Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Water Samples
Pollutant | Molecular Weight (g/mol) | Chemical Formula | Chemical Structure |
---|---|---|---|
CLO | 239.70 | C12H14ClNO2 | |
QUI | 221.64 | C11H8ClNO2 | |
CIP | 331.34 | C17H18FN3O3 | |
EE2 | 296.40 | C20H24O2 | |
DON | 296.32 | C15H20O6 |
2.2. Photocatalyst Synthesis
2.3. Photocatalyst Characterization Techniques
2.4. Measurements of ZnO/BPE and BPE Photocatalytic Activity
2.5. Photocatalyst Reutilization
2.6. Analytical Procedures
3. Results and Discussion
3.1. Characterization of ZnO/BPE
3.1.1. X-ray Powder Diffraction
3.1.2. Fourier Transform Infrared Spectroscopy
3.1.3. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy
3.1.4. X-ray Photoelectron Spectroscopy
3.1.5. Brunauer–Emmett–Teller Analysis
3.2. Removal of Organic Pollutants from Ultrapure Water
3.2.1. ZnO/BPE Photocatalyst Loading
3.2.2. BPE Catalytic Activity
3.2.3. Initial pH Value of ZnO/BPE Suspension
3.2.4. Reutilization Study of ZnO/BPE Photocatalyst
3.3. The Influence of the Natural Water Matrix on the Photodegradation Efficiency of the Selected Pollutants
4. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaur, N.; Sharma, S.; Yadav, N. Environmental pollution. In Green Chemistry Approaches to Environmental Sustainability; Garg, V.K., Yadav, A., Mohan, C., Yadav, S., Kumari, N., Eds.; Elsevier: Cambridge, MA, USA, 2024; pp. 23–41. [Google Scholar]
- Djekić, I.; Velebit, B.; Pavlić, B.; Putnik, P.; Šojić Merkulov, D.; Bebek Markovinović, A.; Bursać Kovačević, D. Food Quality 4.0: Sustainable Food Manufacturing for the Twenty-First Century. Food Eng. Rev. 2023, 15, 577–608. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, M.; Putnik, P.; Šojić Merkulov, D. Chemometric evaluation of different parameters for removal of tembotrione (agricultural herbicide) from water by adsorption and photocatalytic degradation using sustainable nanotechnology. Food Energy Secur. 2022, 11, e368. [Google Scholar] [CrossRef]
- Singh, G.; Yadav, P.K.S. Hazardous waste characteristics and standard management approaches. In Hazardous Waste Management: An Overview of Advanced and Cost-Effective Solutions; Yadav, D., Kumar, P., Singh, P., Vallero, D.A., Eds.; Elsevier: Oxford, UK, 2022; pp. 145–164. [Google Scholar]
- Rad, S.M.; Ray, A.K.; Barghi, S. Water pollution and agriculture pesticide. Clean Technol. 2022, 4, 1088–1102. [Google Scholar] [CrossRef]
- Zanella, R.; Primel, E.G.; Machado, S.L.O.; Goncalves, F.F.; Marchezan, E. Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromatographia 2002, 55, 573–577. [Google Scholar] [CrossRef]
- Mervosh, T.L.; Sims, G.K.; Stoller, E.W. Clomazone fate in soil as affected by microbial activity, temperature, and soil moisture. J. Agric. Food Chem. 1995, 43, 537–543. [Google Scholar] [CrossRef]
- de Menezes, C.C.; Loro, V.L.; da Fonseca, M.B.; Cattaneo, R.; Pretto, A.; Miron, D.d.S.; Santi, A. Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic. Biochem. Phys. 2011, 100, 145–150. [Google Scholar] [CrossRef]
- Tomlin, C.D.S. The Pesticide Manual, 15th ed.; Crop Protection Publications: Hampshire, UK, 2009; pp. 1006–1007. [Google Scholar]
- Vasudevan, D.; Cooper, E.M.; van Exem, O.L. Sorption-desorption of ionogenic compounds at the mineral-water interface: Study of metal oxide-rich soils and pure-phase minerals. Environ. Sci. Technol. 2002, 36, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K.; Scheltrup, F. Studies on the mechanism of selectivity of the auxin herbicide quinmerac. Pestic. Sci. 1998, 52, 111–118. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Alam, A.; Rahman, W.U.; Rahman, Z.U.; Khan, S.A.; Shah, Z.; Shaheen, K.; Suo, H.; Qureshi, M.N.; Khan, S.B.; Bakhsh, E.M.; et al. Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst. J. Mater. Sci. Mater. Electron. 2022, 33, 4255–4267. [Google Scholar] [CrossRef]
- Bognár, S.; Jovanović, D.; Putnik, P.; Despotović, V.; Ivetić, T.; Bajac, B.; Tóth, E.; Finčur, N.; Maksimović, I.; Putnik-Delić, M.; et al. Solar-driven removal of selected organics with binary ZnO based nanomaterials from aquatic environment: Chemometric and toxicological assessments on wheat. J. Environ. Chem. Eng. 2024, 12, 112016. [Google Scholar] [CrossRef]
- Klaic, M.; Jirsa, F. 17α-Ethinylestradiol (EE2): Concentrations in the environment and methods for wastewater treatment-an update. RSC Adv. 2022, 12, 12794–12805. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lai, W.W.; Tung, H.H.; Lin, A.Y. Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environ. Monit. Assess. 2015, 187, 256. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.H.; Aguiar, M.M.; Ferreira, L.F.; Americo, J.H.; Machado, A.M.; Cavalcanti, E.B.; Tornisielo, V.L. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ. Monit. Assess. 2015, 187, 379. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Bergman, A.; Heindel, J.J.; Jobling, S.; Kidd, K.A.; Zoeller, R.T. (Eds.) State of the Science of Endocrine Disrupting Chemicals 2012; United Nations Environment Programme and the World Health Organization: Geneva, Switzerland, 2013; pp. 11–17. [Google Scholar]
- Juraschek, L.M.; Kappenberg, A.; Amelung, W. Mycotoxins in soil and environment. Sci. Total Environ. 2022, 814, 152425. [Google Scholar] [CrossRef]
- Polak-Sliwinska, M.; Paszczyk, B. Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review. Molecules 2021, 26, 454. [Google Scholar] [CrossRef]
- Stanciu, O.; Banc, R.; Cozma, A.; Filip, L.; Miere, D.; Mañes, J.; Loghin, F. Occurence of fusarium mycotoxins in wheat from Europe—A review. Acta Univ. Cibiniensis. Ser. E: Food Technol. 2015, 19, 35–60. [Google Scholar] [CrossRef]
- Deng, Y.; You, L.; Nepovimova, E.; Wang, X.; Musilek, K.; Wu, Q.; Wu, W.; Kuca, K. Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans. Trends Food Sci. Technol. 2021, 110, 551–558. [Google Scholar] [CrossRef]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hubner, U. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Liu, F.; Jiang, W.; Zhang, D.; Liang, J. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Res. 2019, 151, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Finčur, N.; Šojić Merkulov, D.; Putnik, P.; Despotović, V.; Banić, N.; Bognár, S.; Jovanović, D.; Panić, S.; Ivetić, T.; Abramović, B. Sunlight-driven degradation of alprazolam and amitriptyline by application of binary zinc oxide and tin oxide powders. Separations 2023, 10, 316. [Google Scholar] [CrossRef]
- Gusain, R.; Kuma, N.; Sinha Ray, S. Factors influencing the photocatalytic activity of photocatalysts in wastewater treatment. In Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment, 1st ed.; Fosso-Kankeu, E., Pandey, S., Sinha Ray, S., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 229–270. [Google Scholar]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 2015, 5, 3306–3351. [Google Scholar] [CrossRef]
- Wang, Y.; Roddick, F.A.; Fan, L. Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon. Chemosphere 2017, 185, 297–308. [Google Scholar] [CrossRef]
- Madkour, L.H. Introduction to nanotechnology (NT) and nanomaterials (NMs). In Nanoelectronic Materials. Fundamentals and Applications, 1st ed.; Springer Nature: Cham, Switzerland, 2019; pp. 1–47. [Google Scholar] [CrossRef]
- Bognár, S.; Putnik, P.; Šojić Merkulov, D. Sustainable green nanotechnologies for innovative purifications of water: Synthesis of the nanoparticles from renewable sources. Nanomaterials 2022, 12, 263. [Google Scholar] [CrossRef]
- Joseph, A.; Vijayanandan, A. Photocatalysts synthesized via plant mediated extracts for degradation of organic compounds: A review of formation mechanisms and application in wastewater treatment. Sustain. Chem. Pharm. 2021, 22, 100453. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.T.; Alprol, A.E.; Khedawy, M.; Abualnaja, K.M.; Shalaby, T.A.; Rayan, G.; Ramadan, K.M.A.; Ashour, M. Green Synthesis of zinc oxide nanoparticles using red seaweed for the elimination of organic toxic dye from an aqueous solution. Materials 2022, 15, 5169. [Google Scholar] [CrossRef]
- Environmental Protection Agency: Terms of Environment: Glossary, Abbreviations, and Acronyms. Available online: https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do;jsessionid=sFuRuqhiY5r7cOUHvkG67C1tqxE1DY-Zq3u6VGW4rZz_kM1jwHiH!-196370418?details=&vocabName=Terms%20of%20Env%20(2009)&filterTerm=food%20waste&checkedAcronym=false&checkedTerm=false&hasDefinitions=false&filterTerm=food%20waste&filterMatchCriteria=Contains (accessed on 25 January 2024).
- Environmental Protection Agency: Sustainable Management of Food Basics. Available online: https://www.epa.gov/sustainable-management-food/sustainable-management-food-basics (accessed on 12 February 2024).
- Shabaani, M.; Rahaiee, S.; Zare, M.; Jafari, S.M. Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. LWT 2020, 134, 110133. [Google Scholar] [CrossRef]
- Abdullah, F.H.; Abu Bakar, N.H.H.; Abu Bakar, M. Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment. J. Hazard. Mater. 2021, 406, 124779. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 2021, 402, 123560. [Google Scholar] [CrossRef] [PubMed]
- European Parliament: Circular Economy: Definition, Importance and Benefits. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits (accessed on 24 January 2024).
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Bioactive compounds in banana and their associated health benefits—A review. Food Chem. 2016, 206, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant compounds from bananas (Musa cavendish). Food Chem. 2002, 79, 351–354. [Google Scholar] [CrossRef]
- Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in Cavendish banana. J. Agric. Food Chem. 2000, 48, 844–848. [Google Scholar] [CrossRef]
- Finčur, N.L.; Krstić, J.B.; Šibul, F.S.; Šojić, D.V.; Despotović, V.N.; Banić, N.D.; Agbaba, J.R.; Abramović, B.F. Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products. Chem. Eng. J. 2017, 307, 1105–1115. [Google Scholar] [CrossRef]
- PubChem: Clomazone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/54778 (accessed on 22 July 2024).
- PubChem: Quinmerac. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Quinmerac (accessed on 22 July 2024).
- PubChem: Ciprofloxacin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2764 (accessed on 22 July 2024).
- PubChem: 17α-ethinylestradiol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5991 (accessed on 22 July 2024).
- PubChem: Deoxynivalenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/40024 (accessed on 22 July 2024).
- Bognár, S.; Šojić Merkulov, D.; Finčur, N.; Putnik, P.; Katona, G.; Vojvodić, S.; Kalić, M.; Nastić, N.; Jovanović Lješković, N. Mineral water as a sustainable raw material for skincare products and protective natural antioxidant from solar irradiation: Stability of vitamin C and in vitro antioxidant assessments. Processes 2024, 12, 1265. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Kataru, B.A.S.; Sravani, N.; Vigneshwari, T.; Panneerselvam, A.; Devi Rajeswari, V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 2018, 3, 48–55. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology: X-ray Photoelectron Spectroscopy Database (SRD 20). Available online: https://srdata.nist.gov/xps/ (accessed on 24 April 2024).
- Boz, İ.; Kaluza, S.; Boroğlu, M.Ş.; Muhler, M. Synthesis of high surface area ZnO powder by continuous precipitation. Mater. Res. Bull. 2012, 47, 1185–1190. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.S.W.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2015, 7, 1569–1578. [Google Scholar] [CrossRef]
- Bognár, S.; Putnik, P.; Maksimović, I.; Velebit, B.; Putnik-Delić, M.; Šojić Merkulov, D. Sustainable removal of tolperisone from waters by application of photocatalysis, nanotechnology, and chemometrics: Quantification, environmental toxicity, and degradation optimization. Nanomaterials 2022, 12, 4199. [Google Scholar] [CrossRef]
- Garg, S.; Yadav, M.; Chandra, A.; Gahlawat, S.; Ingole, P.P.; Pap, Z.; Hernadi, K. Plant leaf extracts as photocatalytic activity tailoring agents for BiOCl towards environmental remediation. Ecotoxicol. Environ. Saf. 2018, 165, 357–366. [Google Scholar] [CrossRef]
- Abramović, B.; Despotović, V.; Šojić, D.; Finčur, N. Mechanism of clomazone photocatalytic degradation: Hydroxyl radical, electron and hole scavengers. Reac. Kinet. Mech. Cat. 2014, 115, 67–79. [Google Scholar] [CrossRef]
- Šojić Merkulov, D.; Vlazan, P.; Poienar, M.; Bognár, S.; Ianasi, C.; Sfirloaga, P. Sustainable removal of 17α-ethynylestradiol from aqueous environment using rare earth doped lanthanum manganite nanomaterials. Catal. Today 2023, 424, 113746. [Google Scholar] [CrossRef]
- Piscopo, A.; Robert, D.; Weber, J.V. Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Appl. Catal. B Environ. 2001, 35, 117–124. [Google Scholar] [CrossRef]
- Rajbongshi, B.M. Photocatalyst: Mechanism, challenges, and strategy for organic contaminant degradation. In Handbook of Smart Photocatalytic Materials; Hussain, C.M., Kumar Mishra, A., Eds.; Elsevier: Oxford, UK, 2020; pp. 127–149. [Google Scholar] [CrossRef]
- Cui, W.; Chen, L.; Sheng, J.; Li, J.; Wang, H.; Dong, X.a.; Zhou, Y.; Sun, Y.; Dong, F. The pivotal roles of spatially separated charge localization centers on the molecules activation and photocatalysis mechanism. Appl. Catal. B Environ. 2020, 262, 118251. [Google Scholar] [CrossRef]
- Morante, N.; Gottuso, A.; Parrino, F.; Vaiano, V. Nitrate radical formation and reaction with limonene by TiO2 photocatalysis: A kinetic study. Catal. Today 2024, 432, 114600. [Google Scholar] [CrossRef]
Parameter | CLO | QUI | CIP | EE2 |
---|---|---|---|---|
Mobile phase composition (ACN:H3PO4, v/v) | 60:40 | 50:50 | 20:80 | 80:20 |
Flow rate (cm3/min) | 1.0 | 1.0 | 0.8 | 0.7 |
Injection volume (µL) | 20 | 20 | 10 | 10 |
Column temperature (°C) | 25 | 25 | 25 | 40 |
λmax (nm) 1 | 210 | 224 | 279 | 199 |
λex (nm) 2 | - | - | 280 | 220 |
λem (nm) 3 | - | - | 450 | 310 |
Spectrum | ZnO/BPE |
---|---|
C (wt. %) | 28.79 |
O (wt. %) | 36.37 |
Si (wt. %) | 0.18 |
P (wt. %) | 0.16 |
S (wt. %) | 0.34 |
Zn (wt. %) | 34.16 |
Relative Pressure (p/p0) | Total Pore Volume (cm3/g) | 1/[W((p0/p) − 1)] (1/g) |
---|---|---|
0.1032 | 0.4234 | 217.36 |
0.1559 | 0.6456 | 228.88 |
0.2031 | 0.8701 | 234.33 |
0.2535 | 1.2191 | 222.93 |
0.3032 | 1.5941 | 218.41 |
Pollutant | ZnO/BPE | ZnO | |
---|---|---|---|
Removal efficiency (%) | CIP | 95.7 | 94.9 |
EE2 | 83.0 | 99.8 |
Parameter | Danube River Water | Ultrapure Water |
---|---|---|
pH | 8.10 | 6.56 |
Conductivity at 25 °C (μS/cm) | 424 | 4.5 |
TOC (mg/dm3) | 2.30 | <DL |
Fluoride (mg/dm3) | <DL | <DL |
Chloride (mg/dm3) | 44.02 | <DL |
Bromide (mg/dm3) | 0.080 | <DL |
Sulfate (mg/dm3) | 15.52 | <DL |
Nitrate (mg/dm3) | <DL | <DL |
Nitrite (mg/dm3) | 0.024 | <DL |
Calcium (mg/dm3) | 0.136 | <DL |
Potassium (mg/dm3) | 0.030 | <DL |
Lithium (mg/dm3) | <DL | <DL |
Phosphates (mg/dm3) | 0.202 | <DL |
Magnesium (mg/dm3) | 0.078 | <DL |
Sodium (mg/dm3) | 0.043 | <DL |
Ammonium (mg/dm3) | 0.11 | <DL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, D.; Bognár, S.; Despotović, V.; Finčur, N.; Jakšić, S.; Putnik, P.; Deák, C.; Kozma, G.; Kordić, B.; Šojić Merkulov, D. Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods 2024, 13, 2643. https://doi.org/10.3390/foods13162643
Jovanović D, Bognár S, Despotović V, Finčur N, Jakšić S, Putnik P, Deák C, Kozma G, Kordić B, Šojić Merkulov D. Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods. 2024; 13(16):2643. https://doi.org/10.3390/foods13162643
Chicago/Turabian StyleJovanović, Dušica, Szabolcs Bognár, Vesna Despotović, Nina Finčur, Sandra Jakšić, Predrag Putnik, Cora Deák, Gábor Kozma, Branko Kordić, and Daniela Šojić Merkulov. 2024. "Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production" Foods 13, no. 16: 2643. https://doi.org/10.3390/foods13162643
APA StyleJovanović, D., Bognár, S., Despotović, V., Finčur, N., Jakšić, S., Putnik, P., Deák, C., Kozma, G., Kordić, B., & Šojić Merkulov, D. (2024). Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods, 13(16), 2643. https://doi.org/10.3390/foods13162643