Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and Preparation
2.3. SORS Data Acquisition
2.4. Data Pretreatment and Exploratory Data Analysis
2.5. Exploratory Data Analysis Using Principal Component Analysis (PCA)
2.6. Predictive Modelling Using Machine Learning
2.7. Performance Metrics
2.8. Sugar Analysis Using HPLC-ELSD
3. Results
3.1. PCA Results for Rice and Sugar Beet Adulterated Honey Samples
3.2. Classification Model Results
3.2.1. Rice Syrup and Sugar Beet Syrup Adulteration
3.2.2. Heather Honey Adulteration Detection
3.3. Regression Model Performance
3.4. Variable Importance
4. Discussion
RF Algorithm Successfully Discriminates Pure Honey
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soares, S.; Pinto, D.; Rodrigues, F.; Alves, R.C.; Oliveira, M.B.P.P. Portuguese Honeys from Different Geographical and Botanical Origins: A 4-Year Stability Study Regarding Quality Parameters and Antioxidant Activity. Molecules 2017, 22, 1338. [Google Scholar] [CrossRef] [PubMed]
- García, N.L. The Current Situation on the International Honey Market. Bee World 2018, 95, 89–94. [Google Scholar] [CrossRef]
- CBI. What Is the Demand for Honey on the European Market? Available online: https://www.cbi.eu/market-information/honey/what-demand (accessed on 1 March 2024).
- Ždiniaková, T.; Loerchner, C.; De, R.O.; Dimitrova, T.; Kaklamanos, G.; Breidbach, A.; Respaldiza, H.M.A.; Vaz, S.I.M.; Paiano, V.; Ulberth, F.; et al. EU Coordinated Action to Deter Certain Fraudulent Practices in the Honey Sector. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC130227 (accessed on 31 March 2023).
- Walker, M.J.; Cowen, S.; Gray, K.; Hancock, P.; Burns, D.T. Honey Authenticity: The Opacity of Analytical Reports—Part 1 Defining the Problem. NPJ Sci. Food 2022, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J.; Cowen, S.; Gray, K.; Hancock, P.; Burns, D.T. Honey Authenticity: The Opacity of Analytical Reports—Part 2, Forensic Evaluative Reporting as a Potential Solution. NPJ Sci. Food 2022, 6, 12. [Google Scholar] [CrossRef]
- Geana, E.-I.; Ciucure, C.T. Establishing Authenticity of Honey via Comprehensive Romanian Honey Analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef] [PubMed]
- White, J.W. Internal Standard Stable Carbon Isotope Ratio Method for Determination of C-4 Plant Sugars in Honey: Collaborative Study, and Evaluation of Improved Protein Preparation Procedure. J. AOAC Int. 1992, 75, 543–548. [Google Scholar] [CrossRef]
- Kilpinen, O.; Vejsnæs, F. New Analytical Methods against Honey Fraud Are Problematic for Commercial Beekeepers. Bee World 2021, 98, 14–16. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S. Honey Adulteration Detection Using Raman Spectroscopy. Food Anal. Methods 2018, 11, 959–968. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Niu, Y.; Gao, S.; Liu, H.; Zhang, Y. Identification and Quantification of Adulterated Honey by Raman Spectroscopy Combined with Convolutional Neural Network and Chemometrics. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 274, 121133. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, H.; Chen, C.; Chen, C.; Zhao, D.; Dong, B.; Lv, X.; Zhang, K.; Xie, Y. Raman Spectroscopy Combined with Machine Learning Algorithms to Detect Adulterated Suichang Native Honey. Sci. Rep. 2022, 12, 3456. [Google Scholar] [CrossRef] [PubMed]
- Mignani, A.G.; Ciaccheri, L.; Mencaglia, A.; Di Sanzo, R.; Carabetta, S.; Russo, M. Dispersive Raman Spectroscopy for the Nondestructive and Rapid Assessment of the Quality of Southern-Italian Honey Types. J. Light. Technol. 2016, 34, 4479–4485. [Google Scholar] [CrossRef]
- Eliasson, C.; Macleod, N.A.; Matousek, P. Noninvasive Detection of Concealed Liquid Explosives Using Raman Spectroscopy. Anal. Chem. 2007, 79, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Matousek, P.; Clark, I.P.; Draper, E.R.C.; Morris, M.D.; Goodship, A.E.; Everall, N.; Towrie, M.; Finney, W.F.; Parker, A.W. Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy. Appl. Spectrosc. 2005, 59, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially Offset Raman Spectroscopy. Nat. Rev. Methods Primers 2021, 1, 21. [Google Scholar] [CrossRef]
- Ellis, D.I.; Eccles, R.; Xu, Y.; Griffen, J.; Muhamadali, H.; Matousek, P.; Goodall, I.; Goodacre, R. Through-Container, Extremely Low Concentration Detection of Multiple Chemical Markers of Counterfeit Alcohol Using a Handheld SORS Device. Sci. Rep. 2017, 7, 12082. [Google Scholar] [CrossRef] [PubMed]
- Lohumi, S.; Lee, H.; Kim, M.S.; Qin, J.; Cho, B.-K. Through-Packaging Analysis of Butter Adulteration Using Line-Scan Spatially Offset Raman Spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5663–5673. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Cerezo, A.; Jiménez-Carvelo, A.M.; González-Casado, A.; Ruisánchez, I.; Cuadros-Rodríguez, L. The Potential of the Spatially Offset Raman Spectroscopy (SORS) for Implementing Rapid and Non-Invasive In-Situ Authentication Methods of Plastic-Packaged Commodity Foods—Application to Sliced Cheeses. Food Control 2023, 146, 109522. [Google Scholar] [CrossRef]
- Schorn-García, D.; Ezenarro, J.; Aceña, L.; Busto, O.; Boqué, R.; Giussani, B.; Mestres, M. Spatially Offset Raman Spectroscopic (SORS) Analysis of Wine Alcoholic Fermentation: A Preliminary Study. Fermentation 2023, 9, 115. [Google Scholar] [CrossRef]
- Mosca, S.; Dey, P.; Tabish, T.A.; Palombo, F.; Stone, N.; Matousek, P. Spatially Offset and Transmission Raman Spectroscopy for Determination of Depth of Inclusion in Turbid Matrix. Anal. Chem. 2019, 91, 8994–9000. [Google Scholar] [CrossRef] [PubMed]
- Mosca, S.; Lin, Q.; Stokes, R.; Bharucha, T.; Gangadharan, B.; Clarke, R.; Fernandez, L.G.; Deats, M.; Walsby-Tickle, J.; Arman, B.Y.; et al. Innovative Method for Rapid Detection of Falsified COVID-19 Vaccines through Unopened Vials Using Handheld Spatially Offset Raman Spectroscopy (SORS). Vaccine 2023, 41, 6960–6968. [Google Scholar] [CrossRef] [PubMed]
- Mosca, S.; Dey, P.; Salimi, M.; Gardner, B.; Palombo, F.; Stone, N.; Matousek, P. Spatially Offset Raman Spectroscopy—How Deep? Anal. Chem. 2021, 93, 6755–6762. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, N.B. Savitzky-Golay Smoothing and Differentiation Filter. Available online: https://eigenvector.com/wp-content/uploads/2020/01/SavitzkyGolay.pdf (accessed on 26 July 2024).
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A Tutorial Review: Metabolomics and Partial Least Squares-Discriminant Analysis—A Marriage of Convenience or a Shotgun Wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA; pp. 785–794. [Google Scholar]
- Bogdanov, S. Harmonised Methods of the International Honey Commission (2009); International Honey Commission, 2009. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://ihc-platform.net/ihcmethods2009.pdf&ved=2ahUKEwjhjbCvrdCHAxXGga8BHQeQJ30QFnoECBIQAQ&usg=AOvVaw3OJLt--fvXXoKespD-25Fh (accessed on 26 July 2024).
- Rodrigues da Silva, L.; Campos Chisté, R.; Fernandes, E. Chemical and Antioxidant Characterization of the Portuguese Heather Honey from Calluna Vulgaris. Separations 2021, 8, 177. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of Honey Criteria and Standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- Mateo, F.; Tarazona, A.; Mateo, E.M. Comparative Study of Several Machine Learning Algorithms for Classification of Unifloral Honeys. Foods 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, S.; Polder, G.; Minaei, S.; Moghadam-Charkari, N.; van Ruth, S.; Kuś, P.M. Detection of Honey Adulteration Using Hyperspectral Imaging. IFAC-PapersOnLine 2016, 49, 311–314. [Google Scholar] [CrossRef]
- Aykas, D.P.; Shotts, M.-L.; Rodriguez-Saona, L.E. Authentication of Commercial Honeys Based on Raman Fingerprinting and Pattern Recognition Analysis. Food Control 2020, 117, 107346. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and Infrared Spectroscopy of Carbohydrates: A Review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shan, Y.; Zhu, X.; Zhang, X.; Ling, G. Detection of Honey Adulteration by High Fructose Corn Syrup and Maltose Syrup Using Raman Spectroscopy. J. Food Compos. Anal. 2012, 28, 69–74. [Google Scholar] [CrossRef]
Sample Code | Label | Area | Calluna vulgaris Pollen (%) |
---|---|---|---|
S1 | Sample1 | Scotland | 52 |
S2 | Sample2 | Shropshire | 77 |
S3 | Sample3 | Scotland | 19 |
S4 | Sample4 | Dorset | NA * |
S5 | Sample5 | Scotland | 55 |
S6 | Sample6 | Dorset | NA * |
S7 | Sample7 | Wales | 10 |
S8 | Sample8 | Yorkshire | 37 |
S9 | Sample9 | Yorkshire | NA * |
S10 | Sample10 | Devon | 4 |
S11 | Sample11 | Devon | 9 |
S12 | Sample12 | Scotland | 11 |
S13 | Sample13 | Scotland | 7 |
S14 | Sample14 | Wales | 20 |
S15 | Sample15 | Shropshire | 12 |
S16 | Sample16 | Shropshire | 43 |
S17 | Sample17 | Yorkshire | 20 |
S18 | Sample18 | Wales | 3 |
S19 | Sample19 | Scotland | 13 |
S20 | Sample20 | Yorkshire | 12 |
S21 | Sample21 | Scotland | 10 |
S22 | Sample22 | Wales | 70 |
S23 | Sample23 | Shropshire | 16 |
S24 | Sample24 | Sheffield | 11 |
S25 | Sample25 | Scotland | 69 |
S26 | Sample26 | Derbyshire | 4 |
S27 | Sample27 | Scotland | 37 |
Sample Number | Honey Description | Season | Floral Sources * | UK Region |
---|---|---|---|---|
H1 | woodland | summer | Woodland trees and nearby flowers, including lime (Tilia), horse chestnut (Aesculus hippocastanum), and sweet chestnut (Castanea sativa). | Yorkshire |
H2 | sycamore | spring | predominantly sycamore with a bit of hawthorn and bean | Yorkshire |
H3 | phacelia | spring | Phacelia tanacetifolia | Yorkshire |
H4 | ivy | autumn | Hedera helix | Yorkshire |
H5 | Himalayan balsam | autumn | Impatiens glandulifera | Yorkshire |
H6 | spring set | spring | multifloral | Yorkshire |
H7 | borage | summer | Borago officinalis | Warwickshire |
H8 | buckwheat | autumn | Fagopyrum esculentum | Yorkshire |
H9 | meadowfoam | summer | Limnanthes alba | Warwickshire |
H10 | sea lavender | summer | Limonium vulgare | Norfolk |
H11 | heather | autumn | Calluna vulgaris | Exmoor |
H12 | echium | summer | Echium plantagineum | Warwickshire |
H13 | field and forest | blend | a heather blend multifloral honey with moor, woodland, and wild pasture flower honey | Yorkshire |
H14 | hedgerow | blend | hedgerows, meadows, and farmland | Norfolk |
H15 | English blossom | spring and summer | blend of blossoms from spring and summer | Yorkshire |
H16 | apple blossom | spring | Malus domestica | Norfolk |
H17 | wildflower | summer | mixture of wildflowers including Bluebell, Cowslip, Gorse, Orchids, Honeysuckle, Meadowsweet, Lime, Rosebay willow herb, and St John’s Wort | Warwickshire |
ID | Product | Details * |
---|---|---|
r01 | rice syrup | Spanish rice molasses (organically grown rice molasses), 460 g |
r02 | rice syrup | Spanish rice syrup (water, organic rice (35%)), 400 g |
r03 | rice syrup | Korean rice syrup (rice starch 100%), 700 g |
r04 | rice syrup | Korean rice syrup (rice 100%), 700 g |
r06 | rice syrup | German rice syrup (organic rice flour (82%), water, non-EU), 1.4 kg |
r07 | rice syrup | UK organic rice syrup, non-EU agriculture (93% rice, 7% water), 250 g |
r08 | rice syrup | UK organic rice syrup, EU/non-EU agriculture (rice (93%), water), 350 g |
b01 | sugar beet molasses | German sugar beet syrup (sugar beet 100%—organic), 1 L |
b05 | sugar beet syrup | Swedish light syrup (syrup from Swedish sugar beets, salt), 750 |
b06 | sugar beet syrup | UK golden syrup (partially inverted sugar syrup), 680 g |
b07 | mix of sugar beet syrup and sugar cane syrup | Swedish dark syrup (syrup from Swedish sugar beets, cane sugar syrup, and salt), 750 g |
Sugar cane | refiner’s syrup | UK golden syrup (partially inverted refiners’ syrup), 325 g |
Models | Pure Honey Misclassified as Adulterated | Adulterated Misclassified as Pure Honey | Soft Misclassifications | Total Misclassifications |
---|---|---|---|---|
Rice Syrup Models | ||||
PLSDA | 2.20% | 8.79% | 16.07% | 20.33% |
RF_Classification | 1.10% | 2.61% | 14.15% | 13.63% |
RF_Ordinal | 4.40% | 5.63% | 14.97% | 17.36% |
XGBoost | 7.69% | 1.79% | 26.10% | 23.85% |
Sugar Beet Syrup Models | ||||
PLSDA | 1.10% | 1.92% | 19.51% | 17.36% |
RF_Classification | 1.10% | 2.06% | 17.31% | 15.71% |
RF_Ordinal | 1.10% | 1.92% | 17.72% | 15.93% |
XGBoost | 9.89% | 4.53% | 31.73% | 30.99% |
Rice and Sugar Beet Combined Model | ||||
RF_Classification | 1.10% | 3.64% | 17.86% | 19.23% |
RF Regression | Mean RMSE | SD RMSE | Mean R2 | SD R2 |
---|---|---|---|---|
Rice Syrup | 3.69 | 1.67 | 0.96 | 0.0049 |
Sugar Beet Syrup | 3.67 | 1.09 | 0.97 | 0.0035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, M.; Dodd, S.; Mosca, S.; Matousek, P.; Parmar, B.; Kevei, Z.; Anastasiadi, M. Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey. Foods 2024, 13, 2425. https://doi.org/10.3390/foods13152425
Shehata M, Dodd S, Mosca S, Matousek P, Parmar B, Kevei Z, Anastasiadi M. Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey. Foods. 2024; 13(15):2425. https://doi.org/10.3390/foods13152425
Chicago/Turabian StyleShehata, Mennatullah, Sophie Dodd, Sara Mosca, Pavel Matousek, Bhavna Parmar, Zoltan Kevei, and Maria Anastasiadi. 2024. "Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey" Foods 13, no. 15: 2425. https://doi.org/10.3390/foods13152425
APA StyleShehata, M., Dodd, S., Mosca, S., Matousek, P., Parmar, B., Kevei, Z., & Anastasiadi, M. (2024). Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey. Foods, 13(15), 2425. https://doi.org/10.3390/foods13152425