res. Commun. 2016, 470, 245–250. [Google Scholar] [CrossRef]
- Nakamichi, N.; Kato, Y. Physiological Roles of Carnitine/Organic Cation Transporter OCTN1/SLC22A4 in Neural Cells. Biol. Pharm. Bull. 2017, 40, 1146–1152. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 784–793. [Google Scholar] [CrossRef]
- Torres, L.L.; Quaglio, N.B.; de Souza, G.T.; Garcia, R.T.; Dati, L.M.; Moreira, W.L.; de Melo Loureiro, A.P.; de Souza-Talarico, J.N.; Smid, J.; Porto, C.S.; et al. Peripheral Oxidative Stress Biomarkers in Mild Cognitive Impairment and Alzheimer’s Disease. JAD 2011, 26, 59–68. [Google Scholar] [CrossRef]
- Cheah, I.K.; Feng, L.; Tang, R.M.Y.; Lim, K.H.C.; Halliwell, B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem. Biophys. Res. Commun. 2016, 478, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Kan, C.N.; Cheah, I.K.; Chong, J.R.; Xu, X.; Vrooman, H.; Hilal, S.; Venketasubramanian, N.; Chen, C.P.; Halliwell, B.; et al. Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics. Antioxidants 2022, 11, 1717. [Google Scholar] [CrossRef]
- Mori, K.; Inatomi, S.; Ouchi, K.; Azumi, Y.; Tuchida, T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: A double-blind placebo-controlled clinical trial. Phytother. Res. 2009, 23, 367–372. [Google Scholar] [CrossRef]
- Song, T.-Y.; Lin, H.-C.; Chen, C.-L.; Wu, J.-H.; Liao, J.-W.; Hu, M.-L. Ergothioneine and melatonin attenuate oxidative stress and protect against learning and memory deficits in C57BL/6J mice treated with D-galactose. Free. Radic. Res. 2014, 48, 1049–1060. [Google Scholar] [CrossRef]
- Ishimoto, T.; Kato, Y. Ergothioneine in the brain. FEBS Lett. 2022, 596, 1290–1298. [Google Scholar] [CrossRef]
- Matsuda, Y.; Ozawa, N.; Shinozaki, T.; Wakabayashi, K.; Suzuki, K.; Kawano, Y. Ergothioneine, a metabolite of the gut bacterium Lactobacillus reuteri, protects against stress-induced sleep disturbances. Transl. Psychiatry 2020, 10, 170. [Google Scholar] [CrossRef]
- Nakamichi, N.; Nakayama, K.; Ishimoto, T.; Masuo, Y.; Wakayama, T.; Sekiguchi, H. Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behavior. 2016, 6, e00477. [Google Scholar] [CrossRef]
- Uffelman, C.N.; Schmok, J.N.; Campbell, R.E.; Hartman, A.S.; Olson, M.R.; Anderson, N.L.; Reisdorph, N.A.; Tang, M.; Krebs, N.F.; Campbell, W.W. Consuming Mushrooms When Adopting a Healthy Mediterranean-Style Dietary Pattern Does Not Influence Short-Term Changes of Most Cardiometabolic Disease Risk Factors in Healthy Middle-Aged and Older Adults. J. Nutr. 2024, 154, 574–582. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092. [Google Scholar] [CrossRef]
- Kroenke, K. PHQ-9: Global uptake of a depression scale. World Psychiatry 2021, 20, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Steer, R.A.; Brown, G. Beck Depression Inventory–II [Internet]. 2011. Available online: https://doi.apa.org/doi/10.1037/t00742-000 (accessed on 24 June 2024).
- Wang, Y.-P.; Gorenstein, C. Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Rev. Bras. Psiquiatr. 2013, 35, 416–431. [Google Scholar] [CrossRef] [PubMed]
- Shacham, S. A Shortened Version of the Profile of Mood States. J. Pers. Assess. 1983, 47, 305–306. [Google Scholar] [CrossRef] [PubMed]
- Curran, S.L.; Andrykowski, M.A.; Studts, J.L. Short Form of the Profile of Mood States (POMS-SF): Psychometric Information. Psychol. Assess. 1995, 7, 80. [Google Scholar] [CrossRef]
- Ware, J.E. SF-36 Health Survey Update. Spine 2000, 25, 3130–3139. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, A.L.; Mortensen, O.S. Up to one third of individual cardiac patients have a decline in quality of life post-intervention. Scand. Cardiovasc. J. 2006, 40, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Mchorney, C.A.; Johne, W.; Anastasiae, R. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and Clinical Tests of Validity in Measuring Physical and Mental Health Constructs. Med. Care 1993, 31, 247–263. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wang, L.B.; Xu, H.; Zhang, X. A comparison of quality of life in adolescents with epilepsy or asthma using the Short-Form Health Survey (SF-36). Epilepsy Res. 2012, 101, 157–165. [Google Scholar] [CrossRef]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Batter for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Arch. Clin. Neuropsychol. 2010, 20, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Randolph, C. Repeatable Battery for the Assessment of Neuropsychological Status Update [Internet]. Pearson. Available online: https://www.pearsonassessments.com/store/usassessments/en/Store/Professional-Assessments/Cognition-%26-Neuro/Repeatable-Battery-for-the-Assessment-of-Neuropsychological-Status-Update/p/100000726.html (accessed on 24 June 2024).
- Shura, R.D.; Brearly, T.W.; Rowland, J.A.; Martindale, S.L.; Miskey, H.M.; Duff, K. RBANS Validity Indices: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2018, 28, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Downloading IBM SPSS Statistics 29.0.2.0 [Internet]. IBM. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-29020 (accessed on 12 June 2023).
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee; Agricultural Research Service: Washington, DC, USA, 2015.
- Docherty, S.; Doughty, F.L.; Smith, E.F. The Acute and Chronic Effects of Lion’s Mane Mushroom Supplementation on Cognitive Function, Stress and Mood in Young Adults: A Double-Blind, Parallel Groups, Pilot Study. Nutrients 2023, 15, 4842. [Google Scholar] [CrossRef] [PubMed]
- Nagano, M.; Shimizu, K.; Kondo, R.; Hayashi, C.; Sato, D.; Kitagawa, K.; Ohnuki, K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed. Res. 2010, 31, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zajac, I.T.; Barnes, M.; Cavuoto, P.; Wittert, G.; Noakes, M. The Effects of Vitamin D-Enriched Mushrooms and Vitamin D3 on Cognitive Performance and Mood in Healthy Elderly Adults: A Randomised, Double-Blinded, Placebo-Controlled Trial. Nutrients 2020, 12, 3847. [Google Scholar] [CrossRef] [PubMed]
- Mushroom, Oyster [Internet]. U.S. Department of Agriculture. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1999627/nutrients (accessed on 22 August 2023).
- Mushroom, White Button [Internet]. U.S. Department of Agriculture. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1999629/nutrients (accessed on 22 August 2023).
- Saitsu, Y.; Nishide, A.; Kikushima, K.; Shimizu, K.; Ohnuki, K. Improvement of cognitive functions by oral intake of Hericium erinaceus. Biomed. Res. 2019, 40, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, A.; Fondell, E.; Ascherio, A.; Yuan, C.; Grodstein, F.; Willett, W. Adherence to Mediterranean diet and subjective cognitive function in men. Eur. J. Epidemiol. 2018, 33, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Tian, Q.; Qin, X.; Luo, Q.; Gong, X.; Gao, Q. Systematic evaluation and meta-analysis of the effects of major dietary patterns on cognitive function in healthy adults. Nutr. Neurosci. 2024, 1–17. [Google Scholar] [CrossRef]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr. Neurosci. 2019, 22, 474–487. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, R.; Rawat, H.; Kumar, V.; Jagtap, C.; Jain, A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. Food Humanit. 2024, 2, 100202. [Google Scholar] [CrossRef]
- Shahidi, F.; Pan, Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6421–6445. [Google Scholar] [PubMed]
Demographic Characteristics | MED-Control (n = 30) | MED-Mushroom (n = 30) | Total (n = 60) |
---|---|---|---|
Age at randomization (years) Female, n (%) White, n (%) | 44 12 | 47 13 | 46 12 |
20 (60) | 16 (60) | 36 (60) | |
22 (73) | 19 (63) | 41 (68) | |
Hispanic or Latinx, n (%) Asian, n (%) | 5 (17) | 5 (17) | 10 (17) |
2 (7) | 5 (17) | 7 (12) | |
Black, n (%) Other (not specified), n (%) Weight (kg) BMI (kg/m2) | 1 (3) | 0 (0) | 1 (2) |
0 (0) | 1 (3) | 1 (2) | |
82.6 15.2 | 84.7 14.3 | 83.7 14.7 | |
28.4 2.76 | 28.3 2.91 | 28.3 2.84 | |
Depression Characteristics | |||
Beck’s Depression Inventory (0–63) | 7.0 8.96 | 4.7 4.82 | 5.8 7.23 |
Levels of depression, n (%) | |||
Normal (1–10) | 24 (80) | 28 (93) | 52 (87) |
Mild mood disturbance (11–16) | 3 (10) | 0 (0) | 3 (5) |
Borderline clinical depression (17–20) | 0 (0) | 2 (7) | 2 (3) |
Moderate depression (21–30) | 2 (7) | 0 (0) | 2 (3) |
Severe depression (31–40) 1 | 1 (3) | 0 (0) | 1 (2) |
Extreme depression (>40) | 0 (0) | 0 (0) | 0 (0) |
MED-Control | MED-Mushroom | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
Outcome (au) | Baseline | Post | Change | Baseline | Post | Change | Time | Time × Group |
Generalized Anxiety Disorder-7 (0–21) | 3.1 0.67 | 2.8 0.69 | −0.27 0.50 | 2.1 0.51 | 2.0 0.61 | −0.07 0.34 | 0.581 | 0.74 |
Beck’s Depression Inventory (0–63) | 7.0 1.64 | 6.2 1.38 | −0.77 0.80 | 4.7 0.88 | 3.4 0.91 | −1.23 0.84 | 0.088 | 0.687 |
Patient Health Questionnaire-9 (0–27) | 4.5 0.86 | 3.6 0.79 | −0.87 0.57 | 2.8 0.69 | 2.8 0.84 | 0.00 0.50 | 0.257 | 0.257 |
MED-Control | MED-Mushroom | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
Mood 1 (au) | Baseline | Post | Change | Baseline | Post | Change | Time | Time × Group |
Depression (0–32) | 0.2 0.06 | 0.2 0.08 | 0.00 0.08 | 0.2 0.08 | 0.2 0.12 | 0.03 0.07 | 0.779 | 0.841 |
Vigor (0–24) | 1.4 0.17 | 1.5 0.18 | 0.13 0.13 | 1.7 0.21 | 2.0 0.20 | 0.29 0.13 | 0.026 | 0.41 |
Confusion (0–20) | 0.4 0.07 | 0.3 0.07 | −0.07 0.07 | 0.3 0.09 | 0.4 0.13 | 0.05 0.07 | 0.844 | 0.267 |
Tension (0–24) | 0.4 0.08 | 0.3 0.09 | −0.06 0.06 | 0.3 0.10 | 0.3 0.12 | 0.00 0.07 | 0.511 | 0.543 |
Fatigue (0–20) | 0.7 0.16 | 0.6 0.17 | −0.05 0.13 | 0.4 0.12 | 0.6 0.19 | 0.21 0.13 | 0.411 | 0.165 |
MED-Control | MED-Mushroom | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
SF-36v1 Scale 1 (0–100 au) | Baseline | Post | Change | Baseline | Post | Change | Time | Time × Group |
Physical functioning | 89.9 2.02 | 91.0 1.60 | 1.15 1.69 | 88.7 2.48 | 86.3 3.59 | −2.33 3.10 | 0.741 | 0.333 |
Physical RL | 90.5 3.81 | 98.3 1.20 | 7.76 3.94 | 94.2 3.73 | 91.7 4.04 | −2.50 4.04 | 0.356 | 0.075 |
Emotional RL | 69.0 7.75 | 75.9 7.00 | 6.90 7.47 | 88.9 4.88 | 84.4 5.47 | −4.44 4.72 | 0.781 | 0.201 |
Energy/fatigue | 57.1 4.25 | 61.4 4.55 | 4.31 2.92 | 62.3 3.97 | 61.7 4.64 | −0.67 2.72 | 0.365 | 0.217 |
Emotional well-being | 75.2 3.37 | 76.0 3.18 | 0.83 2.73 | 80.4 2.89 | 79.9 3.13 | −0.53 1.93 | 0.93 | 0.684 |
Social functioning | 83.2 4.22 | 84.5 4.19 | 1.29 3.24 | 89.6 3.06 | 92.1 2.58 | 2.50 2.35 | 0.345 | 0.763 |
Pain | 77.6 2.69 | 82.0 2.95 | 4.40 1.88 | 85.7 3.03 | 83.8 3.37 | −1.92 2.41 | 0.422 | 0.044 |
General health | 68.8 3.16 | 72.1 2.41 | 3.28 2.38 | 76.2 2.95 | 76.5 2.99 | 0.33 2.06 | 0.256 | 0.353 |
MED-Control | MED-Mushroom | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
RBANS Subtests 1 (au) | Baseline | Post | Change | Baseline | Post | Change | Time | Time × Group | |
Immediate Memory | List learning (0–40) | 28.2 0.76 | 30.3 0.64 | 2.03 0.76 | 28.9 0.76 | 30.7 0.76 | 1.80 0.74 | <0.001 | 0.826 |
Story memory (0–24) | 16.3 0.71 | 17.3 0.50 | 1.03 0.65 | 17.2 0.50 | 18.1 0.66 | 0.93 0.59 | 0.029 | 0.91 | |
Visuospatial/Constructional | Figure copy (0–20) | 15.8 0.57 | 14.4 0.58 | −1.40 0.59 | 15.9 0.55 | 14.9 0.53 | −1.00 0.55 | 0.004 | 0.622 |
Line orientation (0–20) | 17.2 0.47 | 17.4 0.49 | 0.17 0.40 | 17.8 0.40 | 17.2 0.50 | −0.67 0.47 | 0.422 | 0.183 | |
Language | Picture naming (0–10) | 8.6 0.32 | 9.5 0.15 | 0.90 0.24 | 8.5 0.32 | 9.6 0.12 | 1.10 0.25 | <0.001 | 0.564 |
Semantic fluency (0–40) | 22.5 1.01 | 22.2 0.99 | −0.33 1.00 | 21.8 1.22 | 22.1 1.03 | 0.30 0.94 | 0.981 | 0.646 | |
Attention | Digit span (0–16) | 10.6 0.47 | 10.8 0.59 | 0.23 0.51 | 11.3 0.46 | 12.2 0.54 | 0.97 0.40 | 0.068 | 0.26 |
Coding (0–89) | 51.5 1.59 | 52.4 1.75 | 0.83 1.16 | 53.3 1.29 | 54.8 1.55 | 1.47 1.33 | 0.197 | 0.721 | |
Delayed Memory | List recall (0–10) | 6.3 0.38 | 7.7 0.25 | 1.37 0.38 | 7.0 0.36 | 7.1 0.36 | 0.13 0.35 | 0.005 | 0.019 |
List recognition (0–20) | 19.7 0.10 | 19.7 0.13 | −0.03 0.17 | 19.6 0.16 | 19.6 0.13 | 0.07 0.10 | 0.864 | 0.609 | |
Story recall (0–12) | 8.7 0.42 | 9.6 0.32 | 0.97 0.28 | 9.2 0.38 | 10.0 0.38 | 0.80 0.39 | <0.001 | 0.731 | |
Figure recall (0–20) | 12.0 0.69 | 11.8 0.66 | −0.20 0.58 | 13.4 0.73 | 13.5 0.55 | 0.10 0.60 | 0.905 | 0.721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uffelman, C.N.; Harold, R.; Hodson, E.S.; Chan, N.I.; Foti, D.; Campbell, W.W. Effects of Consuming White Button and Oyster Mushrooms within a Healthy Mediterranean-Style Dietary Pattern on Changes in Subjective Indexes of Brain Health or Cognitive Function in Healthy Middle-Aged and Older Adults. Foods 2024, 13, 2319. https://doi.org/10.3390/foods13152319
Uffelman CN, Harold R, Hodson ES, Chan NI, Foti D, Campbell WW. Effects of Consuming White Button and Oyster Mushrooms within a Healthy Mediterranean-Style Dietary Pattern on Changes in Subjective Indexes of Brain Health or Cognitive Function in Healthy Middle-Aged and Older Adults. Foods. 2024; 13(15):2319. https://doi.org/10.3390/foods13152319
Chicago/Turabian StyleUffelman, Cassi N., Roslyn Harold, Emily S. Hodson, Nok In Chan, Daniel Foti, and Wayne W. Campbell. 2024. "Effects of Consuming White Button and Oyster Mushrooms within a Healthy Mediterranean-Style Dietary Pattern on Changes in Subjective Indexes of Brain Health or Cognitive Function in Healthy Middle-Aged and Older Adults" Foods 13, no. 15: 2319. https://doi.org/10.3390/foods13152319
APA StyleUffelman, C. N., Harold, R., Hodson, E. S., Chan, N. I., Foti, D., & Campbell, W. W. (2024). Effects of Consuming White Button and Oyster Mushrooms within a Healthy Mediterranean-Style Dietary Pattern on Changes in Subjective Indexes of Brain Health or Cognitive Function in Healthy Middle-Aged and Older Adults. Foods, 13(15), 2319. https://doi.org/10.3390/foods13152319