Preparation of β-Cyclodextrin(CD)/Flavour CD Powder and Its Application on Flavour Improvement of Regular Coffee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of β-CD/Flavour CD Powder
2.3. Characterization
2.3.1. Determination by FT-IR
2.3.2. Determination by XRD
2.4. Flavour Determination by SDE-GC-FID
2.5. Storage Performance Test of the Inclusion Compound
2.5.1. Storage Stability
2.5.2. Accelerated Destructive Test
2.6. Sensory Test
3. Results and Discussion
3.1. Characterization of β-CD/Flavour CD Powder
3.2. Analysis of β-CD/Flavour CD Powder
3.3. Enhancing Effect of Coffee and Flavour by β-CD/Flavour CD Powder
3.4. Product Stability
3.5. Accelerated Destruction Test and Shelf-Life Prediction of β-CD/Flavour CD Powder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CBNDate. 2019 China Coffee Consumption Advancement Trends Shanghai: CBNDate. 2019. Available online: https://www.cbndata.com/report/1568/detail?isReading=report&page=1 (accessed on 17 December 2023).
- CBNDate. 2021 Chinese Youth Coffee Consumption trend Insight Shanghai: CBNDate. 2021. Available online: https://www.cbndata.com/report/2647/detail?isReading=report&page=1 (accessed on 17 December 2023).
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The role of wet fermentation in enhancing coffee flavor, aroma and sensory quality. Eur. Food Res. Technol. 2021, 47, 485–498. [Google Scholar] [CrossRef]
- Illy, V. Espresso Coffee: The Science of Quality, 2nd ed.; Academic Press: London, UK, 2005. [Google Scholar]
- Moradi, S.; Barati, A.; Tonelli, A.E.; Hamedi, H. Chitosan-based hydrogels loading with thyme oil cyclodextrin inclusion compounds: From preparation to characterization. Eur. Polym. J. 2020, 122, 109303. [Google Scholar] [CrossRef]
- Poisson, L.; Auzanneau, N.; Mestdagh, F.; Blank, I.; Davidek, T. New Insight into the Role of Sucrose in the Generation of alpha-Diketones upon Coffee Roasting. J. Agric. Food Chem. 2018, 66, 2422–2431. [Google Scholar] [CrossRef]
- Lv, W.; Liu, Y.; Yang, K.Z.; Zhai, X.; Liu, F.; Zhang, C.; Leng, X. Formation and characteristics of the main roasted coffee flavour compounds. Sci. Technol. Food Ind. 2015, 36, 394–400. [Google Scholar]
- Zhao, L.; Hong, Z.; Yang, K.; Gong, G.; Tan, C. Effect of Multi-Composition Mixed Fermentation of Saccharomyces cerevisiae on Flavor Quality of Coffee Beans. J. Food Sci. Technol. (China) 2021, 39, 72–78. [Google Scholar]
- Bhumiratana, N.; Wolf, M.; Chambers, E., IV; Adhikari, K. Coffee Drinking and Emotions: Are There Key Sensory Drivers for Emotions? Beverages 2019, 5, 27. [Google Scholar] [CrossRef]
- Angeloni, S.; Mustafa, A.M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F.K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; et al. Characterization of the Aroma Profile and Main Key Odorants of Espresso Coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef]
- Mahmud, M.M.C.; Shellie, R.A.; Keast, R. Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2380–2420. [Google Scholar] [CrossRef]
- Oliveira, E.C.D.; Da Luz, J.M.R.; De Castro, M.G.; Filgueiras, P.R.; Guarconi, R.C.; De Castro, E.V.R.; Da Silva, M.D.S.; Pereira, L.L. Chemical and sensory discrimination of coffee: Impacts of the planting altitude and fermentation. Eur. Food Res. Technol. 2022, 248, 659–669. [Google Scholar] [CrossRef]
- Schwan, R.F.; Fleet, G.H. Cocoa and Coffee Fermentations; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bressani, A.P.P.; Martinez, S.J.; Sarmento, A.B.I.; Borém, F.M.; Schwan, R.F. Influence of yeast inoculation on the quality of fermented coffee (Coffea arabica var. Mundo Novo) processed by natural and pulped natural processes. Int. J. Food Microbiol. 2021, 343, 109107. [Google Scholar] [CrossRef] [PubMed]
- de Melo Pereira, G.V.; Soccol, V.T.; Pandey, A.; Medeiros, A.B.P.; Andrade Lara, J.M.R.; Gollo, A.L.; Soccol, C.R. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. Int. J. Food Microbiol. 2014, 188, 60–66. [Google Scholar] [CrossRef]
- Hoffmann, J. The World Atlas of Coffee: From Beans to Brewing—Coffees Explored, Explained and Enjoyed; Firefly Books: Richmond Hill, ON, Canada, 2018. [Google Scholar]
- Liao, C. Advances in the application of β-cyclodextrin. Sci. Technol. Chem. Ind. 2010, 18, 69–72. [Google Scholar]
- Suo, J.; Zhu, Y.; Chen, L.; Chen, X. The research and development prospect of edible Jiaosu. Food Ferment. Ind. 2020, 46, 271–283. [Google Scholar]
- Ribeiro, L.S.; Miguel, M.; Martinez, S.J.; Bressani, A.P.P.; Evangelista, S.R.; Batista, C.; Schwan, R.F. The use of mesophilic and lactic acid bacteria strains as starter cultures for improvement of coffee beans wet fermentation. World J. Microbiol. Biotechnol. 2020, 36, 186. [Google Scholar] [CrossRef]
- Tang, C.; Jiang, H.; Su, E. Research Advances in Food Enzymes. Chin. J. Bioprocess Eng. 2018, 16, 84–90. [Google Scholar]
- Zhu, Z.; Zhou, C.; Zeng, L.; Jiang, F.; Su, G. Research Progress and Problems of Enzyme Products. China Brew. 2019, 38, 10–13. [Google Scholar]
- Durante, M.; Milano, F.; De Caroli, M.; Giotta, L.; Piro, G.; Mita, G.; Frigione, M.; Lenucci, M.S. Tomato Oil Encapsulation by α-, β-, and γ-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020, 9, 1553. [Google Scholar] [CrossRef]
- Lee, E.-J.; Kim, H.; Lee, J.Y.; Ramachandraiah, K.; Hong, G.-P. β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film. Foods 2020, 9, 818. [Google Scholar] [CrossRef]
- Liu, C.; Tian, Y.; Ma, Z.; Zhou, L. Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite. Foods 2023, 12, 2366. [Google Scholar] [CrossRef]
- Szejtli, J. Cyclodextrin Technology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Hedges, A.R.; Shieh, W.J.; Sikorski, C.T. Use of Cyclodextrins for Encapsulation in the Use and Treatment of Food-Products. In Encapsulation and Controlled Release of Food Ingredients; ACS Publications: Washington, DC, USA, 1995; pp. 60–71. [Google Scholar]
- Tian, B.R.; Xiao, D.; Hei, T.T.; Ping, R.; Hua, S.Y.; Liu, J.Y. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polym. Int. 2020, 69, 597–603. [Google Scholar] [CrossRef]
- Li, S.; Hu, J. Cyclodextrins Build the Basis and Application of Supramolecular Systems; Chemical Industry Press: Beijing, China, 2014. [Google Scholar]
- Yang, B.; Yang, G.; Li, D.; Jin, Y. Preparation of Phenethyl Alcohol Flavouring with β-cyclodextrin Inclusion. Sci. Technol. Food Ind. 2007, 28, 210–212+230. [Google Scholar]
- Evangelista, S.R.; Silva, C.F.; Miguel, M.; Cordeiro, C.D.; Pinheiro, A.C.M.; Duarte, W.F.; Schwan, R.F. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res. Int. 2014, 61, 183–195. [Google Scholar] [CrossRef]
- Yang, X.; Fu, L.; Chen, H.; Li, S.; Zhang, C.; Xin, J. Development of Preparation of Inclusion Compound Carrying Monensin Entrapped by Beta-Cyclodextrin Adopted by Saturated Water Solution. Chin. Anim. Husb. Vet. Med. 2017, 44, 289–295. [Google Scholar]
- Sun-Waterhouse, D.; Wadhwa, S.S. Industry-Relevant Approaches for Minimising the Bitterness of Bioactive Compounds in Functional Foods: A Review. Food Bioprocess Technol. 2013, 6, 607–627. [Google Scholar] [CrossRef]
- Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocoll. 2020, 106, 105882. [Google Scholar] [CrossRef]
- Szejtli, J.; Szente, L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 2005, 61, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Binello, A.; Cravotto, G.; Nano, G.M.; Spagliardi, P. Synthesis of chitosan-cyclodextrin adducts and evaluation of their bitter-masking properties. Flavour Fragr. J. 2004, 19, 394–400. [Google Scholar] [CrossRef]
- Blumberg, S.; Frank, O.; Hofmann, T. Quantitative Studies on the Influence of the Bean Roasting Parameters and Hot Water Percolation on the Concentrations of Bitter Compounds in Coffee Brew. J. Agric. Food Chem. 2010, 58, 3720–3728. [Google Scholar] [CrossRef] [PubMed]
- Budryn, G.; Nebesny, E.; Pałecz, B.; Rachwał-Rosiak, D.; Hodurek, P.; Miśkiewicz, K.; Oracz, J.; Żyżelewicz, D. Inclusion complexes of β-cyclodextrin with chlorogenic acids (CHAs) from crude and purified aqueous extracts of green Robusta coffee beans (Coffea canephora L.). Food Res. Int. 2014, 61, 202–213. [Google Scholar] [CrossRef]
- Thammarat, A. Inclusion complex of β-cyclodextrin with coffee chlorogenic acid: New insights from a combined crystallographic and theoretical study. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2019, 75, 15. [Google Scholar]
- Ascrizzi, R.; Flamini, G. Wild Harenna coffee: Flavour profiling from the bean to the cup. Eur. Food Res. Technol. 2020, 246, 643–660. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 2015, 185, 182–191. [Google Scholar] [CrossRef]
- Varvolgyi, E.; Gere, A.; Szollosi, D.; Sipos, L.; Kovacs, Z.; Kokai, Z.; Csoka, M.; Mednyanszky, Z.; Fekete, A.; Korany, K. Application of Sensory Assessment, Electronic Tongue and GC-MS to Characterize Coffee Samples. Arab. J. Sci. Eng. 2015, 40, 125–133. [Google Scholar] [CrossRef]
- Vafabakhsh, Z.; Khosravi-Darani, K.; Khajeh, K.; Jahadi, M.; Komeili, R.; Mortazavian, A.M. Stability and catalytic kinetics of protease loaded liposomes. Biochem. Eng. J. 2013, 72, 11–17. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, K.; Liu, J.; Yang, Q.N.; Zhang, P. Synthesis of α-N-(2-furoylmethyl) alanine. Chem. Reag. 2011, 33, 297–298+302. [Google Scholar]
- Zhu, G.; Xiao, Z.; Yu, G.; Zhu, G.; Niu, Y.; Liu, J. Formation and characterization of furfuryl mercaptan-β-cyclodextrin inclusion complex and its thermal release characteristics. Pol. J. Chem. Technol. 2021, 23, 35–40. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Deineka, V.I.; Vu, A.T.N.; Le, T.D.; Trung, H.T.; Nguyen, T.A. Inclusion complexes of squalene with beta-cyclodextrin and methyl-beta-cyclodextrin: Preparation and characterization. Turk. J. Chem. 2023, 47, 294–306. [Google Scholar] [CrossRef]
- Liu, L. Principles and Technologies of Shelf-life Evaluation of Foods. J. Dairy Sci. Technol. 2004, 4, 162–165. [Google Scholar]
- Specialty Coffee Association. Heritage Coffee Standards. 2023. Available online: https://sca.coffee/research/coffee-standards (accessed on 1 March 2023).
- Yuan, C.; Lu, Z.; Jin, Z. Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem. 2014, 152, 140–145. [Google Scholar] [CrossRef]
- Xu, D.; Yu, H.; Bao, X. Study on the Synthesis of Biphenyl/Cyclodextrin Inclusion Compound. Polym. Mater. Sci. Eng. 1991, 5, 28–31. [Google Scholar] [CrossRef]
- Milne, G.W.A. Gardner’s Commercially Important Chemicals: Synonyms, Trade Names, and Properties; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Williams Iii, R.O.; Mahaguna, V.; Sriwongjanya, M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Biopharm. 1998, 46, 355–360. [Google Scholar] [CrossRef]
- DeMaria, C.A.B.; Trugo, L.C.; Neto, F.R.A.; Moreira, R.F.A.; Alviano, C.S. Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting. Food Chem. 1996, 55, 203–207. [Google Scholar] [CrossRef]
- Li, Q.; Pu, H.Y.; Tang, P.X.; Tang, B.; Sun, Q.M.; Li, H. Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity. Food Chem. 2018, 245, 1062–1069. [Google Scholar] [CrossRef]
- Pu, H.Y.; Sun, Q.M.; Tang, P.X.; Zhao, L.D.; Li, Q.; Liu, Y.Y.; Li, H. Characterization and antioxidant activity of the complexes of tertiary butylhydroquinone with beta-cyclodextrin and its derivatives. Food Chem. 2018, 260, 183–192. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Sun, B.; Wang, C. Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 2011, 127, 1680–1685. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.; Si, H.; Lin, L.; Chen, L. Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 207–213. [Google Scholar] [CrossRef]
- El Kharraf, S.; Farah, A.; El-Guendouz, S.; Lourenço, J.P.; Rosa Costa, A.M.; El Hadrami, E.M.; Machado, A.M.; Tavares, C.S.; Figueiredo, A.C.; Miguel, M.G. β-Cyclodextrin inclusion complexes of combined Moroccan Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium volatile oil: Production optimization and release kinetics in food models. J. Essent. Oil Res. 2023, 35, 247–261. [Google Scholar] [CrossRef]
- GB2760-2014; Food Safety National Standard—Standards for the Use of Food Additives. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2014.
- Krajangsang, S.; Seephin, P.; Tantayotai, P.; Mahingsapun, R.; Meeampun, Y.; Panyachanakul, T.; Samosorn, S.; Dolsophon, K.; Jiamjariyatam, R.; Lorliam, W.; et al. New approach for screening of microorganisms from Arabica coffee processing for their ability to improve Arabica coffee flavor. 3 Biotech 2022, 12, 143. [Google Scholar] [CrossRef]
- Lopes, A.C.A.; Andrade, R.P.; de Oliveira, L.C.C.; Lima, L.M.Z.; Santiago, W.D.; de Resende, M.L.V.; Cardoso, M.D.; Duarte, W.F. Production and characterization of a new distillate obtained from fermentation of wet processing coffee by-products. J. Food Sci. Technol. 2020, 57, 4481–4491. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.; Vilela, D.; Cordeiro, C.D.; Duarte, W.; Dias, D.; Schwan, R. Evaluation of a potential starter culture for enhance quality of coffee fermentation. World J. Microbiol. Biotechnol. 2013, 29, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Leroy, T.; Ribeyre, F.; Bertrand, B.; Charmetant, P.; Dufour, M.; Montagnon, C.; Marraccini, P.; Pot, D. Genetics of coffee quality. Braz. J. Plant Physiol. 2006, 18, 22. [Google Scholar] [CrossRef]
- Sun, B.-G. Fragrances and Flavors; China Petrochemical Press: Beijing, China, 2000. [Google Scholar]
- Li, A.; Wang, X.; Liu, H.; Tao, Y. Influence of Yeast Extracellular Enzymes on Formation of Ethyl Octanoate and Phenylethyl Acetate During Model Grape Juice Fermentation. J. Food Sci. Technol. 2019, 37, 42–48+65. [Google Scholar]
- Chen, Y. Efficient Synthesis of 2,5-Dimethylpyrazine by Constructing Recombinant Escherichia coli. Master’s Thesis, Jiangnan University, Wuxi, China, 2021. [Google Scholar] [CrossRef]
- Xiong, X.; Li, L.; Ma, Y.; Huang, Y.; You, X.; Cheng, P. Flavor analysis of alcohol-sweetness typical body base Baijiu in sauce-flavor Baijiu from fermentation rounds Enhanced Publishing. Food Ferment. Ind. 2022, 48, 261–267. [Google Scholar]
- Cravotto, G.; Binello, A.; Baranelli, E.; Carraro, P.; Trotta, F. Cyclodextrins as Food Additives and in Food Processing. Curr. Nutr. Food Sci. 2006, 2, 343–350. [Google Scholar] [CrossRef]
- Hirai, M.; Ota, Y.; Ito, M. Diversity in principal constituents of plants with a lemony scent and the predominance of citral. J. Nat. Med. 2022, 76, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, Y.; Luo, K.; Yan, X.; Liu, H.; Zeng, Z. Research Status of Limonene Application. Pharmacol. Clin. Chin. Mater. Medica 2021, 37, 244–248. [Google Scholar]
- Zhang, X.; Zhu, L.; Cheng, L.; Yuan, B. Preparation and Release Behavior Analysis of Chitosan/Sodium Alginate/Porous Starch-Tea Tree Essential Oil Microcapsule. Anal. Chem. 2019, 47, 862–868. [Google Scholar]
- Benucci, I.; Mazzocchi, C.; Lombardelli, C.; Del Franco, F.; Cerreti, M.; Esti, M. Inclusion of curcumin in b-cyclodextrin: A promising prospective as food ingredient. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2022, 39, 1942–1952. [Google Scholar] [CrossRef]
- Hao, X.; Sun, M.; Deng, J.; Shi, C.; Li, H. Slow-Released Antibacterial Properties of Clove Essential Oil Inclusion Complex. Food Sci. (China) 2012, 33, 86–88. [Google Scholar]
- Siro, I.; Fenyvesi, E.; Szente, L.; De Meulenaer, B.; Devlieghere, F.; Orgovanyi, J.; Senyi, J.; Barta, J. Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: Influence of complexation in beta-cyclodextrin. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2006, 23, 845–853. [Google Scholar] [CrossRef]
- He, W.; Pan, Y.; Cai, X.; Lai, Z. Study on the preparation process of ibuprofen-β-cyclodextrin inclusion complex. Editor. Dep. J. Guangdong Pharm. Coll. 2004, 3, 226–227+252. [Google Scholar] [CrossRef]
- Anselmi, C.; Centini, M.; Ricci, M.; Buonocore, A.; Granata, P.; Tsuno, T.; Facino, R.M. Analytical characterization of a ferulic acid/γ-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 2006, 40, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Ceredi, G.; Antoniacci, L.; Montuschi, C.; De Paoli, E.; Mari, M.; Gengotti, S. Ten Years of Field Trials on Grey Mold Control on Strawberries. In Proceedings of the 6th International Strawberry Symposium, Huelva, Spain, 3 March 2009. [Google Scholar]
- Sanz, C.; Czerny, M.; Cid, C.; Schieberle, P. Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur. Food Res. Technol. 2002, 214, 299–302. [Google Scholar] [CrossRef]
- do Carmo, C.S.; Pais, R.; Simplicio, A.L.; Mateus, M.; Duarte, C.M.M. Improvement of Aroma and Shelf-Life of Non-alcoholic Beverages Through Cyclodextrins-Limonene Inclusion Complexes. Food Bioprocess Technol. 2017, 10, 1297–1309. [Google Scholar] [CrossRef]
Time (min) | Temperature (°C) | Rate (°C min−1) | Action |
---|---|---|---|
0.0 | 30 | 0.0 | Initial temperature |
2.0 | 30 | 0.0 | Maintain for 2 min |
8.0 | 33 | 0.5 | Ramp up and maintain |
9.0 | 33 | 0.0 | Maintain for 1 min |
12.5 | 40 | 2.0 | Ramp up and maintain |
13.5 | 40 | 0.0 | Maintain for 1 min |
18.5 | 90 | 10.0 | Ramp up and maintain |
19.0 | 90 | 0.0 | Maintain for 0.5 min |
21.0 | 100 | 5.0 | Ramp up and maintain |
21.5 | 100 | 0.0 | Maintain for 0.5 min |
25.5 | 180 | 20.0 | Ramp up and maintain |
26.0 | 180 | 0.0 | Maintain for 0.5 min |
27.8 | 230 | 30.0 | Ramp up and maintain |
29.8 | 230 | 0.0 | Maintain for 2 min |
No. | Retention Time/min | Name | Proportion/% |
---|---|---|---|
1 | 2.9 | Ethyl acetate | 0.98% |
2 | 12.9 | 2,5-dimethylprazine | 0.87% |
3 | 14.1 | Furaldehyde | 1.58% |
4 | 15.8 | Benzaldehyde | 0.55% |
5 | 17.2 | Limonene | 0.64% |
6 | 17.6 | Linalool | 0.62% |
7 | 19.9 | Citral | 0.71% |
8 | 25.1 | Phenylethyl acetate | 0.57% |
9 | ——— | β-CD | 93.48% |
No. | Name | Flavour | China National Standards | References |
---|---|---|---|---|
1 | Ethyl acetate | Cherry, peach, apricot | GB2760—2014-S0364 | [8,49,56,57] |
2 | 2,5-dimethylprazine | Roasted peanut, chocolate, creamy smell | GB2760—2014-S0712 | [52] |
3 | Furaldehyde | Almond oil | GB2760—2014-S0180 | [55,56,57] |
4 | Benzaldehyde | Bitter almonds, cherries, nuts | GB2760—2014-S0165 | [8,56,57] |
5 | Limonene | Citrus fruits | GB2760—2014-S0654 | [8,51,56,57] |
6 | Linalool | Bergamot | GB2760—2014-S0029 | [55,56,57] |
7 | Citral | Lemon | GB2760—2014-S0174 | [48] |
8 | Phenylethyl acetate | Apples, grapes, poplar berries, tea, timbrel, rose | GB2760—2014-S0383 | [50,57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liang, H.; Chai, Z.; Wang, T. Preparation of β-Cyclodextrin(CD)/Flavour CD Powder and Its Application on Flavour Improvement of Regular Coffee. Foods 2024, 13, 2359. https://doi.org/10.3390/foods13152359
Zhang Z, Liang H, Chai Z, Wang T. Preparation of β-Cyclodextrin(CD)/Flavour CD Powder and Its Application on Flavour Improvement of Regular Coffee. Foods. 2024; 13(15):2359. https://doi.org/10.3390/foods13152359
Chicago/Turabian StyleZhang, Zhiheng, Haicheng Liang, Zichun Chai, and Ting Wang. 2024. "Preparation of β-Cyclodextrin(CD)/Flavour CD Powder and Its Application on Flavour Improvement of Regular Coffee" Foods 13, no. 15: 2359. https://doi.org/10.3390/foods13152359
APA StyleZhang, Z., Liang, H., Chai, Z., & Wang, T. (2024). Preparation of β-Cyclodextrin(CD)/Flavour CD Powder and Its Application on Flavour Improvement of Regular Coffee. Foods, 13(15), 2359. https://doi.org/10.3390/foods13152359