A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon)
Abstract
:1. Introduction
2. Methodology
3. Nutritional Value
4. Active Ingredients Found in Solanum muricatum Fruit
5. Pharmacological Effects
5.1. Antioxidant Activity
5.2. Anti-Cancer Effects
5.3. Antidiabetic Activity
5.4. Anti-Inflammatory Effects
5.5. Other Activities
6. Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gebhardt, C. The historical role of species from the Solanaceae plant family in genetic research. Theor. Appl. Genet. 2016, 129, 2281–2294. [Google Scholar] [CrossRef] [PubMed]
- Machida-Hirano, R. Diversity of potato genetic resources. Breed. Sci. 2015, 65, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P. Plants & Civilization; An Introduction to the Interrelationships of Plants and People; Humboldt State University: Arcata, CA, USA, 2006. [Google Scholar]
- Huyskens-Keil, S.; Prono-Widayat, H.; Lüdders, P.; Schreiner, M. Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage. J. Food Eng. 2006, 77, 628–634. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Lin, H.H.; Chyau, C.C.; Wang, Z.H.; Chen, J.H. Aqueous Extract of Pepino Leaves Ameliorates Palmitic Acid-Induced Hepatocellular Lipotoxicity via Inhibition of Endoplasmic Reticulum Stress and Apoptosis. Antioxidants 2021, 10, 903. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Lin, H.H.; Hsu, C.C.; Chen, B.C.; Chen, J.H. Aqueous Extract of Pepino (Solanum muriactum Ait) Leaves Ameliorate Lipid Accumulation and Oxidative Stress in Alcoholic Fatty Liver Disease. Nutrients 2018, 10, 931. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Burruezo, A.; Prohens, J.; Fita, A.M. Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits. Food Res. Int. 2011, 44, 1927–1935. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Lin, H.H.; Wang, Z.H.; Chen, J.H. Aqueous extract from Pepino (Solanum muricatum Ait.) leaves ameliorated insulin resistance, hyperlipidemia, and hyperglycemia in mice with metabolic syndrome. J. Food Biochem. 2020, 44, e13518. [Google Scholar] [CrossRef]
- Hussain, J.; Rehman, N.U.; Mabood, F.; Al-Harrasi, A.; Ali, L.; Rizvi, T.S.; Khan, A.; Rafiq, K.; Al-Rabaani, H.; Jabeen, F. Application of fluorescence spectroscopy coupled with PLSR for the estimation of quercetin in four medicinal plants. Chem. Data Collect. 2019, 21, 100228. [Google Scholar] [CrossRef]
- Herraiz, F.; Vilanova, S.; Plazas, M.; Gramazio, P.; Andújar, I.; Rodriguez Burruezo, A.; Fita, A.; Anderson, G.; Prohens, J. Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale. Sci. Hortic. 2015, 183, 1–7. [Google Scholar] [CrossRef]
- Herraiz, F.J.; Raigon, M.D.; Vilanova, S.; Garcia-Martinez, M.D.; Gramazio, P.; Plazas, M.; Rodriguez-Burruezo, A.; Prohens, J. Fruit composition diversity in land races and modern pepino (Solanum muricatum) varieties and wild related species. Food Chem. 2016, 203, 49–58. [Google Scholar] [CrossRef]
- Giovanelli, G.; Buratti, S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009, 112, 903–908. [Google Scholar] [CrossRef]
- Parveen, S.; Bukhari, N.; Nazir, M.; Qureshi, W.A.; Yaqoob, A.; Shahid, M. Phytochemical analysis, in-vitro biological activities and Pearson correlation of total polyphenolic content with antioxidant activities of Ziziphus mauritiana fruit pulp and seed during different ripening stages. S. Afr. J. Bot. 2023, 157, 346–354. [Google Scholar] [CrossRef]
- Hsu, C.C.; Guo, Y.R.; Wang, Z.H.; Yin, M.C. Protective effects of an aqueous extract from pepino (Solanum muricatum Ait.) in diabetic mice. J. Sci. Food Agric. 2011, 91, 1517–1522. [Google Scholar] [CrossRef]
- Shathish, K.; Sakthivel, K.M.; Guruvayoorappan, C. Protective Effect of Solanum muricatum on Tumor Metastasis by Regulating Inflammatory Mediators and Nuclear Factor-Kappa B Subunits. J. Environ. Pathol. Toxicol. Oncol. 2015, 34, 249–262. [Google Scholar] [CrossRef]
- Contreras, C.; Schwab, W.; Mayershofer, M.; Morales, I.; González-Agüero, M.; Defilippi, B. Study of physiological and quality parameters during development and ripening of pepino (Solanum muricatum Aiton) fruit. Chil. J. Agric. Res. 2019, 79, 385–395. [Google Scholar] [CrossRef]
- Kola, O. Physical and chemical characteristics of the ripe pepino (Solanum muricatum) fruit grown in Turkey. J. Food Agric. Environ. 2010, 8, 168–171. [Google Scholar]
- Kola, O.; Simsek, M.; Duran, H.; Bozkir, H. HPLC Determination of Carotenoid, Organic Acid, and Sugar Content in Pepino (Solanum muricatum) Fruit During the Ripening Period. Chem. Nat. Compd. 2015, 51, 132–136. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Zhang, G.; Yang, S.; Zhong, Q. Pepino (Solanum muricatum) Metabolic Profiles and Soil Nutrient Association Analysis in Three Growing Sites on the Loess Plateau of Northwestern China. Metabolites 2022, 12, 885. [Google Scholar] [CrossRef]
- Yue, H.; Xu, Q.; Li, X.; Elango, J.; Wu, W.; Xu, J. Physicochemical Characterization and Immunomodulatory Activity of a Novel Acid Polysaccharide from Solanum muricatum. Polymers 2019, 11, 1972. [Google Scholar] [CrossRef]
- Carol, M.; Joshua, O.; Gesimba, R. Effect of NPK fertilizer rates on secondary metabolites of pepino melon (Solanum muricatum Aiton). J. Hortic. For. 2021, 13, 25–34. [Google Scholar] [CrossRef]
- Güler, H.Ö.; Sözen, A.; Tuncer, A.D.; Afshari, F.; Khanlari, A.; Şirin, C.; Gungor, A. Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh. Sol. Energy 2020, 197, 371–384. [Google Scholar] [CrossRef]
- Herraiz, F.J.; Villano, D.; Plazas, M.; Vilanova, S.; Ferreres, F.; Prohens, J.; Moreno, D.A. Phenolic Profile and Biological Activities of the Pepino (Solanum muricatum) Fruit and Its Wild Relative S. caripense. Int. J. Mol. Sci. 2016, 17, 394. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Z.; Zhang, G.; Wang, L.; Zhong, Q. Identification of the key metabolites and related genes network modules highly associated with the nutrients and taste components among different Pepino (Solanum muricatum) cultivars. Food Res. Int. 2023, 163, 112287. [Google Scholar] [CrossRef]
- Oria, M.; Harrison, M.; Stallings, V.A. (Eds.) Dietary Reference Intakes for Sodium and Potassium; The National Academies Collection: Reports Funded by National Institutes of Health; The National Academics Press: Washington, DC, USA, 2019. [Google Scholar]
- Sudha, G.; Priya, M.S.; Shree, R.B.; Vadivukkarasi, S. Antioxidant activity of ripe and unripe pepino fruit (Solanum muricatum Aiton). J. Food Sci. 2012, 77, C1131–C1135. [Google Scholar] [CrossRef]
- Wang, Z.H.; Hsu, C.C.; Yin, M.C. Aqueous Extract from Pepino (Solanum muricatum Ait.) Attenuated Hyperlipidemia and Cardiac Oxidative Stress in Diabetic Mice. ISRN Obes. 2012, 2012, 490870. [Google Scholar] [PubMed]
- Zhu, C.; Zhang, M.; Wang, S.; Gao, X.; Lin, T.; Yu, J.; Tian, J.; Hu, Z. Phenolic compound profile and gastrointestinal action of Solanaceae fruits: Species-specific differences. Food Res. Int. 2023, 170, 112968. [Google Scholar] [CrossRef]
- Sudha, G.; Priya, M.; Rajan Babu, I.S.; Vadivukkarasi, S. In vitro free radical scavenging activity of raw Pepino fruit (Solanum muricatum Aiton). Int. J. Curr. Pharm. Res. 2011, 3, 137–140. [Google Scholar]
- Sun, Z.; Zhao, W.; Li, Y.; Si, C.; Sun, X.; Zhong, Q.; Yang, S. An Exploration of Pepino (Solanum muricatum) Flavor Compounds Using Machine Learning Combined with Metabolomics and Sensory Evaluation. Foods 2022, 11, 3248. [Google Scholar] [CrossRef]
- Di Scala, K.; Vega-Gálvez, A.; Uribe, E.; Oyanadel, R.; Miranda, M.; Vergara, J.; Quispe, I.; Lemus-Mondaca, R. Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int. J. Food Sci. Technol. 2011, 46, 746–753. [Google Scholar] [CrossRef]
- Yue, H.; Xu, Q.; Bian, G.; Guo, Q.; Fang, Z.; Wu, W. Structure characterization and immunomodulatory activity of a new neutral polysaccharide SMP-0b from Solanum muricatum. Int. J. Biol. Macromol. 2020, 155, 853–860. [Google Scholar] [CrossRef]
- Orhan, N.; Deliorman Orhan, D.; Aslan, M.; Ergun, F. Effect of Exotic Fruit “Pepino” (Solanum muricatum Aiton.) on Blood Glucose Level. Turk. J. Pharm. Sci. 2014, 11, 196–202. [Google Scholar]
- Redgwell, R.J.; Turner, N.A. Pepino (solanum muricatum): Chemical composition of ripe fruit. J. Sci. Food Agric. 1986, 37, 1217–1222. [Google Scholar] [CrossRef]
- Shathish, K.; Guruvayoorappan, C. Solanum muricatum Ait. inhibits inflammation and cancer by modulating the immune system. J. Cancer Res. Ther. 2014, 10, 623–630. [Google Scholar] [CrossRef]
- Wang, N.; Wang, L.; Wang, Z.; Cheng, L.; Wang, J. Solanum muricatum Ameliorates the Symptoms of Osteogenesis Imperfecta In Vivo. J. Food Sci. 2019, 84, 1646–1650. [Google Scholar] [CrossRef]
- Valenti, M.T.; Dalle Carbonare, L.; Mottes, M. Osteogenic Differentiation in Healthy and Pathological Conditions. Int. J. Mol. Sci. 2016, 18, 41. [Google Scholar] [CrossRef]
- Wang, N.; Wang, F.; Gao, Y.; Zhou, Z.; Liu, W.; Pan, C.; Yin, P.; Tang, M.; Yu, X. Solanum Muricatum Promotes Osteogenic Differentiation of Rat Bone Marrow Stromal Cells. J. Food Sci. 2017, 82, 1775–1780. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Al Juhaimi, F.; Ahmed, I.A.M.; Uslu, N.; Babiker, E.E.; Ghafoor, K. Effect of microwave and oven drying processes on antioxidant activity, total phenol and phenolic compounds of kiwi and pepino fruits. J. Food Sci. Technol. 2020, 57, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Mieszczakowska-Frac, M.; Celejewska, K.; Plocharski, W. Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants 2021, 10, 54. [Google Scholar] [CrossRef]
- Ren, W.; Tang, D.G. Extract of Solanum muricatum (Pepino/CSG) inhibits tumor growth by inducing apoptosis. Anticancer. Res. 1999, 19, 403–408. [Google Scholar]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Bai, Y.; Gilbert, R.G. Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients 2022, 14, 5107. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.S.; Weakley, S.M.; Yao, Q.; Chen, C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012, 165, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Dembinska-Kiec, A.; Mykkanen, O.; Kiec-Wilk, B.; Mykkanen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008, 99, ES109–ES117. [Google Scholar] [CrossRef]
- Lutchmansingh, F.K.; Hsu, J.W.; Bennett, F.I.; Badaloo, A.V.; McFarlane-Anderson, N.; Gordon-Strachan, G.M.; Wright-Pascoe, R.A.; Jahoor, F.; Boyne, M.S. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS ONE 2018, 13, e0198626. [Google Scholar] [CrossRef]
- Virani, D.; Chaerunnisa, N.N.; Suarsi, I.; Dachlan, D.M.; Thahir, A.I.A. Pepino extract (Solanum muricatum Ait.) on HDL and LDL in type 2 diabetic rats. Enfermería Clín. 2020, 30, 163–166. [Google Scholar] [CrossRef]
- Ma, C.T.; Chyau, C.C.; Hsu, C.C.; Kuo, S.M.; Chuang, C.W.; Lin, H.H.; Chen, J.H. Pepino polyphenolic extract improved oxidative, inflammatory and glycative stress in the sciatic nerves of diabetic mice. Food Funct. 2016, 7, 1111–1121. [Google Scholar] [CrossRef]
- Serina, J.J.C.; Castilho, P.C. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit. Rev. Food Sci. Nutr. 2021, 62, 8355–8387. [Google Scholar] [CrossRef]
- Yalcin, H. Effect of ripening period on composition of pepino (Solanum muricatum) fruit grown in Turkey. Afr. J. Biotech. 2010, 9, 3901. [Google Scholar]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Algandaby, M.M. Quercetin attenuates cisplatin-induced ovarian toxicity in rats: Emphasis on anti-oxidant, anti-inflammatory and anti-apoptotic activities. Arab. J. Chem. 2021, 14, 103191. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 2001, 1, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Larkin, S.; Williams, T.J. Cyclooxygenase-2: Regulation and relevance in inflammation. Biochem. Pharmacol. 1995, 50, 1535–1542. [Google Scholar] [CrossRef]
- Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clin. Immunol. 2006, 119, 229–240. [Google Scholar] [CrossRef]
- Lee, S.; Keirsey, K.I.; Kirkland, R.; Grunewald, Z.I.; Fischer, J.G.; de La Serre, C.B. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J. Nutr. 2018, 148, 209–219. [Google Scholar] [CrossRef]
- Miller, J.C.; Satheesh Babu, A.K.; Petersen, C.; Wankhade, U.D.; Robeson, M.S., 2nd; Putich, M.N.; Mueller, J.E.; O’Farrell, A.S.; Cho, J.M.; Chintapalli, S.V.; et al. Gut Microbes Are Associated with the Vascular Beneficial Effects of Dietary Strawberry on Metabolic Syndrome-Induced Vascular Inflammation. Mol. Nutr. Food Res. 2022, 66, e2200112. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Yu, J.; Tan, Y.; Guo, P.; Wu, C. The gut microbiota confers the lipid-lowering effect of bitter melon (Momordica charantia L.) In high-fat diet (HFD)-Induced hyperlipidemic mice. Biomed. Pharmacother. 2020, 131, 110667. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kurnia, P.; Henning, S.M.; Lee, R.; Huang, J.; Garcia, M.C.; Surampudi, V.; Heber, D.; Li, Z. Effect of Standardized Grape Powder Consumption on the Gut Microbiome of Healthy Subjects: A Pilot Study. Nutrients 2021, 13, 3965. [Google Scholar] [CrossRef]
Classification | Compound | Molecular Formula | MW | Effect | Reference |
---|---|---|---|---|---|
Flavonoids | Quercetin | C15H10O7 | 302.23 | Improving insulin sensitivity; inhabitation of COX-2, IL-6 and NFκb; antioxidant | [8,14,27] |
Quercetin-3-O-galactoside; Hyperoside | C21H20O12 | 464.4 | [28] | ||
Myricetin | C15H10O8 | 318.23 | [14] | ||
Naringenin | C15H12O5 | 272.25 | [14] | ||
Rutin | C27H30O16 | 610.5 | [14] | ||
Chlorogenic acids | 1-Caffeoylquinic acid 3-Caffeoylquinic acid 4-Caffeoylquinic acid 5-Caffeoylquinic acid 2-Caffeoylquinic acid | C16H18O9 | 354.3087 | Anti-inflammatory | [23,28] |
di-Caffeoylquinic acid | C25H24O12 | 516.45 | [23] | ||
3-O-p-Coumaroylquinic acid 5-O-p-Coumaroylquinic acid | C16H18O8 | 338.312 | [28] | ||
Hydroxycinnamic acids | Caffeic acid | C9H8O4 | 180.16 | Antioxidant | [28] |
1-O-caffeoyl-beta-D-glucose | C15H18O9 | 342.30 | [28] | ||
4-caffeoylshikimic acid 3-caffeoylshikimic acid | C16H16O8 | 336.2934 | [28] | ||
1-O-Feruloylglucose | C16H20O9 | 356.32 | [23] | ||
Glucosyringic acid | C15H20O10 | 360.31 | [28] | ||
Hydroxycinnamic acids derivatives | Rosmarinic acid | C18H16O8 | 360.3 | [28] | |
Vanillic acids | Vanillic acid-4-O-glucuronide | C14H16O10 | 344.27 | [28] | |
Ferulic acids | 6-O-Feruloyl-beta-D-glucose | C16H20O9 | 356.32 | [28] | |
Coumarins | Skimmin | C15H16O8 | 324.28 | [28] | |
Umbelliferone; 7-Hydroxycoumarin | C9H6O3 | 162.14 | [28] | ||
7-methoxycoumarin | C10H8O3 | 176.17 | [28] | ||
Lignans | Vitexdoin E | C19H16O6 | 340.3 | [28] | |
Phenolic compounds | Mucic acid dimethyl ester | C8H14O8 | 238.19 | [28] | |
Arbutin | C12H16O7 | 272.25 | [28] |
Types | Nutrient Ingredients | References |
---|---|---|
Vitamins | B1, B2, B3, C | [10,18,20,24] |
Carbohydrates | polysaccharide SMP-3a, SMP-0b, dietary fibre including pectin, monosaccharides including sucrose, fructose, glucose | [16,18,20,32,33,34] |
Amino acids | 60 amino acid and their derivatives, including 7 essential amino acids (tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, and valine) | [19,24,34] |
Lipids | 36 different type of fatty acid, 16 lysophosphatidylcholine (LPC), 6 lysophosphatidylethanolamine (LPE), phosphatidylcholine (18:2) (PC) | [19,24] |
Trace minerals | Potassium, Phosphorus, Iron, Copper, Calcium, Zinc | [20,23] |
Organic acid | Citric acid, Malic acid | [16,18,34] |
Carotenoids | α-carotene, β-carotene, xanthophyll (zeaxanthin and lutein), β-apo-8-carotenal, α-cryptoxanthin, β-cryptoxanthin, lycopene | [17,21,22,23] |
Others | Plumerane, Anthocyanins | [24] |
Part of the Plant | Type of Extract | Type of Study | Effect |
---|---|---|---|
Leaf | Aqueous extract | In vivo | Antioxidant activity [6], Antidiabetic activity [8] |
In vitro | Antioxidant activity [5] | ||
Methanol extract | In vitro | Antidiabetic activity [9] | |
Pulp | Aqueous extract | In vitro | Anti-inflammatory [20] |
Acidic extract | In vitro | Antioxidant activity [23], Anti-inflammatory [23] | |
Ethanol extract | In vitro | Anti-inflammatory [20] | |
Fruit | Aqueous extract | In vivo | Antidiabetic activity [27], Anti-inflammatory [14] |
Ethanol extract | In vivo | Anti-inflammatory [14] | |
In vitro | Antioxidant activity [26], Anti-inflammatory [32] | ||
Ethyl acetate extract | In vitro | Antioxidant activity [29] | |
Methanol extract | In vivo | Anti-cancer [15,35], Anti-inflammatory [15,35] | |
Whole plant | Aqueous extract | In vivo | Osteogenesis activity [36] |
In vitro | Osteogenesis activity [37,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, H.-T.L.; Chan, K.-M.; Abhreet-Kaur; Sam, S.-W.; Chan, S.-W. A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods 2024, 13, 2740. https://doi.org/10.3390/foods13172740
Chan H-TL, Chan K-M, Abhreet-Kaur, Sam S-W, Chan S-W. A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods. 2024; 13(17):2740. https://doi.org/10.3390/foods13172740
Chicago/Turabian StyleChan, Hei-Tung Lydia, Ka-Man Chan, Abhreet-Kaur, Sze-Wing Sam, and Shun-Wan Chan. 2024. "A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon)" Foods 13, no. 17: 2740. https://doi.org/10.3390/foods13172740
APA StyleChan, H.-T. L., Chan, K.-M., Abhreet-Kaur, Sam, S.-W., & Chan, S.-W. (2024). A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods, 13(17), 2740. https://doi.org/10.3390/foods13172740