Sensory Attributes and Chemical Composition: The Case of Three Monofloral Honey Types from Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical and Botanical Origin of Honey Samples
2.2. Determination of Sensory Attributes: Descriptors and Assessors
2.3. Determination of Mineral Content
2.4. Determination of Sugar Composition
2.5. Determination of Volatile Compounds
2.6. Statistical Analysis
3. Results
3.1. Sensory Profile of Honeys
3.2. Physicochemical Parameters of Honey Samples
3.2.1. Mineral Content by Honey Type
3.2.2. Sugar Content and Sugar Ratios in Honey Samples
3.2.3. Main Volatile Compounds of Honeys
3.2.4. Main Physicochemical Compounds and Sensory Attributes Involved in the Botanical Classification of Honey Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marić, A.; Jovanov, P.; Sakač, M.; Novaković, A.; Hadnađev, M.; Pezo, L.; Mandić, A.; Milićević, N.; Đurović, A.; Gadžurić, S. A comprehensive study of parameters correlated with honey health benefits. RSC Adv. 2021, 11, 12434–12441. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, L.; Lin, X.; Bai, W.; Xiao, G.; Liu, G. Composition, Functional Properties and Safety of Honey. J. Sci. Food Agric. 2023, 103, 6767–6779. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, O.; Rodríguez-Flores, M.S.; Rojo-Martínez, S.; Seijo, M.C. Contribution to the Chromatic Characterization of Unifloral Honeys from Galicia (NW Spain). Foods 2019, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Lamparski, G.; Ostaszyk, A.; Szmatowicz, B. Quality evaluation of polish honey: On-line survey, sensory study, and consumer acceptance. J. Sens. Stud. 2021, 36, e12661. [Google Scholar] [CrossRef]
- Ghorbani, M.; Khajehroshanaee, N. The study of Qualitative Factors Influencing on Honey Consumers Demand: Application of Hedonic Pricing Model in Khorasan Razavi Province. J. Appl. Sci. 2009, 9, 1597–1600. [Google Scholar] [CrossRef]
- Ghorab, A.; Rodríguez-Flores, M.S.; Nakib, R.; Escuredo, O.; Haderbache, L.; Bekdouche, F.; Seijo, M.C. Sensorial, Melissopalynological and Physico-Chemical Characteristics of Honey from Babors Kabylia’s Region (Algeria). Foods 2021, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Latifa, H.; Mouna, B.; Arezki, M. Ziziphus lotus and Euphorbia bupleuroides Algerian honeys. World Appl. Sci. J. 2013, 24, 1536–1543. [Google Scholar]
- Zerrouk, S.; Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Characterization of Ziziphus lotus (jujube) honey produced in Algeria. J. Apic. Res. 2018, 57, 166–174. [Google Scholar] [CrossRef]
- Zerrouk, S.; Bahloul, R. Palynological and physicochemical properties of multifloral honey produced in some regions of Algeria. J. Apic. Res. 2023, 62, 345–354. [Google Scholar] [CrossRef]
- Derrar, S.; Lo Turco, V.; Albergamo, A.; Sgrò, B.; Ayad, M.A.; Litrenta, F.; Saim, M.S.; Potortì, A.G.; Aggad, H.; Rando, R.; et al. Study of Physicochemical Quality and Organic Contamination in Algerian Honey. Foods 2024, 13, 1413. [Google Scholar] [CrossRef]
- Nakib, R.; Ghorab, A.; Ouelhadj, A.; Rodríguez-Flores, S.; Bensouici, C.; Seijo-Coello, C. Chemometric evaluation of antioxidant activity and α -amylase inhibition of selected monofloral honeys from Algeria. J. Apic. Res. 2024, 63, 570–580. [Google Scholar] [CrossRef]
- Nakib, R.; Rodríguez-Flores, M.S.; Escuredo, O.; Ouelhadj, A.; Seijo, M.C. Retama sphaerocarpa, Atractylis serratuloides and Eruca sativa honeys from Algeria: Pollen dominance and volatile profiling (HS-SPME/GC-MS) Algeria: Pollen dominance and volatile profiling (HS-SPME/GC–MS). Microchem. J. 2022, 174, 107088. [Google Scholar] [CrossRef]
- Touati, R.; Santos, S.A.; Rocha, S.M.; Belhamel, K.; Silvestre, A.J. Phenolic composition and biological prospecting of grains and stems of Retama sphaerocarpa. Ind. Crops Prod. 2017, 95, 244–255. [Google Scholar] [CrossRef]
- Hammouche-Mokrane, N.; León-González, A.J.; Navarro, I.; Boulila, F.; Benallaoua, S.; Martín-Cordero, C. Phytochemical profile and antibacterial activity of Retama raetam and R. sphaerocarpa cladodes from Algeria. Nat. Prod. Comunm. 2017, 12, 1857–1860. [Google Scholar] [CrossRef]
- Chabani, S.; Haba, H.; Long, C.; Benkhaled, M. Chemical composition of medicinal plant Atractylis serratuloides. Ind. Crop Prod. 2016, 88, 91–95. [Google Scholar] [CrossRef]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Augustin, C.L.; Rahoveanu, M.M.T.; Zugravu, G.A. The comparative sensory analysis of mint honey. In SHS Web of Conferences; EDP Sciences: Belgrade, Serbia, 2021; Volume 95, p. 01015. [Google Scholar] [CrossRef]
- Marcazzan, G.L.; Caretta, C.M.; Marchese, C.M.; Piana, M.L. A review of methods for honey sensory analysis. J. Apic. Res. 2018, 57, 75–87. [Google Scholar] [CrossRef]
- Kruzik, V.; Gregrova, A.; Rajchl, A.; Cizkova, H. Study on honey quality evaluation and detection of adulteration by analysis of volatile compounds. J. Apic. Sci. 2017, 61, 17–27. [Google Scholar]
- Patrignani, M.; Ciappini, M.C.; Tananaki, C.; Fagundez, G.A.; Thrasyvoulou, A.; Lupano, C.E. Correlations of sensory parameters with physicochemical characteristics of Argentinean honeys by multivariate statistical techniques. Int. J. Food Sci. Technol. 2018, 53, 1176–1184. [Google Scholar] [CrossRef]
- Piana, M.L.; Cianciabella, M.; Daniele, G.M.; Badiani, A.; Rocculi, P.; Tappi, S.; Gatti, E.; Marcazzan, G.L.; Magli, M.; Medoro, C.; et al. Influence of the Physical State of Two Monofloral Honeys on Sensory Properties and Consumer Satisfaction. Foods 2023, 12, 986. [Google Scholar] [CrossRef]
- Latifa, H.; Saada, A.; Arezki, M. Antimicrobial potential of Ziziphus and Euphorbia honeys harvested in semi-arid region of Algeria and their possible use in soft medicine. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1114–1118. [Google Scholar] [CrossRef]
- Ciappini, M.; Vitelleschi, M.; Calviño, A. Chemometrics classification of Argentine clover and eucalyptus honeys according to palynological, physicochemical, and sensory properties. Int. J. Food Prop. 2016, 19, 111–123. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Valencia-Barrera, R.M.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tornadijo, M.E.; Fresno, J.M. Spanish honeys with quality brand: A multivariate approach to physicochemical parameters, microbiological quality, and floral origin. J. Apic. Res. 2019, 58, 92–103. [Google Scholar] [CrossRef]
- Szabó, R.T.; Mézes, M.; Szalai, T.; Zajácz, E.; Kovács-Weber, M. Colour identification of honey and methodical development of its instrumental measuring. Columella J. Agric. Environ. Sci. 2016, 3, 29–36. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem. 2009, 112, 1022–1030. [Google Scholar] [CrossRef]
- Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Mohammed, T.; Kumar, G.S.; Arunima, S. Honey crystallization: Mechanism, evaluation and application. Pharma Innov. 2021, 10, 222–231. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonized Methods of the International Honey Commission. Apidologie 1997, 28, 1–59. [Google Scholar]
- ISO 8586; Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023.
- Caroli, S.; Forte, G.; Iamiceli, A.L.; Galoppi, B. Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta 1999, 50, 327–336. [Google Scholar] [CrossRef]
- Bogdanov, S.; D’Arcy, B.R.; Mossel, B.; Marcazzan, G.L. Honey quality and international regulatory standards: Review by the International Honey International honey standards are specified in a European Honey. Bee World 1999, 80, 61–69. [Google Scholar] [CrossRef]
- Cucu, A.A.; Baci, G.M.; Moise, A.R.; Dezsi, Ş.; Marc, B.D.; Stângaciu, Ş.; Dezmirean, D.S. Towards a better understanding of nutritional and therapeutic effects of honey and their applications in apitherapy. Appl. Sci. 2021, 11, 4190. [Google Scholar] [CrossRef]
- Gleiter, R.A.; Horn, H.; Isengard, H.D. Influence of type and state of crystallisation on the water activity of honey. Food Chem. 2006, 96, 441–445. [Google Scholar] [CrossRef]
- Bakier, S. Influence of glucose changes on water activity in selected honeys. Acta Agrophys. 2007, 9, 7–19. [Google Scholar]
- Laos, K.; Kirs, E.; Pall, R.; Martverk, K. The crystallization behaviour of Estonian honeys. Agron. Res. 2011, 9, 427–432. [Google Scholar]
- Hoxha, F.; Kongoli, R.; Malollari, I. Using Ratio of the Main Sugars and Some Oligosaccharides Content to Indicate Market’s Honey Authenticity. Eur. J. Eng Technol. 2019, 7, 1–8. [Google Scholar]
- Labsvards, K.D.; Rudovica, V.; Borisova, A.; Kokina, K.; Bertins, M.; Naumenko, J.; Viksna, A. Multi-Element Profile Characterization of Monofloral and Polyfloral Honey from Latvia. Foods 2023, 12, 4091. [Google Scholar] [CrossRef]
- Bereksi-Reguig, D.; Bouchentouf, S.; Allali, H.; Adamczuk, A.; Kowalska, G.; Kowalski, R. Trace elements and Heavy metal contents in west Algerian natural honey. J. Anal. Meth. Chem. 2022, 2022, 789–856. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo-Rodríguez, A.; Seijo, M.C. Characterization of the honey produced in heather communities (NW Spain). J. Apic. Res. 2019, 58, 84–91. [Google Scholar] [CrossRef]
- Bhandari, B.; Bareyre, I. Estimation of crystalline phase present in the glucose crystal-solution mixture by water activity measurement. LWT Food Sci. Technol. 2003, 36, 729–733. [Google Scholar] [CrossRef]
- Manikis, I.; Thrasyvoulou, A. La relación entre las características fisicoquímicas de la miel y los parámetros de sensibilidad a la cristalización. Apiacta 2001, 36, 106–112. [Google Scholar]
- Miyazawa, M.; Hashidume, S.; Takahashi, T.; Kikuchi, T. Aroma evaluation of gamazumi (Viburnum dilatatum) by aroma extract dilution analysis and odour activity value. Phytochem. Anal. 2012, 23, 208–213. [Google Scholar] [CrossRef]
- Uhl, K.R.; Mitchell, A.E. Headspace volatile organic and phenolic compounds in elderflowers and elderflower teas of blue elderberry (Sambucus nigra ssp. cerulea). ACS Food Sci. Technol. 2022, 2, 1535–1545. [Google Scholar] [CrossRef]
- Plengsuriyakarn, T.; Karbwang, J.; Na-Bangchang, K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin. Exp. Pharmacol. Physiol. 2015, 42, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Shimamura, H.; Nakamura, S.I.; Kameoka, H. Antimutagenic activity of (+)-β-eudesmol and paeonol from Dioscorea japonica. J. Agric. Food Chem. 1996, 44, 1647–1650. [Google Scholar] [CrossRef]
- Amina, T.Z.; Amina, H.; Nawel, B.N. Analysis of the Chemical Composition and Evaluation of Antioxidant and Anti-Inflammatory Properties of Hydrosol Extract and Its Principal Component (Carlina Oxide) in Aerial Parts of Atractylis gummifera from Western Algeria. Chem. Proc. 2023, 14, 66. [Google Scholar] [CrossRef]
- Tangerman, A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J. Chromat. B 2009, 877, 3366–3377. [Google Scholar] [CrossRef] [PubMed]
- Felicioli, A.; Cilia, G.; Mancini, S.; Turchi, B.; Galaverna, G.; Cirlini, M.; Cerri, D.; Fratini, F. In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. Food Biosci. 2019, 29, 102–109. [Google Scholar] [CrossRef]
- Smanalieva, J.; Senge, B. Analytical and rheological investigations into selected unifloral German honey. Eur. Food Res. Technol. 2009, 229, 107–113. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef] [PubMed]
- Paravisini, L.; Septier, C.; Moretton, C.; Nigay, H.; Arvisenet, G.; Guichard, E.; Dacremont, C. Caramel odor: Contribution of volatile compounds according to their odor qualities to caramel typicality. Food Res. Int. 2014, 57, 79–88. [Google Scholar] [CrossRef]
Texture | Color | Odor and Aroma | Basic Taste | Astringency | Spicy |
---|---|---|---|---|---|
Liquid Creamy/Crystallized | White Light amber Amber Dark amber Dark White Straw Gold Orange Brown | Fruity: orange, apple, other. Candy: vanilla, caramel, white chocolate, other. Floral: orange, blossom, lavender, violet, rose, other. Vegetal: fresh grass, mint, leaves, resin, wood, pepper, cinnamon, other. Chemical: lactic, other. Animal: dog, urine, leather, wax, other. Degraded: soap, smoked, burned, caramelized, other. | Sweetness Sourness Saltiness Bitterness | Yes No | Yes No |
Atractylis Honey | Eruca Honey | Retama Honey | Total | |
---|---|---|---|---|
K | 645.8 a ± 260.0 | 421.2 a ± 36.7 | 2284.18 b ± 274.4 | 1041.8 ± 815.9 |
(342.0–1274.0) | (361.0–460.0) | (449.0–2608.0) | (342.0–2608.0) | |
P | 332.6 a ± 37.1 | 315.6 a ± 22.6 | 451.2 b ± 34.2 | 361.1 ± 65.3 |
(277.0–380.0) | (296.0–344.0) | (277.0–494.0) | (277.0–494.0) | |
Ca | 63.2 a ± 9.2 | 60.8 a ± 6.5 | 83.7 b ± 14.1 | 68.2 ± 13.8 |
(49.0–76.0) | (51.0–69.0) | (71.0–112.0) | (49.0–112.0) | |
Na | 48.0 ± 14.7 | 46.2 ± 25.8 | 39.2 ± 12.4 | 45.2 ± 16.8 |
(28.0–70.0) | (25.0–79.0) | (26.0–55.0) | (25.0–79.0) | |
Mg | 17.7 a ± 5.5 | 24.4 a ± 3.0 | 70.5 b ± 6.2 | 33.6 ± 23.8 |
(11.0–27.0) | (20.0–28.0) | (24.0–76.0) | (11.0–76.0) | |
Cu | <1.0 | <1.0 | <1.0 | <1.0 |
Fe | <1.0 | <1.0 | <1.0 | <1.0 |
Zn | <0.5 | <0.5 | <0.5 | <0.5 |
Atractylis Honey | Eruca Honey | Retama Honey | Total | |
---|---|---|---|---|
Fructose (%) | 40.1 ± 1.6 | 38.4 ± 1.8 | 38.3 ± 0.4 | 39.2 ± 1.6 |
(37.5–42.2) | (36.6–41.2) | (37.6–38.8) | (36.6–42.2) | |
Glucose (%) | 33.3 a ± 2.3 | 36.0 a ± 2.2 | 27.2 b ± 1.6 | 32.3 ± 4.0 |
(29.2–37.0) | (33.7–39.3) | (24.7–29.4) | (24.7–39.3) | |
Turanose (%) | 3.1 a ± 0.4 | 2.7 a ± 0.2 | 3.6 b ± 0.2 | 3.2 ± 0.5 |
(2.4–3.6) | (2.3–2.9) | (2.4–3.9) | (2.3–3.9) | |
Maltose (%) | 1.4 a ± 0.5 | 0.4 b ± 0.1 | 1.0 a ± 0.4 | 1.1 ± 0.6 |
(0.8–2.2) | (0.2–0.5) | (0.3–1.5) | (0.2–2.2) | |
Saccharose (%) | 0.4 a ± 0.3 | 0.02 b ± 0.10 | 0.2 a ± 0.13 | 0.3 ± 0.3 |
(0.1–0.9) | (0.01–0.2) | (0.1–0.4) | (0.01–0.9) | |
Melecitose (%) | 0.03 b ± 0.01 | 0.07 a ± 0.03 | 0.08 a ± 0.04 | 0.1 ± 0.03 |
(0.02–0.04) | (0.05–0.1) | (0.01–0.1) | (0.01–0.1) | |
Water content (%) | 13.9 a ± 1.6 | 19.1 b ± 2.1 | 14.3 a ± 1.0 | 15.2 ± 2.7 |
(12.2–17.6) | (15.7–21.0) | (13.3–15.6) | (12.2–21.0) | |
F+G | 73.4 a ± 2.0 | 74.4 a ± 3.8 | 65.5 b ± 1.7 | 71.4 ± 4.5 |
(71.0–77.4) | (71.1–80.5) | (63.0–67.8) | (63.0–80.5) | |
F/G | 1.2 a ± 0.1 | 1.1 b ± 0.01 | 1.4 c ± 0.1 | 1.2 ± 0.2 |
(1.1–1.4) | (1.0–1.1) | (1.3–1.6) | (1.0–1.6) | |
G/W | 2.3 b ± 0.3 | 1.9 a ± 0.3 | 1.9 a ± 0.1 | 2.1 ± 0.3 |
(1.8–2.6) | (1.6–2.3) | (1.7–2.0) | (1.6–2.6) | |
EC (µS/cm) | 263.3 a ± 64.4 | 304.9 a ± 72.8 | 628.7 b ± 217.8 | 372.4 ± 200.9 |
(199.7–396.3) | (224.3–376.3) | (209.7–855.7) | (199.7–855.7) | |
Color (Pfund scale) | 51 a ± 17 | 56 a ± 15 | 96 b ± 7 | 65 ± 24 |
(32–83) | (42–73) | (48–104) | (32–104) |
Botanical Origin | Volatile Compounds |
---|---|
Atractylis honey | Beta-eudesmol Alpha-bisabolol |
Eruca honey | Dimethyl trisulfide Dimethyl tetrasulfide |
Retama honey | Lilac aldehyde Lilac aldehyde D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakib, R.; Ghorab, A.; Harbane, S.; Saker, Y.; Ouelhadj, A.; Rodríguez-Flores, M.S.; Seijo, M.C.; Escuredo, O. Sensory Attributes and Chemical Composition: The Case of Three Monofloral Honey Types from Algeria. Foods 2024, 13, 2421. https://doi.org/10.3390/foods13152421
Nakib R, Ghorab A, Harbane S, Saker Y, Ouelhadj A, Rodríguez-Flores MS, Seijo MC, Escuredo O. Sensory Attributes and Chemical Composition: The Case of Three Monofloral Honey Types from Algeria. Foods. 2024; 13(15):2421. https://doi.org/10.3390/foods13152421
Chicago/Turabian StyleNakib, Rifka, Asma Ghorab, Sonia Harbane, Yasmine Saker, Akli Ouelhadj, María Shantal Rodríguez-Flores, María Carmen Seijo, and Olga Escuredo. 2024. "Sensory Attributes and Chemical Composition: The Case of Three Monofloral Honey Types from Algeria" Foods 13, no. 15: 2421. https://doi.org/10.3390/foods13152421
APA StyleNakib, R., Ghorab, A., Harbane, S., Saker, Y., Ouelhadj, A., Rodríguez-Flores, M. S., Seijo, M. C., & Escuredo, O. (2024). Sensory Attributes and Chemical Composition: The Case of Three Monofloral Honey Types from Algeria. Foods, 13(15), 2421. https://doi.org/10.3390/foods13152421