Anticancer Potential of Valencia Peanut (Arachis hypogaea L.) Skin Extract against Cervical Cancer Cells In Vitro and in Nude Mouse Xenograft Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cell Culture and Nude Mouse Xenograft Models
2.3. Preparation of KK4-PSE
2.4. Cell Viability Assay
2.5. Drug Interaction Determination
2.6. Cell Cycle Analysis
2.7. Apoptosis Detection by Flow Cytometry
2.8. Western Blot Analysis
2.9. Antitumor Activity of KK4-PSE in Nude Mouse Xenograft Models
2.10. Toxicological Evaluation in Nude Mouse Xenograft Models
2.11. In Situ Apoptosis Detection
2.12. Statistical Analysis
3. Results
3.1. Antiproliferative Activities of KK4-PSE, Cisplatin, and 5-Fluorouracil against Cervical Cancer Cells in Single-Agent Treatments
3.2. Antiproliferative Activities of KK4-PSE in Combination Treatments with Current Anticancer Drugs (Cisplatin and 5-FU) against Cervical Cancer Cells
3.3. Effect of the Combination Treatments of KK4-PSE and 5-FU or Cisplatin on Inductions of Cell Cycle Arrest and Apoptosis
3.4. Effect of the Combination Treatments on Proteins Related to Apoptosis, ERK Signaling, and Acetylated Histone
3.5. Antitumor Effect of KK4-PSE in Combination with 5-FU or Cisplatin on HeLa Xenograft Mice
3.6. Toxicological Evaluation in Nude Mouse Xenograft Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X.; Zhu, X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug. Des. Devel. Ther. 2016, 10, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-Y.; Kim, S.; Choi, Y.-L.; Cho, Y.J.; Oh, E.; Choi, J.-J.; Jung, K.; Song, J.-Y.; Ahn, S.E.; Kim, B.-G.; et al. HER2 as a novel therapeutic target for cervical cancer. Oncotarget 2015, 6, 36219–36230. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dai, G.; Yang, J.; Wu, W.; Zhang, W. Cervical Cancer Cell Growth, Drug Resistance, and Epithelial-Mesenchymal Transition Are Suppressed by γ-Secretase Inhibitor RO4929097. Med. Sci. Monit. 2018, 24, 4046–4053. [Google Scholar] [CrossRef] [PubMed]
- Boussios, S.; Seraj, E.; Zarkavelis, G.; Petrakis, D.; Kollas, A.; Kafantari, A.; Assi, A.; Tatsi, K.; Pavlidis, N.; Pentheroudakis, G. Management of patients with recurrent/advanced cervical cancer beyond first line platinum regimens: Where do we stand? A literature review. Crit. Rev. Oncol. Hematol. 2016, 108, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.H.; Lin, C.W.; Wang, P.H.; Hsin, M.C.; Yang, S.F. The Potential of Chinese Herbal Medicines in the Treatment of Cervical Cancer. Integr. Cancer Ther. 2019, 18, 153473541986169. [Google Scholar] [CrossRef] [PubMed]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.D.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer. 2020, 11, 4521–4533. [Google Scholar] [CrossRef] [PubMed]
- Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights (Review). Int. J. Funct. Nutr. 2020, 1, 9. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef]
- Gaafar, A.A.; Mahmoud, K.M.; Salama, Z.A. Antioxidant potential activity and cytotoxicity effects of different parts of peanuts (Arachis hypogaea L.). Int. J. Pharma. Bio. Sci. 2015, 6, 19–32. [Google Scholar]
- Khaopha, S.; Jogloy, S.; Patanothai, A.; Senawong, T. Histone Deacetylase Inhibitory Activity of Peanut Testa Extracts against Human Cancer Cell Lines. J. Food Biochem. 2015, 39, 263–273. [Google Scholar] [CrossRef]
- Rossi, Y.E.; Bohl, L.P.; Vanden Braber, N.L.; Ballatore, M.B.; Escobar, F.M.; Bodoira, R.; Maestri, D.M.; Porporatto, C.; Cavaglieri, L.R.; Montenegro, M.A. Polyphenols of peanut (Arachis hypogaea L.) skin as bioprotectors of normal cells. Studies of cytotoxicity, cytoprotection and interaction with ROS. J. Funct. Foods 2020, 67, 103862. [Google Scholar] [CrossRef]
- Saenglee, S.; Senawong, G.; Jogloy, S.; Sripa, B.; Senawong, T. Peanut testa extracts possessing histone deacetylase inhibitory activity induce apoptosis in cholangiocarcinoma cells. Biomed. Pharmacother. 2018, 98, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.L. Extracts of Peanut Skins as a Source of Bioactive Compounds: Methodology and Application. Appl. Sci. 2020, 10, 8546. [Google Scholar] [CrossRef]
- Chen, L.; Yan, F.F.; Chen, W.; Zhao, L.; Zhang, J.; Ju, Q. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem. Biol. Interact. 2018, 288, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Wolter, F.; Stein, J.M. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol. Nutr. Food Res. 2005, 49, 452–461. [Google Scholar] [CrossRef]
- Senawong, T.; Misuna, S.; Khaopha, S.; Nuchadomrong, S.; Sawatsitang, P.; Phaosiri, C.; Surapaitoon, A.; Sripa, B. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: Sinapinic acid acts as HDAC inhibitor. BMC Complement. Altern. Med. 2013, 13, 232. [Google Scholar] [CrossRef]
- Marks, P.A.; Xu, W.S. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem. 2009, 107, 600–608. [Google Scholar] [CrossRef]
- Saenglee, S.; Jogloy, S.; Patanothai, A.; Leid, M.; Senawong, T. Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol. Rep. 2016, 68, 1102–1110. [Google Scholar] [CrossRef]
- Khaopha, S.; Senawong, T.; Jogloy, S.; Patanothai, A. Comparison of total phenolic content and composition of individual phenolic acids in testae and testa-removed kernels of 15 Valencia-type peanut (Arachis hypogaea L.) genotypes. Afr. J. Biotechnol. 2012, 11, 15923–15930. [Google Scholar] [CrossRef]
- Prompipak, J.; Senawong, T.; Sripa, B.; Ketterman, A.J.; Utaiwat, S.; Woranam, K.; Jeeunngoi, J.; Senawong, G. Anticancer Effects of the Combined Thai Noni Juice Ethanolic Extracts and 5-Fluorouracil against Cholangiocarcinoma Cells In Vitro and In Vivo. Sci. Rep. 2021, 11, 14866. [Google Scholar] [CrossRef] [PubMed]
- Samankul, A.; Senawong, G.; Utaiwat, S.; Prompipak, J.; Woranam, K.; Phaosiri, C.; Sripa, B.; Senawong, T. Tiliacora triandra Leaf Powder Ethanolic Extract in Combination with Cisplatin or Gemcitabine Synergistically Inhibits the Growth of Cholangiocarcinoma Cells In Vitro and in Nude Mouse Xenograft Models. Medicina 2023, 59, 1269. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Talalay, P. Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Saenglee, S.; Jogloy, S.; Patanothai, A.; Senawong, T. Cytotoxic effects of peanut phenolic compounds possessing histone deacetylase inhibitory activity on human colon cancer cell lines. Turk. J. Biol. 2016, 40, 1258–1271. [Google Scholar] [CrossRef]
- Liu, A.; Zheng, R.; Yang, F.; Huang, F.; Zhang, L.; Zhang, J. Effects of curcumin on growth of human cervical cancer xenograft in nude mice and underlying mechanism. Food Sci. Technol. 2017, 38, 106–111. [Google Scholar] [CrossRef]
- Crowe, A.R.; Yue, W. Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio-Protocole 2019, 9, e3465. [Google Scholar] [CrossRef] [PubMed]
- Alobaedi, O.H.; Talib, W.H.; Basheti, I.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac. J. Trop. Med. 2017, 10, 400–408. [Google Scholar] [CrossRef]
- Ijichi, K.; Adachi, M.; Ogawa, T.; Hasegawa, Y.; Murakami, S. Cell-cycle Distribution and Thymidilate Synthatase (TS) Expression Correlate With 5-FU Resistance in Head and Neck Carcinoma Cells. Anticancer Res. 2014, 34, 2907–2911. [Google Scholar]
- Akasaka, T.; Tsujii, M.; Kondo, J.; Hayashi, Y.; Ying, J.; Lu, Y.; Kato, M.; Yamada, T.; Yamamota, S.; Inoue, T.; et al. 5-FU resistance abrogates the amplified cytotoxic effects induced by inhibiting checkpoint kinase 1 in p53-mutated colon cancer cells. Int. J. Oncol. 2015, 46, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Ligabue, A.; Marverti, G.; Liebl, U.; Myllykallio, H. Transcriptional Activation and Cell Cycle Block Are the Keys for 5-Fluorouracil Induced Up-Regulation of Human Thymidylate Synthase Expression. PLoS ONE 2012, 7, e47318. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Goessl, E.; Collie-Duguid, E.S.R.; Cassidy, J.; Wang, W.; O’Brien, V. Cell Cycle Perturbation and Acquired 5-Fluorouracil Chemoresistance. Anticancer Res. 2022, 28, 9–14. [Google Scholar]
- Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Qiao, J.; Gu, C.; Yin, W.; Du, J.; Wang, W.; Zhu, M.; Han, M.; Lu, W. Anticancer activity of an extract from needles and twigs of Taxus cuspidata and its synergistic effect as a cocktail with 5-fluorouracil. BMC Complement. Altern. Med. 2011, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Liu, X.; Li, Y.; Chen, G.; Wang, Y.; Zhou, S.; Zhu, W.; Huang, Y.; Zhou, J.; Li, S.; et al. Chan-Yu-Bao-Yuan-Tang and 5-fluorouracil synergistically induce apoptosis by means of the caspase-3 signaling pathway in lung and cervical cancer cells. Mol. Med. Rep. 2011, 4, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Winters, Z.E.; Ongkeko, W.M.; Harris, A.L.; Norbury, C.J. p53 regulates Cdc2 independently of inhibitory phosphorylation to reinforce radiation-induced G2 arrest in human cells. Oncogene 1998, 17, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wu, D.; Hirao, A.; Lahti, J.M.; Lui, L.; Mazza, B.; Kidd, V.J.; Mak, T.W.; Ingram, A.J. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J. Biol. Chem. 2002, 277, 12710–12717. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Ramachandiran, S.; Tikoo, K.; Jia, Z.; Lau, S.S.; Monks, T.J. EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Am. J. Physiol. Renal Physiol. 2004, 287, 1049–1058. [Google Scholar] [CrossRef]
- Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death: Is Subcellular Localization the Answer? Cell Cycle 2009, 8, 1168–1175. [Google Scholar] [CrossRef]
- Pujari, R.R.; Bandawane, D.D. Hepatoprotective Activity of Gentisic Acid on 5-Fluorouracil-induced Hepatotoxicity in Wistar Rats. Turkish, J. Pharm. Sci. 2021, 18, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Aikemu, A.; Amat, N.; Yusup, A.; Shan, L.; Qi, X.; Upur, H. Attenuation effect of Abnormal Savda Munziq on liver and heart toxicity caused by chemotherapy in mice. Exp. Ther. Med. 2016, 12, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Gelen, V.; Şengül, E.; Gedikli, S.; Atila, G.; Uslu, H.; Makav, M. The protective effect of rutin and quercetin on 5-FU-induced hepatotoxicity in rats. Asian Pac. J. Trop. Biomed. 2017, 7, 647–653. [Google Scholar] [CrossRef]
- Kyei, S.K.; Eke, W.I.; Abdul-Karim, H.; Darko, G.; Akaranta, O. Phytochemicals from peanut (Arachis hypogaea L.) skin extract with potential for pharmacological activity. Curr. Bioact. Compd. 2021, 17, e190721190997. [Google Scholar] [CrossRef]
- Ma, Y.; Kosinska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem. 2014, 62, 11488–11504. [Google Scholar] [CrossRef] [PubMed]
- Diao, E.; Shen, X.; Zhang, Z.; Ji, N.; Ma, W.; Dong, H. Identification of the Oxidative Products and Ozonolysis Pathways of Polyphenols in Peanut Skins. J. Food Nutr. Res. 2014, 2, 101–108. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef]
Exposure Times | IC50 of KK4-PSE (µg/mL) | IC20 of Cis (µM) | IC20 of 5-FU (µM) | CI | DRI | |||
---|---|---|---|---|---|---|---|---|
Alone | Combination | Cis | 5-FU | KK4-PSE | ||||
24 h | 79.43 ± 0.54 | 43.37 ± 1.66 | 3.30 ± 0.14 | - | 1.12 ± 0.03 | 2.09 | - | 1.56 |
48 h | 55.55 ± 1.57 | 45.48 ± 0.29 | 1.00 ± 0.17 | - | 1.18 ± 0.06 | 3.19 | - | 1.16 |
72 h | 41.32 ± 0.74 | 35.83 ± 1.18 | 0.31 ± 0.07 | - | 1.02 ± 0.03 | 7.30 | - | 1.14 |
24 h | 79.43 ± 0.54 | 31.79 ± 1.64 | - | 45.09 ± 3.64 | N/D | - | N/D | 2.13 |
48 h | 55.55 ± 1.57 | 23.36 ± 0.23 | - | 8.04 ± 1.48 | 0.49 ± 0.02 | - | 21.78 | 2.26 |
72 h | 41.32 ± 0.74 | 16.57 ± 1.34 | - | 1.50 ± 0.11 | 0.60 ± 0.03 | - | 5.09 | 2.49 |
Groups | Initial Body Weight (g) | Final Body Weight (g) | %BWC | Organ Index (g/100 g Body Weight) | ||
---|---|---|---|---|---|---|
Liver | Kidney | Spleen | ||||
Vehicle control | 23.52 ± 1.96 | 23.53 ± 1.45 | 0.04 | 6.27 ± 0.60 | 0.97 ± 0.09 | 1.60 ± 1.68 |
Cisplatin 3 mg/kg | 23.61 ± 1.03 | 22.97 ± 1.23 | −2.71 | 5.54 ± 1.88 | 0.80 ± 0.21 * | 0.35 ± 0.18 * |
5-FU 10 mg/kg | 21.85 ± 1.12 * | 15.99 ± 1.48 * | −26.82 | 7.37 ± 0.48 | 1.18 ± 0.10 * | 0.28 ± 0.03 * |
KK4-PSE 100 mg/kg | 19.87 ± 1.36 * | 20.11 ± 1.65 * | 1.21 | 6.93 ± 0.58 | 1.04 ± 0.07 | 0.68 ± 0.17 * |
KK4-PSE 200 mg/kg | 19.80 ± 1.01 * | 20.06 ± 0.78 * | 1.31 | 7.13 ± 0.91 | 1.07 ± 0.08 | 0.76 ± 0.27 * |
KK4-PSE 100 mg/kg + Cis | 22.17 ± 1.05 | 21.20 ± 1.44 | −4.38 | 6.98 ± 0.06 | 0.93 ± 0.05 | 0.71 ± 0.23 * |
KK4-PSE 200 mg/kg + Cis | 22.74 ± 1.55 | 19.73 ± 2.41 * | −13.24 | 7.02 ± 0.94 | 0.87 ± 0.06 | 0.70 ± 0.32 * |
KK4-PSE 100 mg/kg + 5-FU | 21.35 ± 1.10 * | 17.82 ± 3.88 * | −16.53 | 7.17 ± 1.01 | 1.12 ± 0.10 * | 0.32 ± 0.16 * |
KK4-PSE 200 mg/kg + 5-FU | 22.97 ± 0.30 | 17.61 ± 1.63 * | −23.33 | 7.98 ± 0.46 * | 1.19 ± 0.07 * | 0.21 ± 0.08 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeeunngoi, J.; Senawong, G.; Jogloy, S.; Prompipak, J.; Samankul, A.; Utaiwat, S.; Woranam, K.; Sripa, B.; Senawong, T. Anticancer Potential of Valencia Peanut (Arachis hypogaea L.) Skin Extract against Cervical Cancer Cells In Vitro and in Nude Mouse Xenograft Models. Foods 2024, 13, 2354. https://doi.org/10.3390/foods13152354
Jeeunngoi J, Senawong G, Jogloy S, Prompipak J, Samankul A, Utaiwat S, Woranam K, Sripa B, Senawong T. Anticancer Potential of Valencia Peanut (Arachis hypogaea L.) Skin Extract against Cervical Cancer Cells In Vitro and in Nude Mouse Xenograft Models. Foods. 2024; 13(15):2354. https://doi.org/10.3390/foods13152354
Chicago/Turabian StyleJeeunngoi, Jarckrit, Gulsiri Senawong, Sanun Jogloy, Jeerati Prompipak, Arunta Samankul, Suppawit Utaiwat, Khanutsanan Woranam, Banchob Sripa, and Thanaset Senawong. 2024. "Anticancer Potential of Valencia Peanut (Arachis hypogaea L.) Skin Extract against Cervical Cancer Cells In Vitro and in Nude Mouse Xenograft Models" Foods 13, no. 15: 2354. https://doi.org/10.3390/foods13152354
APA StyleJeeunngoi, J., Senawong, G., Jogloy, S., Prompipak, J., Samankul, A., Utaiwat, S., Woranam, K., Sripa, B., & Senawong, T. (2024). Anticancer Potential of Valencia Peanut (Arachis hypogaea L.) Skin Extract against Cervical Cancer Cells In Vitro and in Nude Mouse Xenograft Models. Foods, 13(15), 2354. https://doi.org/10.3390/foods13152354