Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fresh-Cut Radishes
2.2. Sensory Evaluation
2.3. Determination of Weight Loss, Firmness, and Color
2.4. Determination of Ascorbic Acid and Total Phenolics
2.5. Determination of Antioxidant Activities
2.6. Microbiological Analysis
2.7. Developing Kinetic Modeling for Microbial Growth and Quality Changes of Fresh-Cut Radishes during Storage
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of PDT on the Quality of Fresh-Cut Radishes during Storage
3.1.1. Sensory Analysis
3.1.2. Color, Weight Loss, and Firmness
3.1.3. Ascorbic Acid, Total Phenolic Content, and DPPH Radical Scavenging Capacity
3.1.4. PPO Activity and POD Activity
3.2. Effects of PDT on the Microbial Growth of Fresh-Cut Radishes during Storage
3.3. Correlation between Quality Indexes and Microbial Count in Fresh-Cut Radishes during Storage
3.4. Kinetic Models and Shelf-Life Determination for Fresh-Cut Radishes
3.4.1. Kinetic Models for Microbial Growth
3.4.2. Kinetic Models for Quality Attributes
3.4.3. Shelf-Life Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singla, G.; Chaturvedi, K.; Sandhu, P.P. Status and Recent Trends in Fresh-Cut Fruits and Vegetables. In Fresh-Cut Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 17–49. ISBN 978-0-12-816184-5. [Google Scholar]
- Helland, H.S.; Leufvén, A.; Bengtsson, G.B.; Pettersen, M.K.; Lea, P.; Wold, A.-B. Storage of Fresh-Cut Swede and Turnip: Effect of Temperature, Including Sub-Zero Temperature, and Packaging Material on Sensory Attributes, Sugars and Glucosinolates. Postharvest Biol. Technol. 2016, 111, 370–379. [Google Scholar] [CrossRef]
- Goyeneche, R.; Agüero, M.V.; Roura, S.; Di Scala, K. Application of Citric Acid and Mild Heat Shock to Minimally Processed Sliced Radish: Color Evaluation. Postharvest Biol. Technol. 2014, 93, 106–113. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yang, S.Y.; Yoon, K.S. Control Measures of Pathogenic Microorganisms and Shelf-Life Extension of Fresh-Cut Vegetables. Foods 2021, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Chen, D.; Liu, L.; Wang, T.; Guo, Y.; Xie, Y.; Yao, W.; Yu, H. Effects of O2/CO2 Transmission Rate of BOPA/LDPE or PE Film on Shelf Life and Quality Attributes of Fresh-Cut Cherry Radish. Food Biosci. 2023, 51, 102171. [Google Scholar] [CrossRef]
- Sun, S.H.; Kim, S.J.; Kwak, S.J.; Yoon, K.S. Efficacy of Sodium Hypochlorite and Acidified Sodium Chlorite in Preventing Browning and Microbial Growth on Fresh-Cut Produce. Prev. Nutr. Food Sci. 2012, 17, 210–216. [Google Scholar] [CrossRef]
- Pushkala, R.; Raghuram, P.K.; Srividya, N. Chitosan Based Powder Coating Technique to Enhance Phytochemicals and Shelf Life Quality of Radish Shreds. Postharvest Biol. Technol. 2013, 86, 402–408. [Google Scholar] [CrossRef]
- Chai, Z.; Zhang, F.; Liu, B.; Chen, X.; Meng, X. Antibacterial Mechanism and Preservation Effect of Curcumin-Based Photodynamic Extends the Shelf Life of Fresh-Cut Pears. LWT-Food Sci. 2021, 142, 110941. [Google Scholar] [CrossRef]
- Yan, Y.; Tan, L.; Li, H.; Chen, B.; Huang, J.; Zhao, Y.; Wang, J.; Ou, J. Photodynamic Inactivation of Planktonic Staphylococcus Aureus by Sodium Magnesium Chlorophyllin and Its Effect on the Storage Quality of Lettuce. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2021, 20, 761–771. [Google Scholar] [CrossRef]
- Zou, Y.; Yu, Y.; Cheng, L.; Li, L.; Zou, B.; Wu, J.; Zhou, W.; Li, J.; Xu, Y. Effects of Curcumin-Based Photodynamic Treatment on Quality Attributes of Fresh-Cut Pineapple. LWT-Food Sci. 2021, 141, 110902. [Google Scholar] [CrossRef]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial Photodynamic Therapy —What We Know and What We Don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Zhang, M.; Mujumdar, A.S. Phototreatment (below 1100 nm) Improving Quality Attributes of Fresh-Cut Fruits and Vegetables: A Review. Food Res. Int. 2023, 163, 112252. [Google Scholar] [CrossRef] [PubMed]
- Tsironi, T.; Dermesonlouoglou, E.; Giannoglou, M.; Gogou, E.; Katsaros, G.; Taoukis, P. Shelf-Life Prediction Models for Ready-to-Eat Fresh Cut Salads: Testing in Real Cold Chain. Int. J. Food Microbiol. 2017, 240, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Emtiazi, G.; Ghoreishi, F.S.; Darani, K.K.; Yücel, Ö.; Tarlak, F. Prediction of Growth Kinetics of Bacillus Tequilensis in Nutrient Broth under Isothermal and Non-Isothermal Conditions. Food Sci. Technol. 2023, 43, e123422. [Google Scholar] [CrossRef]
- Hu, J.; Lin, L.; Chen, M.; Yan, W. Modeling for Predicting the Time to Detection of Staphylococcal Enterotoxin A in Cooked Chicken Product. Front. Microbiol. 2018, 9, 1536. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Shelf Life Prediction and Kinetics of Quality Changes in Pineapple (Ananas Comosus) Varieties at Different Storage Temperatures. Horticulturae 2022, 8, 992. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Zhang, Y.; He, Q. Frozen Kinetics Models for Sensory, Chemical, and Microbial Spoilage of Preserved Razor Clam (Sinonovacula Constricta) at Different Temperatures. Int. J. Food Eng. 2020, 16, 20190288. [Google Scholar] [CrossRef]
- Niu, Y.; Yun, J.; Bi, Y.; Wang, T.; Zhang, Y.; Liu, H.; Zhao, F. Predicting the Shelf Life of Postharvest Flammulina Velutipes at Various Temperatures Based on Mushroom Quality and Specific Spoilage Organisms. Postharvest Biol. Technol. 2020, 167, 111235. [Google Scholar] [CrossRef]
- Ruan, S.; Zhao, X.; Wang, Y.; Liu, L.; Tu, K.; Peng, J. Optimization of Photodynamic Pasteurization Process of Fresh-Cut Radishes Based on Response Surface Methodology and Artificial Neural Network-Genetic Algorithm. J. Nanjing Agric. Univ. 2023, 46, 1196–1205. (In Chinese) [Google Scholar]
- Chen, C.; Liu, C.; Jiang, A.; Guan, Q.; Sun, X.; Liu, S.; Hao, K.; Hu, W. The Effects of Cold Plasma-Activated Water Treatment on the Microbial Growth and Antioxidant Properties of Fresh-Cut Pears. Food Bioprocess Technol. 2019, 12, 1842–1851. [Google Scholar] [CrossRef]
- Derossi, A.; Mastrandrea, L.; Amodio, M.L.; de Chiara, M.L.V.; Colelli, G. Application of Multivariate Accelerated Test for the Shelf Life Estimation of Fresh-Cut Lettuce. J. Food Eng. 2016, 169, 122–130. [Google Scholar] [CrossRef]
- Chen, G.; Mo, L.; Li, S.; Zhou, W.; Wang, H.; Liu, J.; Yang, C. Separation and Determination of Reduced Vitamin C in Polymerized Hemoglobin-Based Oxygen Carriers of the Human Placenta. Artif. Cells Nanomed. Biotechnol. 2015, 43, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, F.; Zhou, M.; Huang, T.; Zhang, Y.; Liang, Q. Phenotype Correlation Analysis and Excellent Germplasm Screening of Herb Bletilla Rchb. f. Based on Comprehensive Evaluation from Thirty-Three Geographic Populations. BMC Plant Biol. 2022, 22, 154. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ma, Q.; Zhang, J.; Jiang, K.; Cai, S.; Wang, W.; Wang, J.; Sun, J. Cactus Polysaccharides Enhance Preservative Effects of Ultrasound Treatment on Fresh-Cut Potatoes. Ultrason. Sonochemistry 2022, 90, 106205. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, L.; Ma, Y.; Zhang, M.; Zhao, Y.; Zhao, X. Effect of UV-C Treatment on the Quality of Fresh-Cut Lotus (Nelumbo Nucifera Gaertn.) Root. Food Chem. 2019, 278, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T.A. A Dynamic Approach to Predicting Bacterial Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. IPMP 2013—A Comprehensive Data Analysis Tool for Predictive Microbiology. Int. J. Food Microbiol. 2014, 171, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Pearl, R.; Reed, L.J. On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation1. Proc. Natl. Acad. Sci. USA 1920, 6, 275–288. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Ling, B.; Tang, J.; Kong, F.; Mitcham, E.J.; Wang, S. Kinetics of Food Quality Changes During Thermal Processing: A Review. Food Bioprocess Technol. 2015, 8, 343–358. [Google Scholar] [CrossRef]
- Di, H.; Li, Z.; Wang, Y.; Zhang, Y.; Bian, J.; Xu, J.; Zheng, Y.; Gong, R.; Li, H.; Zhang, F.; et al. Melatonin Treatment Delays Senescence and Maintains the Postharvest Quality of Baby Mustard (Brassica Juncea Var. Gemmifera). Front. Plant Sci. 2022, 12, 817861. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.C.; Queirós, R.P.; Inácio, R.S.; Pinto, C.A.; Casal, S.; Delgadillo, I.; Saraiva, J.A. High-Pressure Processing Effects on Microbiological Stability, Physicochemical Properties, and Volatile Profile of a Fruit Salad. Foods 2024, 13, 1304. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, G. Yildiz the Effect of Different Chemical Agents on the Prevention of Enzymatic Browning in Banana. J. Food Sci. Eng. 2018, 8, 86–91. [Google Scholar] [CrossRef]
- Tabassum, N.; Khan, M.A. Modified Atmosphere Packaging of Fresh-Cut Papaya Using Alginate Based Edible Coating: Quality Evaluation and Shelf Life Study. Sci. Hortic. 2020, 259, 108853. [Google Scholar] [CrossRef]
- Toivonen, P.M.A.; Brummell, D.A. Biochemical Bases of Appearance and Texture Changes in Fresh-Cut Fruit and Vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; del Socorro Flores-González, M.; Arévalo-Niño, K. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria Ananassa). J. Food Sci. 2015, 80, M1823–M1830. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hu, J.; Li, S.; Hamzah, S.S.; Jiang, H.; Zhou, A.; Zeng, S.; Lin, S. Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon. Mol. Basel Switz. 2019, 24, E2374. [Google Scholar] [CrossRef]
- Manzocco, L.; Dri, A.; Quarta, B. Inactivation of Pectic Lyases by Light Exposure in Model Systems and Fresh-Cut Apple. Innov. Food Sci. Emerg. Technol. 2009, 10, 500–505. [Google Scholar] [CrossRef]
- Aluko, A.; Kassim, N.; Makule, E. Investigating the Optimal Treatment to Improve Cashew Apple Juice Quality and Shelf Life. J. Food Process. Preserv. 2023, 2023, e4155761. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, F.; Tang, Q.; Xu, C.; Ni, Z.-J.; Meng, X. Effects of Curcumin-Based Photodynamic Treatment on the Storage Quality of Fresh-Cut Apples. Food Chem. 2019, 274, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, F.; Zhang, J.; Han, Q.; Song, L.; Meng, X. Effect of Photodynamic Treatments on Quality and Antioxidant Properties of Fresh-Cut Potatoes. Food Chem. 2021, 362, 130224. [Google Scholar] [CrossRef]
- Sikora, M.; Świeca, M. Effect of Ascorbic Acid Postharvest Treatment on Enzymatic Browning, Phenolics and Antioxidant Capacity of Stored Mung Bean Sprouts. Food Chem. 2018, 239, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Suathong, W.; Ongkunaruk, P.; Trevanich, S. The Shelf Life and Quality of Green Pea (Pisum Sativum) Sprouts during Storage at Different Refrigerated Temperatures and Durations of Indirect-Sunlight Exposure. Postharvest Biol. Technol. 2024, 207, 112590. [Google Scholar] [CrossRef]
- Sathya, R.; Rasane, P.; Singh, J.; Kaur, S.; Bakshi, M.; Gunjal, M.; Kaur, J.; Sharma, K.; Sachan, S.; Singh, A.; et al. Strategic Advances in the Management of Browning in Fruits and Vegetables. Food Bioprocess Technol. 2023, 17, 325–350. [Google Scholar] [CrossRef]
- Yildiz, G.; Palma, S.; Feng, H. Ultrasonic Cutting as a New Method to Produce Fresh-Cut Red Delicious and Golden Delicious Apples. J. Food Sci. 2019, 84, 3391–3398. [Google Scholar] [CrossRef] [PubMed]
- GB 229921-2021; Limit of Pathogen in Prepackaged Foods. CN-GB. The National Standard of China: Beijing, China, 2021.
- Kim, M.-J.; Adeline Ng, B.X.; Zwe, Y.H.; Yuk, H.-G. Photodynamic Inactivation of Salmonella Enterica Enteritidis by 405 ± 5-nm Light-Emitting Diode and Its Application to Control Salmonellosis on Cooked Chicken. Food Control 2017, 82, 305–315. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Chapter 1—Microbial Spoilage of Foods: Fundamentals. In The Microbiological Quality of Food; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2017; pp. 1–21. ISBN 978-0-08-100502-6. [Google Scholar]
- Wang, W.; Hu, W.; Ding, T.; Ye, X.; Liu, D. Shelf-Life Prediction of Strawberry at Different Temperatures during Storage Using Kinetic Analysis and Model Development. J. Food Process. Preserv. 2018, 42, e13693. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Gao, S.; Wang, S.; Li, X.; Xiong, X. Postharvest Storage Properties and Quality Kinetic Models of Cherry Tomatoes Treated by High-Voltage Electrostatic Fields. LWT-Food Sci. 2023, 176, 114497. [Google Scholar] [CrossRef]
- Zhao, S.; Han, X.; Liu, B.; Wang, S.; Guan, W.; Wu, Z.; Theodorakis, P.E. Shelf-Life Prediction Model of Fresh-Cut Potato at Different Storage Temperatures. J. Food Eng. 2022, 317, 110867. [Google Scholar] [CrossRef]
- Miele, N.A.; Volpe, S.; Cavella, S.; Masi, P.; Di Monaco, R.; Torrieri, E. Implication of Different Sensory Methodologies and Failure Criteria on the Shelf-Life of a Pumpkin-Orange Cake. Food Packag. Shelf Life 2022, 31, 100777. [Google Scholar] [CrossRef]
Treatments | Storage Time (Days) | ||||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | ||
L* values | CK | 69.63 ± 0.97 a | 65.30 ± 1.97 b | 65.08 ± 2.13 ab | 64.75 ± 1.28 b | 64.43 ± 1.63 b | 62.52 ± 1.81 ab |
NaClO | 66.22 ± 0.84 b | 64.70 ± 0.99 b | 64.58 ± 0.98 b | 64.53 ± 1.53 b | 63.50 ± 0.82 b | 62.43 ± 1.90 b | |
PDT | 69.04 ± 0.79 a | 67.68 ± 1.20 a | 66.18 ± 0.63 a | 65.97 ± 2.27 a | 64.78 ± 0.45 a | 63.23 ± 2.47 a | |
a* values | CK | −0.63 ± 0.05 a | −0.87 ± 0.06 a | −0.85 ± 0.11 a | −0.70 ± 0.16 b | −0.83 ± 0.13 a | −0.80 ± 0.17 a |
NaClO | −0.68 ± 0.09 a | −0.80 ± 0.12 a | −0.80 ± 0.13 ab | −0.90 ± 0.06 a | −0.88 ± 0.11 a | −0.77 ± 0.08 a | |
PDT | −0.77 ± 0.20 a | −0.90 ± 0.04 a | −0.75 ± 0.07 b | −0.89 ± 0.08 a | −0.93 ± 0.05 a | 0.80 ± 0.07 a | |
b* values | CK | 0.97 ± 0.15 c | 3.32 ± 0.13 a | 3.22 ± 0.17 a | 3.65 ± 0.53 a | 3.75 ± 0.33 a | 4.40 ± 0.46 a |
NaClO | 1.68 ± 0.21 b | 2.23 ± 0.24 b | 2.63 ± 0.79 b | 3.03 ± 0.46 b | 3.33 ± 0.39 b | 3.40 ± 0.74 b | |
PDT | 3.17 ± 0.22 a | 2.38 ± 0.14 b | 2.85 ± 0.55 b | 3.10 ± 0.29 b | 3.30 ± 0.18 b | 3.53 ± 0.35 b |
Types of Models | Treat-ments | N0 (log CFU g−1) | Nmax (log CFU g−1) | µmax (d−1) | λ (d) | R2 | RSS | RMSE | Predicted Shelf Life (d) |
---|---|---|---|---|---|---|---|---|---|
Modified Gompertz model | CK | 4.691 | 6.912 | 0.431 | 0.087 | 0.989 | 0.010 | 0.070 | 1.5 |
NaClO | 3.790 | 5.701 | 0.752 | 0.240 | 0.987 | 0.017 | 0.091 | 6.0 | |
PDT | 2.258 | 7.732 | 0.758 | 0.623 | 0.982 | 0.052 | 0.162 | 9.1 | |
Modified Logistic model | CK | 4.820 | 6.739 | 0.439 | 0.642 | 0.991 | 0.011 | 0.075 | 1.6 |
NaClO | 3.470 | 5.791 | 0.725 | 1.080 | 0.928 | 0.110 | 0.235 | 6.2 | |
PDT | 2.530 | 7.267 | 0.702 | 0.993 | 0.980 | 0.058 | 0.170 | 9.0 | |
Baranyi model | CK | 4.832 | 6.558 | 0.544 | 1.715 | 0.992 | 0.008 | 0.063 | 1.5 |
NaClO | 3.413 | 5.853 | 0.700 | 0.861 | 0.930 | 0.133 | 0.258 | 6.3 | |
PDT | 2.533 | 5.980 | 0.775 | 1.521 | 0.981 | 0.053 | 0.163 | 9.0 | |
Huang model | CK | 4.820 | 6.739 | 0.439 | 0.625 | 0.991 | 0.011 | 0.075 | 1.6 |
NaClO | 3.467 | 5.795 | 0.723 | 1.056 | 0.928 | 0.111 | 0.235 | 6.2 | |
PDT | 2.530 | 7.149 | 0.703 | 0.994 | 0.980 | 0.057 | 0.170 | 9.0 |
Quality Attributes | Zero-Order | First-Order | Predicted Shelf Life (d) | |||||
---|---|---|---|---|---|---|---|---|
k | R2 | RMSE | k | R2 | RMSE | |||
Weight loss | CK | 0.415 | 0.992 | 0.127 | 0.309 | 0.953 | 0.845 | 4.8 |
NaClO | 0.284 | 0.988 | 0.108 | 0.292 | 0.963 | 0.557 | 6.9 | |
PDT | 0.229 | 0.988 | 0.295 | 0.316 | 0.939 | 0.348 | 8.3 | |
Firmness | CK | −21.87 | 0.962 | 9.380 | −0.041 | 0.962 | 11.279 | 5.5 |
NaClO | −19.48 | 0.999 | 12.174 | −0.035 | 0.995 | 14.926 | 6.7 | |
PDT | −15.67 | 0.960 | 7.034 | −0.028 | 0.947 | 13.163 | 7.2 | |
b* value | CK | 0.325 | 0.904 | 0.624 | 0.187 | 0.872 | 1.254 | 5.7 |
NaClO | 0.176 | 0.956 | 0.128 | 0.084 | 0.968 | 0.194 | 4.3 | |
PDT | 0.153 | 0.968 | 0.412 | 0.051 | 0.943 | 0.478 | 6.9 | |
Ascorbic acid | CK | −0.916 | 0.994 | 0.580 | −0.053 | 0.999 | 0.266 | 5.9 |
NaClO | −0.987 | 0.942 | 0.836 | −0.053 | 0.98 | 0.644 | 6.4 | |
PDT | −0.829 | 0.937 | 0.736 | −0.049 | 0.986 | 0.320 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, S.; Zhu, T.; Zuo, C.; Peng, J.; Liu, L.; Lan, W.; Pan, L.; Tu, K. Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology. Foods 2024, 13, 2367. https://doi.org/10.3390/foods13152367
Ruan S, Zhu T, Zuo C, Peng J, Liu L, Lan W, Pan L, Tu K. Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology. Foods. 2024; 13(15):2367. https://doi.org/10.3390/foods13152367
Chicago/Turabian StyleRuan, Sijia, Tong Zhu, Changzhou Zuo, Jing Peng, Liwang Liu, Weijie Lan, Leiqing Pan, and Kang Tu. 2024. "Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology" Foods 13, no. 15: 2367. https://doi.org/10.3390/foods13152367
APA StyleRuan, S., Zhu, T., Zuo, C., Peng, J., Liu, L., Lan, W., Pan, L., & Tu, K. (2024). Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology. Foods, 13(15), 2367. https://doi.org/10.3390/foods13152367