Research Progress on Bacteria-Reducing Pretreatment Technology of Meat
Abstract
:1. Introduction
2. Classification of Bacteria-Reducing Technologies and Their Mechanisms for Reducing Bacteria
2.1. Chemical Bacteria Reduction Technology
2.2. Non-Thermal Physical Bacteria Reduction Technology
2.3. Biological Bacteria Reduction Technology
2.4. Mechanisms of Bacterial Inhibition in Meat Reduction Technology
3. Application of Bacteriological Reduction Technologies in Meat
3.1. Application of Chemical Bacteria Reduction Technology in Meat
3.1.1. SAEW
3.1.2. Organic Acids
3.1.3. Ozone
3.2. Application of Non-Thermal Physical Bacteria Reduction Technology in Meat
3.2.1. Ultrasound
3.2.2. Irradiation
3.2.3. Ultraviolet
3.2.4. Cold Plasma
3.2.5. HPP
3.3. Application of Biological Bacteria Reduction Technology in Meat
3.4. Application of Hurdle Technology in Meat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Chen, J.; Sun, Y.; He, J.; Zhou, C.; Xia, Q.; Dang, Y.; Pan, D.; Du, L. Ultraviolet-Radiation Technology for Preservation of Meat and Meat Products: Recent Advances and Future Trends. Food Control 2023, 148, 109684. [Google Scholar] [CrossRef]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from Lactic Acid Bacteria and Their Applications in Meat and Meat Products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Liu, D.; Zhou, J. Bacterial Spore Inactivation by Non-Thermal Technologies: Resistance and Inactivation Mechanisms. Curr. Opin. Food Sci. 2021, 42, 31–36. [Google Scholar] [CrossRef]
- Giannakourou, M.C.; Tsironi, T.N. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods 2021, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Leistner, L. Basic Aspects of Food Preservation by Hurdle Technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Mikš-Krajnik, M.; James Feng, L.X.; Bang, W.S.; Yuk, H.-G. Inactivation of Listeria Monocytogenes and Natural Microbiota on Raw Salmon Fillets Using Acidic Electrolyzed Water, Ultraviolet Light or/and Ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; Liao, X.; Chen, S.; Ye, X.; Liu, D. Synergetic Effects of Ultrasound and Slightly Acidic Electrolyzed Water against Staphylococcus Aureus Evaluated by Flow Cytometry and Electron Microscopy. Ultrason. Sonochem. 2017, 38, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Pounraj, S.; Bhilwadikar, T.; Manivannan, S.; Rastogi, N.K.; Negi, P.S. Effect of Ozone, Lactic Acid and Combination Treatments on the Control of Microbial and Pesticide Contaminants of Fresh Vegetables. J. Sci. Food Agric. 2021, 101, 3422–3428. [Google Scholar] [CrossRef]
- Taiye Mustapha, A.; Zhou, C.; Wahia, H.; Amanor-Atiemoh, R.; Otu, P.; Qudus, A.; Abiola Fakayode, O.; Ma, H. Sonozonation: Enhancing the Antimicrobial Efficiency of Aqueous Ozone Washing Techniques on Cherry Tomato. Ultrason. Sonochem. 2020, 64, 105059. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Pexara, A. Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods 2021, 10, 215. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Yang, C. Application of Ultrasound Technology in Processing of Ready-to-Eat Fresh Food: A Review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Subhashini, S.; Banuu Priya, E.P.; Kothakota, A.; Ramesh, S.V.; Shahir, S. Ozone Based Food Preservation: A Promising Green Technology for Enhanced Food Safety. Ozone Sci. Eng. 2019, 41, 17–34. [Google Scholar] [CrossRef]
- Esua, O.J.; Cheng, J.-H.; Sun, D.-W. Functionalization of Water as a Nonthermal Approach for Ensuring Safety and Quality of Meat and Seafood Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Jiang, X.; Chen, Y.; Lin, M.; Tang, J.; Lin, Q.; Fang, L.; Li, M.; Hung, Y.-C.; Lin, H. Recent Trends and Applications of Electrolyzed Oxidizing Water in Fresh Foodstuff Preservation and Safety Control. Food Chem. 2022, 369, 130873. [Google Scholar] [CrossRef] [PubMed]
- Smulders, F.J.M.; Greer, G.G. Integrating Microbial Decontamination with Organic Acids in HACCP Programmes for Muscle Foods: Prospects and Controversies. Int. J. Food Microbiol. 1998, 44, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Pohlman, F.; Dias-Morse, P.; Pinidiya, D. Product Safety and Color Characteristics of Ground Beef Processed from Beef Trimmings Treated with Peroxyacetic Acid Alone or Followed by Novel Organic Acids. J. Microb. Biotechnol. Food Sci. 2014, 4, 93–101. [Google Scholar] [CrossRef]
- Kaur, K.; Pandiselvam, R.; Kothakota, A.; Padma Ishwarya, S.; Zalpouri, R.; Mahanti, N.K. Impact of Ozone Treatment on Food Polyphenols—A Comprehensive Review. Food Control 2022, 142, 109207. [Google Scholar] [CrossRef]
- Shankar, S.; Danneels, F.; Lacroix, M. Coating with Alginate Containing a Mixture of Essential Oils and Citrus Extract in Combination with Ozonation or Gamma Irradiation Increased the Shelf Life of Merluccius Sp. Fillets. Food Packag. Shelf Life 2019, 22, 100434. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef]
- Perry, J.J.; Yousef, A.E. Decontamination of Raw Foods Using Ozone-Based Sanitization Techniques. Annu. Rev. Food Sci. Technol. 2011, 2, 281–298. [Google Scholar] [CrossRef]
- Lauteri, C.; Ferri, G.; Piccinini, A.; Pennisi, L.; Vergara, A. Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods 2023, 12, 1212. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Li, C.; Cui, H. Inactivation Mechanism of E. Coli O157:H7 under Ultrasonic Sterilization. Ultrason. Sonochem. 2019, 59, 104751. [Google Scholar] [CrossRef]
- Liao, X.; Li, J.; Suo, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Multiple Action Sites of Ultrasound on Escherichia coli and Staphylococcus aureus. FSHW 2018, 7, 102–109. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Li, F. Characteristics of Key Microorganisms and Metabolites in Irradiated Marbled Beef. Meat Sci. 2023, 199, 109121. [Google Scholar] [CrossRef]
- Codex Stan 2003, 106-1983, Rev. 1—2003; General Standard for Irradiated Foods; Food and Agriculture Organization: Rome, Italy, 2013.
- Gayán, E.; Condón, S.; Álvarez, I. Biological Aspects in Food Preservation by Ultraviolet Light: A Review. Food Bioprocess. Technol. 2014, 7, 1–20. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Li, K.; Xiang, Q.; Bai, Y. Effect of UVC Light-Emitting Diodes on Pathogenic Bacteria and Quality Attributes of Chicken Breast. J. Food Protect. 2021, 84, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, H.W.; Emire, S.A. High Pressure Processing of Foods for Microbial and Mycotoxins Control: Current Trends and Future Prospects. Cogent Food Agric. 2019, 5, 1622184. [Google Scholar] [CrossRef]
- Linton, M.; Patterson, M.F. High Pressure Processing of Foods for Microbiological Safety and Quality (a short review). Acta Microbiol. Immunol. Hung. 2000, 47, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ştefãnoiu, A.; Tãnase, E.E.; Miteluţ, A.C.; Popa, M.E. Unconventional Antimicrobial Treatments for Food Safety and Preservation. Sci. Bull. 2015, 19, 324–336. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Chen, T.; Gao, W.; Zhu, S.; He, J.; Han, Z. Inactivation Mechanism of Escherichia Coli Induced by Slightly Acidic Electrolyzed Water. Sci. Rep. 2017, 7, 6279. [Google Scholar] [CrossRef]
- Casas, D.E.; Vargas, D.A.; Randazzo, E.; Lynn, D.; Echeverry, A.; Brashears, M.M.; Sanchez-Plata, M.X.; Miller, M.F. In-Plant Validation of Novel On-Site Ozone Generation Technology (Bio-Safe) Compared to Lactic Acid Beef Carcasses and Trim Using Natural Microbiota and Salmonella and E. Coli O157:H7 Surrogate Enumeration. Foods 2021, 10, 1002. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef]
- de São José, J.F.B.; de Andrade, N.J.; Ramos, A.M.; Vanetti, M.C.D.; Stringheta, P.C.; Chaves, J.B.P. Decontamination by Ultrasound Application in Fresh Fruits and Vegetables. Food Control 2014, 45, 36–50. [Google Scholar] [CrossRef]
- Fan, L.; Li, L.; Shang, F.; Xie, Y.; Duan, Z.; Cheng, Q.; Zhang, Y. Study on Antibacterial Mechanism of Electron Beam Radiation on Aspergillus Flavus. Food Biosci. 2023, 51, 102197. [Google Scholar] [CrossRef]
- Erijman, L.; Clegg, R.M. Reversible Stalling of Transcription Elongation Complexes by High Pressure. Biophys. J. 1998, 75, 453–462. [Google Scholar] [CrossRef]
- Molina-Gutierrez, A.; Stippl, V.; Delgado, A.; Gänzle, M.G.; Vogel, R.F. In Situ Determination of the Intracellular pH of Lactococcus Lactis and Lactobacillus Plantarum during Pressure Treatment. Appl. Environ. Microb. 2002, 68, 4399–4406. [Google Scholar] [CrossRef]
- Knorr, D.; Froehling, A.; Jaeger, H.; Reineke, K.; Schlueter, O.; Schoessler, K. Emerging Technologies in Food Processing. Annu. Rev. Food Sci. Technol. 2011, 2, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Zhang, X.; Inaoka, T.; Morimatsu, K.; Kimura, K.; Nakaura, Y. Bacterial Injury Induced by High Hydrostatic Pressure. Food Eng. Rev. 2021, 13, 442–453. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Park, J.; Song, K.B.; Al-Harbi, N.A.; Oh, D.-H. Effects of Slightly Acidic Low Concentration Electrolyzed Water on Microbiological, Physicochemical, and Sensory Quality of Fresh Chicken Breast Meat. J. Food Sci. 2012, 77, M35–M41. [Google Scholar] [CrossRef]
- Sheng, X.W.; Shu, D.Q.; Tang, X.J.; Zang, Y.T. Effects of Slightly Acidic Electrolyzed Water on the Microbial Quality and Shelf Life Extension of Beef during Refrigeration. Food Sci. Nutr. 2018, 6, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Qi, F.; Pei, L.; Shen, Y.; Zhu, S.; He, D.; Wu, X.; Ruan, Y.; He, J. Using Slightly Acidic Electrolyzed Water for Inactivation and Preservation of Raw Frozen Shrimp (Litopenaeus Vannamei) in the Field Processing. Appl. Eng. Agric. 2014, 30, 935–941. [Google Scholar] [CrossRef]
- Xuan, X.T.; Fan, Y.F.; Ling, J.G.; Hu, Y.Q.; Liu, D.H.; Chen, S.G.; Ye, X.Q.; Ding, T. Preservation of Squid by Slightly Acidic Electrolyzed Water Ice. Food Control 2017, 73, 1483–1489. [Google Scholar] [CrossRef]
- Signorini, M.; Costa, M.; Teitelbaum, D.; Restovich, V.; Brasesco, H.; García, D.; Superno, V.; Petroli, S.; Bruzzone, M.; Arduini, V.; et al. Evaluation of Decontamination Efficacy of Commonly Used Antimicrobial Interventions for Beef Carcasses against Shiga Toxin-Producing Escherichia Coli. Meat Sci. 2018, 142, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; Capita, R. Lactic Acid Concentrations That Reduce Microbial Load yet Minimally Impact Colour and Sensory Characteristics of Beef. Meat Sci. 2017, 129, 169–175. [Google Scholar] [CrossRef]
- Ransom, J.R.; Belk, K.E.; Sofos, J.N.; Stopforth, J.D.; Scanga, J.A.; Smith, G.C. Comparison of Intervention Technologies for Reducing Escherichia Coli O157:H7 on Beef Cuts and Trimmings. Food Prot. Trends 2003, 23, 24–34. [Google Scholar]
- Manzoor, A.; Jaspal, M.H.; Yaqub, T.; Haq, A.U.; Nasir, J.; Avais, M.; Asghar, B.; Badar, I.H.; Ahmad, S.; Yar, M.K. Effect of Lactic Acid Spray on Microbial and Quality Parameters of Buffalo Meat. Meat Sci. 2020, 159, 107923. [Google Scholar] [CrossRef]
- Surve, A.N.; Sherikar, A.T.; Bhilegaonkar, K.N.; Karkare, U.D. Preservative Effect of Combinations of Acetic Acid with Lactic or Propionic Acid on Buffalo Meat Stored at Refrigeration Temperature. Meat Sci. 1991, 29, 309–322. [Google Scholar] [CrossRef]
- Alwi, N.A.; Ali, A. Reduction of Escherichia Coli O157, Listeria Monocytogenes and Salmonella Enterica Sv. Typhimurium Populations on Fresh-Cut Bell Pepper Using Gaseous Ozone. Food Control 2014, 46, 304–311. [Google Scholar] [CrossRef]
- Coll Cárdenas, F.; Andrés, S.; Giannuzzi, L.; Zaritzky, N. Antimicrobial Action and Effects on Beef Quality Attributes of a Gaseous Ozone Treatment at Refrigeration Temperatures. Food Control 2011, 22, 1442–1447. [Google Scholar] [CrossRef]
- Stivarius, M.R.; Pohlman, F.W.; McElyea, K.S.; Apple, J.K. Microbial, Instrumental Color and Sensory Color and Odor Characteristics of Ground Beef Produced from Beef Trimmings Treated with Ozone or Chlorine Dioxide. Meat Sci. 2002, 60, 299–305. [Google Scholar] [CrossRef]
- Jaksch, D.; Margesin, R.; Mikoviny, T.; Skalny, J.D.; Hartungen, E.; Schinner, F.; Mason, N.J.; Märk, T.D. The Effect of Ozone Treatment on the Microbial Contamination of Pork Meat Measured by Detecting the Emissions Using PTR-MS and by Enumeration of Microorganisms. Int. J. Mass. Spectrom. 2004, 239, 209–214. [Google Scholar] [CrossRef]
- Ayranci, U.G.; Ozunlu, O.; Ergezer, H.; Karaca, H. Effects of Ozone Treatment on Microbiological Quality and Physicochemical Properties of Turkey Breast Meat. Ozone Sci. Eng. 2020, 42, 95–103. [Google Scholar] [CrossRef]
- Chen, J.H.; Ren, Y.; Seow, J.; Liu, T.; Bang, W.S.; Yuk, H.G. Intervention Technologies for Ensuring Microbiological Safety of Meat: Current and Future Trends. Compr. Rev. Food Sci. Food 2012, 11, 119–132. [Google Scholar] [CrossRef]
- Chen, Z. Microbial Inactivation in Foods by Ultrasound. J. Food Microbiol. Saf. Hyg. 2017, 2, 1. [Google Scholar] [CrossRef]
- Nguyen Huu, C.; Rai, R.; Yang, X.; Tikekar, R.V.; Nitin, N. Synergistic Inactivation of Bacteria Based on a Combination of Low Frequency, Low-Intensity Ultrasound and a Food Grade Antioxidant. Ultrason. Sonochem. 2021, 74, 105567. [Google Scholar] [CrossRef]
- Morild, R.K.; Christiansen, P.; Sørensen, A.H.; Nonboe, U.; Aabo, S. Inactivation of Pathogens on Pork by Steam-Ultrasound Treatment. J. Food Prot. 2011, 74, 769–775. [Google Scholar] [CrossRef]
- Musavian, H.S.; Krebs, N.H.; Nonboe, U.; Corry, J.E.L.; Purnell, G. Combined Steam and Ultrasound Treatment of Broilers at Slaughter: A Promising Intervention to Significantly Reduce Numbers of Naturally Occurring Campylobacters on Carcasses. Int. J. Food Microbiol. 2014, 176, 23–28. [Google Scholar] [CrossRef]
- Piyasena, P.; Mohareb, E.; McKellar, R.C. Inactivation of Microbes Using Ultrasound: A Review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Kordowska-Wiater, M.; Stasiak, D.M. Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bull. Vet. Inst. Polawy 2011, 55, 207–210. [Google Scholar]
- Park, J.G.; Yoon, Y.; Park, J.N.; Han, I.J.; Song, B.S.; Kim, J.H.; Kim, W.G.; Hwang, H.J.; Han, S.B.; Lee, J.W. Effects of Gamma Irradiation and Electron Beam Irradiation on Quality, Sensory, and Bacterial Populations in Beef Sausage Patties. Meat Sci. 2010, 85, 368–372. [Google Scholar] [CrossRef]
- Yim, D.-G.; Kim, H.J.; Kim, S.-S.; Lee, H.J.; Kim, J.-K.; Jo, C. Effects of Different X-ray Irradiation Doses on Quality Traits and Metabolites of Marinated Ground Beef during Storage. Radiat. Phys. Chem. 2023, 202, 110563. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, Y.; Wang, B.; Jin, T.Z.; Lyu, W.; Ren, D. Combined Treatments of Low Dose Irradiation with Antimicrobials for Inactivation of Foodborne Pathogens on Fresh Pork. Food Control 2021, 125, 107977. [Google Scholar] [CrossRef]
- Feng, X.; Jo, C.; Nam, K.C.; Ahn, D.U. Impact of Electron-Beam Irradiation on the Quality Characteristics of Raw Ground Beef. Innov. Food Sci. Emerg. 2019, 54, 87–92. [Google Scholar] [CrossRef]
- Söbeli, C.; Uyarcan, M.; Kayaardı, S. Pulsed UV-C Radiation of Beef Loin Steaks: Effects on Microbial Inactivation, Quality Attributes and Volatile Compounds. Innov. Food Sci. Emerg. 2021, 67, 102558. [Google Scholar] [CrossRef]
- Bryant, M.T.; Degala, H.L.; Mahapatra, A.K.; Gosukonda, R.M.; Kannan, G. Inactivation of Escherichia coli K12 by Pulsed UV Light on Goat Meat and Beef: Microbial Responses and Modelling. Int. J. Food Sci. Technol. 2021, 56, 563–572. [Google Scholar] [CrossRef]
- McLeod, A.; Hovde Liland, K.; Haugen, J.; Sørheim, O.; Myhrer, K.S.; Holck, A.L. Chicken Fillets Subjected to UV-C and Pulsed UV Light: Reduction of Pathogenic and Spoilage Bacteria, and Changes in Sensory Quality. J. Food Saf. 2018, 38, e12421. [Google Scholar] [CrossRef] [PubMed]
- Gragg, S.E.; Loneragan, G.H.; Brashears, M.M.; Arthur, T.M.; Bosilevac, J.M.; Kalchayanand, N.; Wang, R.; Schmidt, J.W.; Brooks, J.C.; Shackelford, S.D.; et al. Cross-Sectional Study Examining Salmonella enterica Carriage in Subiliac Lymph Nodes of Cull and Feedlot Cattle at Harvest. Foodborne Pathog. Dis. 2013, 10, 368–374. [Google Scholar] [CrossRef]
- Byun, K.-H.; Na, K.W.; Ashrafudoulla, M.; Choi, M.W.; Han, S.H.; Kang, I.; Park, S.H.; Ha, S.-D. Combination Treatment of Peroxyacetic Acid or Lactic Acid with UV-C to Control Salmonella Enteritidis Biofilms on Food Contact Surface and Chicken Skin. Food Microbiol. 2022, 102, 103906. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Mutz, Y.D.S.; Castro, V.S.; Moreira, R.V.D.B.P.; Álvares, T.D.S.; Conte-Junior, C.A. Combined Effect of Oxygen-Scavenger Packaging and UV-C Radiation on Shelf Life of Refrigerated Tilapia (Oreochromis Niloticus) Fillets. Sci. Rep. 2020, 10, 4243. [Google Scholar] [CrossRef]
- Monteiro, M.L.; Mársico, E.T.; Rosenthal, A.; Conte-Junior, C.A. Synergistic Effect of Ultraviolet Radiation and High Hydrostatic Pressure on Texture, Color, and Oxidative Stability of Refrigerated Tilapia Fillets. J. Sci. Food Agric. 2019, 99, 4474–4481. [Google Scholar] [CrossRef]
- Matan, N.; Nisoa, M.; Matan, N. Antibacterial Activity of Essential Oils and Their Main Components Enhanced by Atmospheric RF Plasma. Food Control 2014, 39, 97–99. [Google Scholar] [CrossRef]
- Kim, B.; Yun, H.; Jung, S.; Jung, Y.; Jung, H.; Choe, W.; Jo, C. Effect of Atmospheric Pressure Plasma on Inactivation of Pathogens Inoculated onto Bacon Using Two Different Gas Compositions. Food Microbiol. 2011, 28, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Puligundla, P.; Mok, C. Corona Discharge Plasma Jet for Inactivation of Escherichia Coli O157:H7 and Listeria Monocytogenes on Inoculated Pork and Its Impact on Meat Quality Attributes. Ann. Microbiol. 2016, 66, 685–694. [Google Scholar] [CrossRef]
- Ulbin-Figlewicz, N.; Jarmoluk, A.; Marycz, K. Antimicrobial Activity of Low-Pressure Plasma Treatment against Selected Foodborne Bacteria and Meat Microbiota. Ann. Microbiol. 2015, 65, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.H.; Xu, X.L.; Liu, Y. Preservation Technologies for Fresh Meat—A Review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef]
- Hayman, M.M.; Baxter, I.; O’riordan, P.J.; Stewart, C.M. Effects of High-Pressure Processing on the Safety, Quality, and Shelf Life of Ready-to-Eat Meats. J. Food Protect. 2004, 67, 1709–1718. [Google Scholar] [CrossRef]
- de Melhem, L.C.M.; Do Rosario, D.K.A.; Monteiro, M.L.G.; Conte-Junior, C.A. High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat. Sustainability 2022, 14, 10503. [Google Scholar] [CrossRef]
- Gupta, J.; Bower, C.G.; Cavender, G.A.; Sullivan, G.A. Effectiveness of Different Myoglobin States to Minimize High Pressure Induced Discoloration in Raw Ground Beef. LWT 2018, 93, 32–35. [Google Scholar] [CrossRef]
- Abera, G. Review on High-Pressure Processing of Foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Daryaei, H.; Balasubramaniam, V.M. Microbial Decontamination of Food by High Pressure Processing. In Microbial Decontamination in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 370–406. ISBN 978-0-85709-085-0. [Google Scholar]
- Fratianni, F.; De Martino, L.; Melone, A.; De Feo, V.; Coppola, R.; Nazzaro, F. Preservation of Chicken Breast Meat Treated with Thyme and Balm Essential Oils. J. Food Sci. 2010, 75, M528–M535. [Google Scholar] [CrossRef]
- Noshad, M.; Behbahani, B.A.; Jooyandeh, H.; Rahmati-Joneidabad, M.; Kaykha, M.E.H.; Sheikhjan, M.G. Utilization of Plantago Major Seed Mucilage Containing Citrus Limon Essential Oil as an Edible Coating to Improve Shelf-life of Buffalo Meat under Refrigeration Conditions. Food Sci. Nutr. 2021, 19, 1625–1639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Cen, C.; Chen, J.; Zhou, C.; Fu, L. Nano-Emulsification Improves Physical Properties and Bioactivities of Litsea Cubeba Essential Oil. LWT 2021, 137, 110361. [Google Scholar] [CrossRef]
- Darmadji, P.; Izumimoto, M. Effect of Chitosan in Meat Preservation. Meat Sci. 1994, 38, 243–254. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Zubair, D.; Bashir, M.N.; Alagawany, M.; Ahmed, S.; Shah, Q.A.; Buzdar, J.A.; Arain, M.A. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol. Trace Elem. Res. 2024, 202, 56–72. [Google Scholar] [CrossRef]
- Duarte, L.G.R.; Alencar, W.M.P.; Iacuzio, R.; Silva, N.C.C.; Picone, C.S.F. Synthesis, Characterization and Application of Antibacterial Lactoferrin Nanoparticles. Curr. Res. Food Sci. 2022, 5, 642–652. [Google Scholar] [CrossRef]
- Yuliana, T.; Hayati, F.; Cahyana, Y.; Rialita, T.; Mardawati, E.; Harahap, B.M.; Safitri, R. Indigenous Bacteriocin of Lactic Acid Bacteria from “Dadih” a Fermented Buffalo Milk from West Sumatra, Indonesia as Chicken Meat Preservative. Pak. J. Biol. Sci. 2020, 23, 1572–1580. [Google Scholar] [CrossRef]
- Dong, A.; Malo, A.; Leong, M.; Ho, V.T.T.; Turner, M.S. Control of Listeria Monocytogenes on Ready-to-Eat Ham and Fresh Cut Iceberg Lettuce Using a Nisin Containing Lactococcus Lactis Fermentate. Food Control 2021, 119, 107420. [Google Scholar] [CrossRef]
- Arief, I.I.; Wulandari, Z.; Aditia, E.L.; Baihaqi, M.; Noraimah, H. Physicochemical and Microbiological Properties of Fermented Lamb Sausages Using Probiotic Lactobacillus Plantarum IIA-2C12 as Starter Culture. Procedia Environ. Sci. 2014, 20, 352–356. [Google Scholar] [CrossRef]
- Araújo, M.K.; Gumiela, A.M.; Bordin, K.; Luciano, F.B.; de Macedo, R.E.F. Combination of Garlic Essential Oil, Allyl Isothiocyanate, and Nisin Z as Bio-Preservatives in Fresh Sausage. Meat Sci. 2018, 143, 177–183. [Google Scholar] [CrossRef]
- Perez, S.L.; Chianfrone, D.J.; Bagnato, V.S.; Blanco, K.C. Optical Technologies for Antibacterial Control of Fresh Meat on Display. LWT 2022, 160, 113213. [Google Scholar] [CrossRef]
Classification | Advantage | Disadvantage | |
---|---|---|---|
Chemical bacteria reduction technology | SAEW | Efficient sterilization, convenient manufacturing, low cost, wide application, safety and environmental protection | Effect instability |
Organic acids | Low cost, green, efficient sterilization | Unstable and easy to decompose | |
Ozone | Efficient sterilization, no secondary pollution | High equipment cost and poor stability | |
Non-thermal physical bacteria reduction technology | Ultrasound | Green safety, wide applicability, convenient and fast | Limited penetration, uneven sterilization |
Radiation | Efficient sterilization, cold treatment, no residue, strong controllability, wide application, environmental protection, and energy-saving | High cost, high equipment, and technical requirements | |
UV | Environmentally friendly, no residue | High energy consumption, safety risks, penetration limitations, and environmental impacts | |
Cold plasma | Mild, efficient, no residue | Complex technology, poor stability, technical maturity | |
HPP | High sterilization efficiency, low energy consumption, green and safe | High equipment cost and application limitation | |
Biological bacteria reduction technology | Plant-derived natural antimicrobials | Environmentally friendly, green and safe | Obviously seasonal and regional, the effect is affected by the separation and extraction process |
Animal-derived natural antimicrobials | Natural origin, broad-spectrum, safety, biocompatibility, and ease of application | Drug resistance and antimicrobial function are limited | |
Microbial-derived natural antimicrobials | Wide range of sources, high security | Effect instability |
Bacteria Reduction Technology | Categorization | Mode of action | Antibacterial Mechanism |
---|---|---|---|
Chemical bacteria reduction technology | SAEW | HCIO CIO− ROS | The cell membrane is damaged by SAEW, causing rapid leakage of K+ and an increase in membrane permeability. This causes HCIO and CIO− to enter the cell, resulting in the following consequences:
|
Organic acids | RCOOH COOH− | RCOOH enters into the cell, leading to the following consequences:
| |
Ozone | O3 | O3 increases the permeability of the cell membrane and destroys lipoproteins and lipopolysaccharides, resulting in the following results after entering the cell:
| |
Non-thermal physical bacteria reduction technology | Ultrasound | Cavitation effect ROS | Microbial cells experience violent oscillations that disrupt the permeability of cell membranes and release reactive oxygen species enter the cell, which results in the following consequences: |
Radiation | Electron rays γ-rays X-rays |
| |
UV | UV | It destroys the DNA base, inhibits DNA transcription, replication, and cell division, and inhibits protein synthesis by altering or destroying the structure of DNA or RNA molecules [1]. | |
Cold plasma | Active substances ROS Electrically charged particles | ROS, reactive nitrogen species (RNS), and charged particles destroy bacterial cells and then enter the cell interior, resulting in the following consequences:
| |
HPP | High pressure | HPP destroys cell membranes and leads to cytoplasm loss [37], resulting in the following consequences:
| |
Biological bacteria reduction technology | Plant-derived natural antimicrobials | Plant antimicrobials Volatile components Tannates Aromatic compounds | It enters the cell through diffusion to disrupt microbial cell walls and cell membranes, inhibiting ATP synthesis and reducing energy metabolism |
Animal-derived natural antimicrobials | Amino acids Polymer sugars | Damage to cell walls and cell membranes results in increased membrane permeability, which affects energy conversion and synthesis of biomolecules and disrupts cell metabolism. | |
Microbial-derived natural antimicrobials | Microbial metabolites | It alters the permeability of cell membranes or inhibits the growth of microorganisms through competition for nutrients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Wang, B.; Zhang, J.; Zhong, Z.; Tang, Z. Research Progress on Bacteria-Reducing Pretreatment Technology of Meat. Foods 2024, 13, 2361. https://doi.org/10.3390/foods13152361
Zuo H, Wang B, Zhang J, Zhong Z, Tang Z. Research Progress on Bacteria-Reducing Pretreatment Technology of Meat. Foods. 2024; 13(15):2361. https://doi.org/10.3390/foods13152361
Chicago/Turabian StyleZuo, Hong, Bo Wang, Jiamin Zhang, Zhengguo Zhong, and Zhonghua Tang. 2024. "Research Progress on Bacteria-Reducing Pretreatment Technology of Meat" Foods 13, no. 15: 2361. https://doi.org/10.3390/foods13152361
APA StyleZuo, H., Wang, B., Zhang, J., Zhong, Z., & Tang, Z. (2024). Research Progress on Bacteria-Reducing Pretreatment Technology of Meat. Foods, 13(15), 2361. https://doi.org/10.3390/foods13152361