A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications
Abstract
:1. Introduction
Probiotics | Prebiotics | Symbiotics | Parabiotics | Postbiotics | |
---|---|---|---|---|---|
Associated synonyms | Beneficial bacteria | Food for probiotics | Combination of pro- and prebiotics | Killed or inactivated probiotic | Metabiotics, postmetabolites, paraprobiotic, ghost probiotics |
Recent definition per ISAPP | Live microorganisms that, when administrated in adequate amounts, confer a health benefit on the host | A substrate that is selectively utilized by host microorganisms, conferring a health benefit | A mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host | Inactivated microbial cells (non-viable) that confer a health benefit to the consumer | Preparation of inanimate microorganisms and/or their components that confers a health benefit on the host |
Examples | Lactobacillus, Bifidobacterium, Saccharomyces, etc. | Inulin, long-chain, short-chain oligosaccharides, etc. | Lactobacillus/Bifidobacterium/Saccharomyces + inulin, etc. | Dead or inactivated probiotics cells and teichoic acid, exopolysaccharides, fimbria, chitin, pili, etc. | Lysate, cell-free supernatant, SCFAs, peptides, bioactive molecules, urolith A, teichoic acid, exopolysaccharides |
Antibiotic resistance risk and safety concerns | Present | Absent | Present | Present | Absent |
Patentability | Live organisms patent not possible | Possible | Possible | Possible | Easy |
Shelf life | Limited | Long time | Limited | Long time | Long time |
Manufacturing quality control | Challenging | Relatively easy | Challenging | Relatively easy | Relatively easy |
2. Postbiotics
2.1. Terminology and Classification
2.2. Postbiotics’ Mechanism of Action
2.3. Navigating the Postbiotic Discovery Landscape
2.3.1. Microbial Metabolomics—The First Step in Postbiotic Discovery
2.3.2. NMR—Application and Limitations in Postbiotic Discovery
2.3.3. Exploring Applications and Limitations of GC-MS in Postbiotic Discovery
- Ionization: At this initial stage, the analyte undergoes ionization through an ionizing source.
- Mass Analyzer: Ionized analytes are then sorted based on their m/z ratio.
- Detector: The detector measures the ions and presents their mass spectrum chart.
- Limited Sample Type Analysis: GC-MS is primarily designed for volatile and semi-volatile organic compounds, making it unsuitable for the analysis of inorganic compounds, biopolymers, and samples with high viscosity or water content.
- Limited Sensitivity to Trace Metabolites: Despite being a highly sensitive technique, GC-MS faces challenges in detecting trace metabolites within complex sample mixtures.
- Interferences: The presence of certain compounds in samples can interfere with the accuracy of analysis, potentially leading to false positive or negative detections.
- Limited Structural Information: GC-MS may not provide detailed molecular structure or functional group information, limiting the depth of structural insights into the identified metabolites/postbiotics.
- Logistical Challenges: The technology is associated with a high cost, requiring specialized instruments and expertise for operation. Additionally, data analysis tools and complex sample preparation steps further contribute to the logistical challenges of using GC-MS in metabolite/postbiotic discovery.
2.3.4. Application and Limitation of LC-MS in Postbiotic Discovery
- Partition chromatography: This mode relies on the varying solubility and hydrophobicity of analytes in the stationary phase compared to the mobile phase.
- Ion-exchange chromatography: This separates analytes based on their ionic charges.
- Size-exclusion chromatography: This method exploits differences in the sizes of analyte molecules to achieve separation.
- Affinity chromatography: Analytes are separated based on their ability to bond with the stationary phase.
- Sample Type: It is more suitable for solid and liquid samples but may face challenges with volatile metabolite analysis.
- Sensitivity: While it is generally sensitive, some postbiotics with low concentrations may not be accurately detected.
- Specificity: The trade-off between speed and precision in analysis can lead to the false detection of a few metabolites.
- Matrix Effect: Fluctuations in the metabolite matrix composition can occur without being detected, hence potentially yielding biased results.
- Logistics: Similar to GC-MS, LC-MS uses an expensive instrument that requires regular maintenance. Skilled labor is necessary to operate the instrument and analyze the data effectively.
2.3.5. Combined MS Techniques in Postbiotic Discovery
2.4. Challenges and Prospectus in Postbiotic Discovery
3. Clinically Established Applications of Postbiotics
3.1. Clinical Application of Postbiotics in the Digestive System
Promising Applications of Postbiotics in Gastrointestinal Animal Models
3.2. Clinical Application of Postbiotics in the Integumentary System
3.3. Clinical Application of Postbiotics in the Reproductive System
3.4. Clinical Application of Postbiotics in the Sensory System
3.5. Clinical Application of Postbiotics in the Respiratory System
3.6. Clinical Application of Postbiotics in the Circulatory System
Postbiotic | Microbial Source | Dosage and Regimen | Trial Size | Subject’s Condition | Outcome |
---|---|---|---|---|---|
Digestive system | |||||
Urolith | Gut microbes | 500 and 1000 mg, oral twice daily, 4 months | 88 | Overweight but absence of any chronic medical | Improved muscle performance postbiotic treated compared to untreated control [124]. |
Heat-killed | Lacticaseibacillus paracasei * | Lozenges three times a day for 4 weeks | 68 | Halitosis | Significantly inhibited halitosis and improved oral microbiome [96]. |
Sodium butyrate | Chemically synthesized | Twice daily orally for 12 weeks | 3000 | Confirmed IBS patients | Effectively relieved the symptoms of IBS [103]. |
Heat-treated | Bifidobacterium longum CECT 7347 | Once daily orally for 12 weeks | 200 | Diagnosed with IBS | Reduced IBS symptom severity [105]. |
Heat-killed and supernatant | Ligilactobacillus salivarius subsp. salicinius AP-32 *, Lacticaseibacillus paracasei ET-66 *, and Lactiplantibacillus plantarum LPL28 * | Oral lozenges thrice for 4 weeks | 75 | Healthy individuals | Enhanced oral immunity, inhibited oral pathogens, and increased beneficial oral microbiota [95]. |
2′-linked fucosyllactose | Chemically synthesized | Fed ad libitum orally until week 17 | 276 | Healthy infants | Supported adequate infant growth and was well tolerated [12]. |
Thermally inactivated | Bifidobacterium animalis subsp. lactis, BPL1 | Fed ad libitum orally up to 12 months | 217 | Healthy infants | Lowered BMI and found to be safe and well tolerated in infants [98]. |
Fermented formula | LactofidusTM | Oral feeding for 4 weeks | 182 | Infants diagnosed with uncomplicated regurgitation | Improved symptoms, was well tolerated and safe [99,100]. |
Fermented formula fraction | LactofidusTM, Bifidobacterium breve C50, and Streptococcus thermophilus 065 | Fed ad libitum orally until week 17 | 200 | Healthy infants less than 29 days | Supported infant development and was safe compared to the breastfed group [101]. |
Oat co-ferment | Lactiplantibacillus plantarum * | Twice-daily enema for 2 weeks | 35 | Patients diagnosed with moderate to severe IBS | Improved barrier-protective properties in IBS patients [104]. |
Heat-killed | Lacticaseibacillus paracasei MCC1849 * | Orally once daily for 24 weeks | 586 | Healthy individuals | Suppressed subjective symptoms in healthy adults [128]. |
Heat-killed | Lactiplantibacillus plantarum TWK10 * | Twice daily orally for 6 weeks | 30 | Healthy individuals | Significantly improved endurance [129]. |
Ferment | Bifidobacterium breve C50 (BbC50) and Streptococcus thermophilus ST065 | Ad libitum oral feeding for 6 months | 280 | Healthy full-term infants | Normal growth, postbiotic was well tolerated, and microbiome composition and metabolic activity were similar to those of breastfed infants [141]. |
Integument system | |||||
Ferment filtrate | Epidermidibacterium Keratini (EPI-7) | Facial application twice daily for 3 weeks | 55 | Healthy women | Significantly enhanced skin tone and skin microbiome diversity [130]. |
Yeast extract | Pichia anomala | Facial application twice daily for 8 weeks | 110 | Healthy women | Enhanced skin barrier-protective function and microbiome composition [131]. |
Heat-killed | Lacticaseibacillus paracasei, GMNL-653 * | Once- or twice-daily hair wash for 4 months | 22 | Healthy adults | Improved scalp conditions by controlling sebum secretion and dandruff generation, and promoting hair growth [135]. |
Lysate | Limosilactobacillus reuteri ATCC-PTA-6475 * | Consumed twice daily for 3 weeks | 14 | Healthy females following wounding by biopsy | Improved wound repair [127]. |
Heat-treated | Pediococcus acidilactici LM1013 | Dosage information not available | 23 | Patients diagnosed with acne vulgaris | Inhibited acne vulgaris. |
Collagen co-ferment | Lactobacillus acidophilus TYCA06 *, Ligilactobacillus salivarius AP-32, and Bifidobacterium animalis subsp. lactis CP-9 | Applied twice daily for 4 weeks | 20 | Patients diagnosed with acne vulgaris | Ameliorated redness, inflammation, and acne symptoms [132]. |
Rice-flour co-ferment | Lacticaseibacillus paracasei CBA L74 * | Once daily orally for 12 weeks | 50 | Infants and kids diagnosed with AD | Not effective in reducing the severity of AD but showed a steroid-sparing effect [133]. |
Metabolites including lipoteichoic acid, hyaluronic acid, lactic acid, and sphingomyelinase | Lactobacillus plantarum (AN057) *, Lacticaseibacillus casei * (AN177), and Streptococcus thermophilus (AN157) | Twice-daily application on skin for 4 weeks | 50 | Healthy individuals with no prior skin conditions | Significant beneficial effects on skin, with reduction in wrinkle depth and pore size [134]. |
Tyndallized extract | Lacticaseibacillus rhamnosus * (IDCC 3201) | Applied twice daily for 12 weeks | 100 | Infants with diagnosed AD conditions | Improved AD and reduced inflammation [136]. |
Reproductive system | |||||
Ferment | Lacticaseibacillus paracasei * ProSci-92 and L. rhamnosus ProSci-109 | Application in deep part of vagina every night for 7 days | 50 | Diagnosed with bacterial vaginosis (BV) | Ameliorated BV conditions and the symptom [137]. |
Sensory system | |||||
Bacterial lysate | Latilactobacillussakei * | 1 drop in each eye every 5 h for 4 weeks | 40 | Patients with dry eye syndrome | Significantly improved the signs and symptoms of DED and suppressed ocular inflammation [138]. |
Respiratory system | |||||
Complex metabolites | 21 kinds of lactobacillus not disclosed | Consumed orally on day 1 of each of the four 3-week treatment cycles | 60 | Patients confirmed with non-small-cell lung cancer | Attenuated the tumor microenvironment and inflammation [139,140]. |
Circulatory system | |||||
Heat-inactivated | B. animalis subsp. lactis CECT 8145 | Daily 50 g ingestion for 12 weeks | 120 | Abdominally obese individuals | Improved insulin resistance, circulating triglyceride levels, and risk factors for cardiovascular diseases [141]. |
3.7. Ongoing Extended Clinical Application of Postbiotics
3.8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Siezen, R.J.; Kleerebezem, M. The human gut microbiome: Are we our enterotypes? Microb. Biotechnol. 2011, 4, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med. 2016, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Moya, A.; Ferrer, M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol. 2016, 24, 402–413. [Google Scholar] [CrossRef]
- de la Cuesta-Zuluaga, J.; Kelley, S.T.; Chen, Y.; Escobar, J.S.; Mueller, N.T.; Ley, R.E.; McDonald, D.; Huang, S.; Swafford, A.D.; Knight, R.; et al. Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults. mSystems 2019, 4, e00261-19. [Google Scholar] [CrossRef]
- Shade, A. Diversity is the question, not the answer. ISME J. 2017, 11, 1–6. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Mohanan, K.P.a.M. Postbiotic Supplements Market Size-by Type (Lipopolysaccharides, Short-Chain Fatty Acids, Indole Derived from Tryptophan, Muramyl Dipeptide), Form (Liquid, Capsules and Tablets, Powder), Distribution Channel, Application & Global Forecast, 2024–2032; Global Market Insights Inc.: Selbyville, DE, USA, 2023; p. 210. [Google Scholar]
- Pimentel, T.C.; Cruz, A.G.; Pereira, E.; Almeida da Costa, W.K.; da Silva Rocha, R.; Targino de Souza Pedrosa, G.; Rocha, C.d.S.; Alves, J.M.; Alvarenga, V.O.; Sant’Ana, A.S.; et al. Postbiotics: An overview of concepts, inactivation technologies, health effects, and driver trends. Trends Food Sci. Technol. 2023, 138, 199–214. [Google Scholar] [CrossRef]
- Vandenplas, Y.; de Halleux, V.; Arciszewska, M.; Lach, P.; Pokhylko, V.; Klymenko, V.; Schoen, S.; Abrahamse-Berkeveld, M.; Mulder, K.A.; Rubio, R.P.; et al. A Partly Fermented Infant Formula with Postbiotics Including 3′-GL, Specific Oligosaccharides, 2′-FL, and Milk Fat Supports Adequate Growth, Is Safe and Well-Tolerated in Healthy Term Infants: A Double-Blind, Randomised, Controlled, Multi-Country Trial. Nutrients 2020, 12, 3560. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Feng, C.; Guo, C.; Duan, Z. Development of Novel Topical Anti-Acne Cream Containing Postbiotics for Mild-to-Moderate Acne: An Observational Study to Evaluate Its Efficacy. Indian. J. Dermatol. 2022, 67, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Yelin, I.; Flett, K.B.; Merakou, C.; Mehrotra, P.; Stam, J.; Snesrud, E.; Hinkle, M.; Lesho, E.; McGann, P.; McAdam, A.J.; et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat. Med. 2019, 25, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, M.; Giovagnoli, S.; Zelante, T.; Romani, L.; Ricci, M. Development of Novel Indole-3-Aldehyde-Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. J. Pharm. Sci. 2018, 107, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, W.; Feng, C.; Kwok, L.-Y.; He, Q.; Sun, Z. Stronger gut microbiome modulatory effects by postbiotics than probiotics in a mouse colitis model. npj Sci. Food 2022, 6, 53. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Kandasamy, S.; Vlasova, A.N.; Fischer, D.; Kumar, A.; Chattha, K.S.; Rauf, A.; Shao, L.; Langel, S.N.; Rajashekara, G.; Saif, L.J. Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. J. Immunol. 2016, 196, 1780–1789. [Google Scholar] [CrossRef]
- Kandasamy, S.; Vlasova, A.N.; Fischer, D.D.; Chattha, K.S.; Shao, L.; Kumar, A.; Langel, S.N.; Rauf, A.; Huang, H.C.; Rajashekara, G.; et al. Unraveling the Differences between Gram-Positive and Gram-Negative Probiotics in Modulating Protective Immunity to Enteric Infections. Front. Immunol. 2017, 8, 334. [Google Scholar] [CrossRef]
- Kumar, A.; Helmy, Y.A.; Fritts, Z.; Vlasova, A.; Saif, L.J.; Rajashekara, G. Anti-rotavirus Properties and Mechanisms of Selected Gram-Positive and Gram-Negative Probiotics on Polarized Human Colonic (HT-29) Cells. Probiotics Antimicrob. Proteins 2023, 15, 107–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Wu, Y.; He, H.; Zeng, Y.; An, Z.; Jia, W. The effect of different prebiotics on intestinal probiotics in newly diagnosed diabetic patients. Food Sci. Nutr. 2023, 11, 7921–7929. [Google Scholar] [CrossRef]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef] [PubMed]
- Dobreva, L.; Borisova, D.; Paunova-Krasteva, T.; Dimitrova, P.D.; Hubenov, V.; Atanasova, N.; Ivanov, I.; Danova, S. From Traditional Dairy Product “Katak” to Beneficial Lactiplantibacillus plantarum Strains. Microorganisms 2023, 11, 2847. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tu, H.; Chen, T. Postbiotics in Human Health: A Narrative Review. Nutrients 2023, 15, 291. [Google Scholar] [CrossRef] [PubMed]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.; De Paepe, K.; Van de Wiele, T. Postbiotics and Their Health Modulatory Biomolecules. Biomolecules 2022, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Sharma, R.; Kapila, R.; Kapasiya, M.; Saliganti, V.; Dass, G.; Kapila, S. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr. Res. 2014, 34, 968–981. [Google Scholar] [CrossRef]
- Dilna, S.V.; Surya, H.; Aswathy, R.G.; Varsha, K.K.; Sakthikumar, D.N.; Pandey, A.; Nampoothiri, K.M. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT-Food Sci. Technol. 2015, 64, 1179–1186. [Google Scholar] [CrossRef]
- Kaur, S.; Thukral, S.K.; Kaur, P.; Samota, M.K. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods 2021, 4, 100043. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Hernandez-Granados, M.J.; Franco-Robles, E. Postbiotics in human health: Possible new functional ingredients? Food Res. Int. 2020, 137, 109660. [Google Scholar] [CrossRef] [PubMed]
- Cicenia, A.; Scirocco, A.; Carabotti, M.; Pallotta, L.; Marignani, M.; Severi, C. Postbiotic Activities of Lactobacilli-derived Factors. J. Clin. Gastroenterol. 2014, 48, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.S.; Ijssennagger, N.; Kies, A.K.; van Mil, S.W.C. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G159–G170. [Google Scholar] [CrossRef] [PubMed]
- Peluzio, M.d.C.G.; Martinez, J.A.; Milagro, F.I. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci. Technol. 2021, 108, 11–26. [Google Scholar] [CrossRef]
- Xavier-Santos, D.; Padilha, M.; Fabiano, G.A.; Vinderola, G.; Gomes Cruz, A.; Sivieri, K.; Costa Antunes, A.E. Evidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: A bibliometric analysis and systematic review. Trends Food Sci. Technol. 2022, 120, 174–192. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar]
- Xie, J.; Li, Q.; Nie, S. Bacterial extracellular vesicles: An emerging postbiotic. Trends Food Sci. Technol. 2024, 143, 104275. [Google Scholar] [CrossRef]
- Konishi, H.; Fujiya, M.; Tanaka, H.; Ueno, N.; Moriichi, K.; Sasajima, J.; Ikuta, K.; Akutsu, H.; Tanabe, H.; Kohgo, Y. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun. 2016, 7, 12365. [Google Scholar] [CrossRef]
- Roberto, M.; Carconi, C.; Cerreti, M.; Schipilliti, F.M.; Botticelli, A.; Mazzuca, F.; Marchetti, P. The Challenge of ICIs Resistance in Solid Tumours: Could Microbiota and Its Diversity Be Our Secret Weapon? Front. Immunol. 2021, 12, 704942. [Google Scholar] [CrossRef]
- Round, J.L.; Mazmanian, S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 2010, 107, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Takemura, N.; Sonoyama, K.; Kawagishi, H.; Topping, D.L.; Conlon, M.A.; Morita, T. Degree of Polymerization of Inulin-Type Fructans Differentially Affects Number of Lactic Acid Bacteria, Intestinal Immune Functions, and Immunoglobulin A Secretion in the Rat Cecum. J. Agric. Food Chem. 2011, 59, 5771–5778. [Google Scholar] [CrossRef]
- Cavalcanti, Y.V.N.; Brelaz, M.C.A.; Neves, J.K.d.A.L.; Ferraz, J.C.; Pereira, V.R.A. Role of TNF-Alpha, IFN-Gamma, and IL-10 in the Development of Pulmonary Tuberculosis. Pulm. Med. 2012, 2012, 745483. [Google Scholar] [CrossRef] [PubMed]
- Alspach, E.; Lussier, D.M.; Schreiber, R.D. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb. Perspect. Biol. 2019, 11, a028480. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sabharwal, V.; Kaushik, P.; Joshi, A.; Aayushi, A.; Suri, M. Postbiotics: From emerging concept to application. Front. Sustain. Food Syst. 2022, 6, 887642. [Google Scholar] [CrossRef]
- Liang, B.; Xing, D. The Current and Future Perspectives of Postbiotics. Probiotics Antimicrob. Proteins 2023, 15, 1626–1643. [Google Scholar] [CrossRef] [PubMed]
- Isozaki, S.; Konishi, H.; Fujiya, M.; Tanaka, H.; Murakami, Y.; Kashima, S.; Ando, K.; Ueno, N.; Moriichi, K.; Okumura, T. Probiotic-Derived Polyphosphate Accelerates Intestinal Epithelia Wound Healing through Inducing Platelet-Derived Mediators. Mediat. Inflamm. 2021, 2021, 5582943. [Google Scholar] [CrossRef]
- Wolever, T.M.; Fernandes, J.; Rao, A.V. Serum acetate:propionate ratio is related to serum cholesterol in men but not women. J. Nutr. 1996, 126, 2790–2797. [Google Scholar]
- de Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Zdouc, M.M.; Iorio, M.; Vind, K.; Simone, M.; Serina, S.; Brunati, C.; Monciardini, P.; Tocchetti, A.; Zarazua, G.S.; Crusemann, M.; et al. Effective approaches to discover new microbial metabolites in a large strain library. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab017. [Google Scholar] [CrossRef]
- Ayon, N.J. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E.; Kis, A.E.; Laczi, K.; Bende, G.; Szilágyi, A.; Kovács, T.; Perei, K.; Rákhely, G. Challenges of unculturable bacteria: Environmental perspectives. Rev. Environ. Sci. Bio 2020, 19, 1–22. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hwang, H.W.; Jin, H.S.; Lee, J.E.; Kang, N.J.; Lee, D.W. A Genomics-Based Semirational Approach for Expanding the Postbiotic Potential of Collagen Peptides Using Lactobacillaceae. J. Agric. Food Chem. 2022, 70, 8365–8376. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, B.O.; Van Lanen, S.G.; Baltz, R.H. Microbial genome mining for accelerated natural products discovery: Is a renaissance in the making? J. Ind. Microbiol. Biotechnol. 2014, 41, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Sigala-Robles, R.; Estrada-Montoya, M.d.C.; Torres-Llanez, M.J.; Santiago-López, L.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Mata-Haro, V.; Wall-Medrano, A.; González-Córdova, A.F. Tracking the metabolite footprint of four lactic acid bacteria in semiskimmed milk: A chemometric analysis. Int. J. Dairy Technol. 2024. [Google Scholar] [CrossRef]
- Peisl, B.Y.L.; Schymanski, E.L.; Wilmes, P. Dark matter in host-microbiome metabolomics: Tackling the unknowns—A review. Anal. Chim. Acta 2018, 1037, 13–27. [Google Scholar] [CrossRef]
- Bauermeister, A.; Mannochio-Russo, H.; Costa-Lotufo, L.V.; Jarmusch, A.K.; Dorrestein, P.C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 2022, 20, 143–160. [Google Scholar] [CrossRef]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012. [Google Scholar] [CrossRef]
- Ghezellou, P.; Jakob, K.; Atashi, J.; Ghassempour, A.; Spengler, B. Mass-Spectrometry-Based Lipidome and Proteome Profiling of Hottentotta saulcyi (Scorpiones: Buthidae) Venom. Toxins 2022, 14, 370. [Google Scholar] [CrossRef]
- Ye, D.Y.; Li, X.W.; Shen, J.Z.; Xia, X. Microbial metabolomics: From novel technologies to diversified applications. Trac-Trend Anal. Chem. 2022, 148, 116540. [Google Scholar] [CrossRef]
- Tang, J. Microbial metabolomics. Curr. Genom. 2011, 12, 391–403. [Google Scholar] [CrossRef]
- van der Velden, P.M.M.; Jansen, R.S. Microbial Metabolomics: An Overview of Applications. In Metabolomics: Recent Advances and Future Applications; Soni, V., Hartman, T.E., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 165–208. [Google Scholar]
- Mashego, M.R.; Rumbold, K.; De Mey, M.; Vandamme, E.; Soetaert, W.; Heijnen, J.J. Microbial metabolomics: Past, present and future methodologies. Biotechnol. Lett. 2007, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Marion, D. An introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 2013, 12, 3006–3025. [Google Scholar] [CrossRef]
- Suiter, C.L.; McLinden, M.O.; Bruno, T.J.; Widegren, J.A. Composition Determination of Low-Pressure Gas-Phase Mixtures by H NMR Spectroscopy. Anal. Chem. 2019, 91, 4429–4435. [Google Scholar] [CrossRef] [PubMed]
- Mittermaier, A.K.; Kay, L.E. Observing biological dynamics at atomic resolution using NMR. Trends Biochem. Sci. 2009, 34, 601–611. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Pradhan, D.; Gulati, G.; Avadhani, R.; Rashmi, H.M.; Soumya, K.; Kumari, A.; Gupta, A.; Dwivedi, D.; Kaushik, J.K.; Grover, S. Postbiotic Lipoteichoic acid of probiotic Lactobacillus origin ameliorates inflammation in HT-29 cells and colitis mice. Int. J. Biol. Macromol. 2023, 236, 123962. [Google Scholar] [CrossRef]
- Vitale, I.; Spano, M.; Puca, V.; Carradori, S.; Cesa, S.; Marinacci, B.; Sisto, F.; Roos, S.; Grompone, G.; Grande, R. Antibiofilm activity and NMR-based metabolomic characterization of cell-free supernatant of Limosilactobacillus reuteri DSM 17938. Front. Microbiol. 2023, 14, 1128275. [Google Scholar] [CrossRef]
- Nahui Palomino, R.A.; Vanpouille, C.; Laghi, L.; Parolin, C.; Melikov, K.; Backlund, P.; Vitali, B.; Margolis, L. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat. Commun. 2019, 10, 5656. [Google Scholar] [CrossRef]
- Emwas, A.H. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015, 1277, 161–193. [Google Scholar] [CrossRef]
- Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.N.; French, D.; Jannetto, P.J.; Rappold, B.A.; Clarke, W.A. Liquid chromatography-tandem mass spectrometry for clinical diagnostics. Nat. Rev. Methods Prim. 2022, 2, 96. [Google Scholar] [CrossRef]
- Chang, H.M.; Foo, H.L.; Loh, T.C.; Lim, E.T.C.; Abdul Mutalib, N.E. Comparative Studies of Inhibitory and Antioxidant Activities, and Organic Acids Compositions of Postbiotics Produced by Probiotic Lactiplantibacillus plantarum Strains Isolated from Malaysian Foods. Front. Vet. Sci. 2020, 7, 602280. [Google Scholar] [CrossRef]
- Khani, N.; Shkouhian, S.M.J.; Kafil, H.S.; Gilani, N.; Abbasi, A.; Rad, A.H. Assessing the growth-inhibitory activity of postbiotics of Lactobacillus spp. against Staphylococcus aureus under in vitro circumstances and food model. Lett. Appl. Microbiol. 2023, 76, ovac056. [Google Scholar] [CrossRef]
- Mohammadi, R.; Moradi, M.; Tajik, H.; Molaei, R. Potential application of postbiotics metabolites from bioprotective culture to fabricate bacterial nanocellulose based antimicrobial packaging material. Int. J. Biol. Macromol. 2022, 220, 528–536. [Google Scholar] [CrossRef]
- Grishina, Y.V.; Vatlin, A.A.; Mavletova, D.A.; Odorskaya, M.V.; Senkovenko, A.M.; Ilyasov, R.A.; Danilenko, V.N. Metabolites Potentially Determine the High Antioxidant Properties of Limosilactobacillus fermentum U-21. BioTech 2023, 12, 39. [Google Scholar] [CrossRef]
- Shin, M.; Truong, V.; Lee, M.J.; Kim, D.; Kim, M.S.; Cho, H.A.; Jung, Y.H.; Yang, J.W.; Jeong, W.S.; Kim, Y. Investigation of phenyllactic acid as a potent tyrosinase inhibitor produced by probiotics. Curr. Res. Food Sci. 2023, 6, 100413. [Google Scholar] [CrossRef]
- Bae, W.Y.; Jung, W.H.; Shin, S.L.; Kwon, S.; Sohn, M.; Kim, T.R. Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism. Food Sci. Anim. Resour. 2022, 42, 1031–1045. [Google Scholar] [CrossRef]
- Kienesberger, B.; Obermüller, B.; Singer, G.; Arneitz, C.; Gasparella, P.; Klymiuk, I.; Horvath, A.; Stadlbauer, V.; Magnes, C.; Zügner, E.; et al. Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC® AAD10) and Effects of Its Postbiotic Culture Supernatant. Nutrients 2022, 14, 1194. [Google Scholar] [CrossRef]
- Chung, H.J.; Lee, H.; Kim, M.; Lee, J.W.; Saeed, M.; Lee, H.; Jung, S.H.; Shim, J.J.; Lee, J.L.; Heo, K.; et al. Development and metabolic profiling of a postbiotic complex exhibiting antibacterial activity against skin microorganisms and anti-inflammatory effect on human keratinocytes. Food Sci. Biotechnol. 2022, 31, 1325–1334. [Google Scholar] [CrossRef]
- Perez, E.R.; Knapp, J.A.; Horn, C.K.; Stillman, S.L.; Evans, J.E.; Arfsten, D.P. Comparison of LC-MS-MS and GC-MS Analysis of Benzodiazepine Compounds Included in the Drug Demand Reduction Urinalysis Program. J. Anal. Toxicol. 2016, 40, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Z.A.; Lau, H.; Lim, S.Y.; Li, S.F.Y.; Liu, S.Q. Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive components in probiotic fermented coffee brews. Food Res. Int. 2021, 149, 110656. [Google Scholar] [CrossRef] [PubMed]
- Giordani, B.; Naldi, M.; Croatti, V.; Parolin, C.; Erdogan, U.; Bartolini, M.; Vitali, B. Exopolysaccharides from vaginal lactobacilli modulate microbial biofilms. Microb. Cell Fact. 2023, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Sadeghi, A.; Rahimi, D.; Purabdolah, H.; Shahryari, S. Postbiotic and Anti-aflatoxigenic Capabilities of Lactobacillus kunkeei as the Potential Probiotic LAB Isolated from the Natural Honey. Probiotics Antimicrob. Proteins 2021, 13, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kiran, F.; Kibar Demirhan, H.; Haliscelik, O.; Zatari, D. Metabolic profiles of Weissella spp. postbiotics with anti-microbial and anti-oxidant effects. J. Infect. Dev. Ctries. 2023, 17, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Anvar, S.A.; Rahimyan, D.; Golestan, L.; Shojaee, A.; Pourahmad, R. Butter fortified with spray-dried encapsulated Ferulago angulata extract nanoemulsion and postbiotic metabolite of Lactiplantibacillus plantarum subsp. plantarum improves its physicochemical, microbiological and sensory properties. Int. J. Dairy. Technol. 2023, 76, 381–392. [Google Scholar] [CrossRef]
- Cruz, N.; Abernathy, G.A.; Dichosa, A.E.K.; Kumar, A. The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infect. Immun. 2022, 90, e0058921. [Google Scholar] [CrossRef]
- Kumar, A. Exploiting the Interactions between Microbes and Host to Enhance Human Health. 2023. Available online: https://scitube.io/dr-anand-kumar-exploiting-the-interactions-between-microbes-and-host-to-enhance-human-health/ (accessed on 28 August 2024).
- Li, P.; Luo, H.; Ji, B.; Nielsen, J. Machine learning for data integration in human gut microbiome. Microb. Cell Fact. 2022, 21, 241. [Google Scholar] [CrossRef]
- Sahayasheela, V.J.; Lankadasari, M.B.; Dan, V.M.; Dastager, S.G.; Pandian, G.N.; Sugiyama, H. Artificial intelligence in microbial natural product drug discovery: Current and emerging role. Nat. Prod. Rep. 2022, 39, 2215–2230. [Google Scholar] [CrossRef]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Taccardi, D.; Scribante, A. Home Oral Care of Periodontal Patients Using Antimicrobial Gel with Postbiotics, Lactoferrin, and Aloe Barbadensis Leaf Juice Powder vs. Conventional Chlorhexidine Gel: A Split-Mouth Randomized Clinical Trial. Antibiotics 2022, 11, 118. [Google Scholar] [CrossRef]
- Lin, C.W.; Chen, Y.T.; Ho, H.H.; Kuo, Y.W.; Lin, W.Y.; Chen, J.F.; Lin, J.H.; Liu, C.R.; Lin, C.H.; Yeh, Y.T.; et al. Impact of the food grade heat-killed probiotic and postbiotic oral lozenges in oral hygiene. Aging 2022, 14, 2221–2238. [Google Scholar] [CrossRef] [PubMed]
- Wuri, G.; Liu, F.; Sun, Z.; Fang, B.; Zhao, W.; Hung, W.L.; Liu, W.H.; Zhang, X.; Wang, R.; Wu, F.; et al. Lactobacillus paracasei ET-22 and derived postbiotics reduce halitosis and modulate oral microbiome dysregulation—A randomized, double-blind placebo-controlled clinical trial. Food Funct. 2023, 14, 7335–7346. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Morales, J.; de la Torre, A.I.C.; García-García, A.; de Prado, C.N.; Coronel-Rodríguez, C.; Crespo, C.; Ortega, E.; Martín-Pérez, E.; et al. Effects of a Novel Infant Formula on Weight Gain, Body Composition, Safety and Tolerability to Infants: The INNOVA 2020 Study. Nutrients 2022, 15, 147. [Google Scholar] [CrossRef] [PubMed]
- Bellaiche, M.; Ludwig, T.; Arciszewska, M.; Bongers, A.; Gomes, C.; Świat, A.; Dakhlia, F.; Piollet, A.; Oozeer, R.; Vandenplas, Y. Safety and Tolerance of a Novel Anti-Regurgitation Formula: A Double-Blind, Randomized, Controlled Trial. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Bellaiche, M.; Tounian, P.; Oozeer, R.; Rocher, E.; Vandenplas, Y. Digestive Tolerance and Safety of an Anti-Regurgitation Formula Containing Locust Bean Gum, Prebiotics and Postbiotics: A Real-World Study. Pediatr. Gastroenterol. Hepatol. Nutr. 2023, 26, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Herrera, A.; Mulder, K.; Bouritius, H.; Rubio, R.; Munoz, A.; Agosti, M.; Lista, G.; Corvaglia, L.; Ludwig, T.; Abrahamse-Berkeveld, M.; et al. Gastrointestinal Tolerance, Growth and Safety of a Partly Fermented Formula with Specific Prebiotics in Healthy Infants: A Double-Blind, Randomized, Controlled Trial. Nutrients 2019, 11, 1530. [Google Scholar] [CrossRef]
- Rodriguez-Herrera, A.; Tims, S.; Polman, J.; Porcel Rubio, R.; Munoz Hoyos, A.; Agosti, M.; Lista, G.; Corvaglia, L.T.; Knol, J.; Roeselers, G.; et al. Early-life fecal microbiome and metabolome dynamics in response to an intervention with infant formula containing specific prebiotics and postbiotics. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 322, G571–G582. [Google Scholar] [CrossRef]
- Lewandowski, K.; Kaniewska, M.; Karłowicz, K.; Rosołowski, M.; Rydzewska, G. The effectiveness of microencapsulated sodium butyrate at reducing symptoms in patients with irritable bowel syndrome. Prz. Gastroenterol. 2022, 17, 28–34. [Google Scholar] [CrossRef]
- Bednarska, O.; Biskou, O.; Israelsen, H.; Winberg, M.E.; Walter, S.; Keita, Å.V. A postbiotic fermented oat gruel may have a beneficial effect on the colonic mucosal barrier in patients with irritable bowel syndrome. Front. Nutr. 2022, 9, 1004084. [Google Scholar] [CrossRef]
- Srivastava, S.; Basak, U.; Naghibi, M.; Vijayakumar, V.; Parihar, R.; Patel, J.; Jadon, P.S.; Pandit, A.; Dargad, R.R.; Khanna, S.; et al. A randomized double-blind, placebo-controlled trial to evaluate the safety and efficacy of live Bifidobacterium longum CECT 7347 (ES1) and heat-treated Bifidobacterium longum CECT 7347 (HT-ES1) in participants with diarrhea-predominant irritable bowel syndrome. Gut Microbes 2024, 16, 2338322. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A.; Fouad, H.; Quesnell, R.; Sakai, L. The effect of a postbiotic produced by stabilized non-viable Lactobacilli on the health, growth performance, immunity, and gut status of colisepticaemic broiler chickens. Trop. Anim. Health Prod. 2022, 54, 286. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.M.; Loh, T.C.; Foo, H.L.; Lim, E.T.C. Lactiplantibacillus plantarum Postbiotics: Alternative of Antibiotic Growth Promoter to Ameliorate Gut Health in Broiler Chickens. Front. Vet. Sci. 2022, 9, 883324. [Google Scholar] [CrossRef]
- de Souza, M.; Baptista, A.A.S.; Menck-Costa, M.F.; Justino, L.; da Glória, E.M.; Shimizu, G.D.; Ferraz, C.R.; Verri, W.A.; Van Immerseel, F.; Bracarense, A. Modulation of Broiler Intestinal Changes Induced by Clostridium perfringens and Deoxynivalenol through Probiotic, Paraprobiotic, and Postbiotic Supplementation. Toxins 2024, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Izuddin, W.I.; Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A. Dietary Postbiotic Lactobacillus plantarum Improves Serum and Ruminal Antioxidant Activity and Upregulates Hepatic Antioxidant Enzymes and Ruminal Barrier Function in Post-Weaning Lambs. Antioxidants 2020, 9, 250. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Jin, Y.; Hao, Q.; Liu, S.; Ding, Q.; Yao, Y.; Yang, Y.; Ran, C.; Wu, C.; et al. Dietary cultured supernatant mixture of Cetobacterium somerae and Lactococcus lactis improved liver and gut health, and gut microbiota homeostasis of zebrafish fed with high-fat diet. Fish Shellfish Immunol. 2023, 142, 109139. [Google Scholar] [CrossRef]
- Quintanilla-Pineda, M.; Ibañez, F.C.; Garrote-Achou, C.; Marzo, F. A Novel Postbiotic Product Based on Weissella cibaria for Enhancing Disease Resistance in Rainbow Trout: Aquaculture Application. Animals 2024, 14, 744. [Google Scholar] [CrossRef]
- Rawling, M.; Schiavone, M.; Mugnier, A.; Leclercq, E.; Merrifield, D.; Foey, A.; Apper, E. Modulation of Zebrafish (Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms 2023, 11, 2900. [Google Scholar] [CrossRef]
- Ryu, S.; Kyoung, H.; Park, K.I.; Oh, S.; Song, M.; Kim, Y. Postbiotic heat-killed lactobacilli modulates on body weight associated with gut microbiota in a pig model. AMB Express 2022, 12, 83. [Google Scholar] [CrossRef]
- Saeed, M.; Afzal, Z.; Afzal, F.; Khan, R.U.; Elnesr, S.S.; Alagawany, M.; Chen, H. Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects. Food Sci. Anim. Resour. 2023, 43, 1111–1127. [Google Scholar] [CrossRef]
- Yu, Z.; Hao, Q.; Liu, S.B.; Zhang, Q.S.; Chen, X.Y.; Li, S.H.; Ran, C.; Yang, Y.L.; Teame, T.; Zhang, Z.; et al. The positive effects of postbiotic (SWF concentration®) supplemented diet on skin mucus, liver, gut health, the structure and function of gut microbiota of common carp (Cyprinus carpio) fed with high-fat diet. Fish Shellfish Immunol. 2023, 135, 108681. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Q.; Wang, J.; Tan, H.; Jin, X.; Fan, Y.; Liu, J.; Zhao, S.; Zheng, J.; Peng, N. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets. Food Funct. 2023, 14, 3463–3474. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, S.; Di, H.; Deng, Z.; Liu, J.; Wang, H. Gut health benefit and application of postbiotics in animal production. J. Anim. Sci. Biotechnol. 2022, 13, 38. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, J.; Huang, K.; Liang, Z. Heat-Killed Saccharomyces boulardii Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Restoring the Intestinal Barrier, Reducing Inflammation, and Modulating the Gut Microbiota. Nutrients 2024, 16, 702. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, W.; Zhang, T.; He, Q.; Kwok, L.Y.; Tan, Y.; Zhang, H. Heat-Killed Bifidobacterium bifidum B1628 May Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice, and the Anti-Inflammatory Effect Is Associated with Gut Microbiota Modulation. Nutrients 2022, 14, 5233. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Ha, J.; Lim, S.; Kim, G.; Yoon, Y. Development of postbiotics by whey bioconversion with Enterococcus faecalis M157 KACC81148BP and Lactococcus lactis CAU2013 KACC81152BP for treating periodontal disease and improving gut health. J. Dairy Sci. 2021, 104, 12321–12331. [Google Scholar] [CrossRef]
- Zhang, L.H.; Liu, J.X.; Jin, T.; Qin, N.B.; Ren, X.M.; Xia, X.D. Live and pasteurized attenuate hyperuricemia in mice through modulating uric acid metabolism, inflammation, and gut microbiota. Food Funct. 2022, 13, 12412–12425. [Google Scholar] [CrossRef]
- Choi, Y.; Bose, S.; Seo, J.; Shin, J.H.; Lee, D.; Kim, Y.; Kang, S.G.; Kim, H. Effects of Live and Pasteurized Forms of Akkermansia from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2021, 9, 2039. [Google Scholar] [CrossRef]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Fouassier, A.M.; Blanco-Bose, W.; Evans, M.; Aebischer, P.; Auwerx, J.; Rinsch, C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep. Med. 2022, 3, 100633. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-Dit-Felix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef]
- Luan, P.; D’Amico, D.; Andreux, P.A.; Laurila, P.P.; Wohlwend, M.; Li, H.; Imamura de Lima, T.; Place, N.; Rinsch, C.; Zanou, N.; et al. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci. Transl. Med. 2021, 13, eabb0319. [Google Scholar] [CrossRef]
- Varian, B.J.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; et al. Microbial lysate upregulates host oxytocin. Brain Behav. Immun. 2017, 61, 36–49. [Google Scholar] [CrossRef]
- Sato, S.; Arai, S.; Iwabuchi, N.; Tanaka, M.; Hase, R.; Sakane, N. Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on the Maintenance of Physical Condition in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2023, 15, 3450. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Lee, C.C.; Lee, M.C.; Hsu, H.Y.; Lin, J.S.; Huang, C.C.; Watanabe, K. Effects of heat-killed Lactiplantibacillus plantarum TWK10 on exercise performance, fatigue, and muscle growth in healthy male adults. Physiol. Rep. 2023, 11, e15835. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.I.; Mun, S.; Jeong, J.; Lee, D.G.; Kim, M.; Jo, H.; Lee, S.; Han, K.; Lee, J.H. Efficacy and Safety of Epidermidibacterium Keratini EPI-7 Derived Postbiotics in Skin Aging: A Prospective Clinical Study. Int. J. Mol. Sci. 2023, 24, 4634. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Li, X.; Zhang, R.Y.; Yuan, C.; Yan, B.; Humbert, P.; Quan, Z.X. Effects of Investigational Moisturizers on the Skin Barrier and Microbiome following Exposure to Environmental Aggressors: A Randomized Clinical Trial and Ex Vivo Analysis. J. Clin. Med. 2023, 12, 6078. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.Y.; Jung, W.H.; Lee, Y.J.; Shin, S.L.; An, Y.K.; Kim, T.R.; Sohn, M. Heat-treated Pediococcus acidilactici LM1013-mediated inhibition of biofilm formation by Cutibacterium acnes and its application in acne vulgaris: A single-arm clinical trial. J. Cosmet. Dermatol. 2023, 22, 3125–3134. [Google Scholar] [CrossRef]
- Ho, H.H.; Chen, C.W.; Yi, T.H.; Huang, Y.F.; Kuo, Y.W.; Lin, J.H.; Chen, J.F.; Tsai, S.Y.; Chan, L.P.; Liang, C.H. Novel application of a Co-Fermented postbiotics of TYCA06/AP-32/CP-9/collagen in the improvement of acne vulgaris-A randomized clinical study of efficacy evaluation. J. Cosmet. Dermatol. 2022, 21, 6249–6260. [Google Scholar] [CrossRef]
- D’Auria, E.; Panelli, S.; Lunardon, L.; Pajoro, M.; Paradiso, L.; Beretta, S.; Loretelli, C.; Tosi, D.; Perini, M.; Bedogni, G.; et al. Rice flour fermented with Lactobacillus paracasei CBA L74 in the treatment of atopic dermatitis in infants: A randomized, double- blind, placebo- controlled trial. Pharmacol. Res. 2021, 163, 105284. [Google Scholar] [CrossRef]
- Catic, T.; Pehlivanovic, B.; Pljakic, N.; Balicevac, A. The Moisturizing Efficacy of a Proprietary Dermo-Cosmetic Product (CLS02021) versus Placebo in a 4-week Application Period. Med. Arch. 2022, 76, 108–114. [Google Scholar] [CrossRef]
- Tsai, W.H.; Fang, Y.T.; Huang, T.Y.; Chiang, Y.J.; Lin, C.G.; Chang, W.W. Heat-killed Lacticaseibacillus paracasei GMNL-653 ameliorates human scalp health by regulating scalp microbiome. BMC Microbiol. 2023, 23, 121. [Google Scholar] [CrossRef]
- Jeong, K.; Kim, M.; Jeon, S.A.; Kim, Y.H.; Lee, S. A randomized trial of Lactobacillus rhamnosus IDCC 3201 tyndallizate (RHT3201) for treating atopic dermatitis. Pediatr. Allergy Immunol. 2020, 31, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Xu, L.; Zhang, Z.; Yang, Y.; Li, P.; Ma, T.; Guo, S.; Kwok, L.Y.; Sun, Z. Postbiotic gel relieves clinical symptoms of bacterial vaginitis by regulating the vaginal microbiota. Front. Cell. Infect. Microbiol. 2023, 13, 1114364. [Google Scholar] [CrossRef]
- Heydari, M.; Kalani, M.; Ghasemi, Y.; Nejabat, M. The Effect of Ophthalmic and Systemic Formulations of Latilactobacillus sakei on Clinical and Immunological Outcomes of Patients with Dry Eye Disease: A Factorial, Randomized, Placebo-controlled, and Triple-masking Clinical Trial. Probiotics Antimicrob. Proteins 2023, 16, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ma, L.; Yu, H.; Huang, S.; Zhang, J.; Gong, J.; Yang, L.; Chen, L.; Luo, H.; Tian, L.; et al. JK5G postbiotics attenuate immune-related adverse events in NSCLC patients by regulating gut microbiota: A randomized controlled trial in China. Front. Oncol. 2023, 13, 1155592. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, J.; Chen, Z.; Wang, S.; Ruan, C.; Zhou, W.; Miao, M.; Shi, H. Inhibitory Effect of a Microecological Preparation on Azoxymethane/Dextran Sodium Sulfate-Induced Inflammatory Colorectal Cancer in Mice. Front. Oncol. 2020, 10, 562189. [Google Scholar] [CrossRef]
- Companys, J.; Calderón-Pérez, L.; Pla-Pagà, L.; Llauradó, E.; Sandoval-Ramirez, B.A.; Gosalbes, M.J.; Arregui, A.; Barandiaran, M.; Caimari, A.; Del Bas, J.M.; et al. Effects of enriched seafood sticks (heat-inactivated B. animalis subsp. lactis CECT 8145, inulin, omega-3) on cardiometabolic risk factors and gut microbiota in abdominally obese subjects: Randomized controlled trial. Eur. J. Nutr. 2022, 61, 3597–3611. [Google Scholar] [CrossRef]
- Béghin, L.; Tims, S.; Roelofs, M.; Rougé, C.; Oozeer, R.; Rakza, T.; Chirico, G.; Roeselers, G.; Knol, J.; Rozé, J.C.; et al. Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clin. Nutr. 2021, 40, 778–787. [Google Scholar] [CrossRef]
Postbiotic Trial Application | Study Description | Link |
---|---|---|
Anxiety | Evaluate the efficacy of a multistrain postbiotic administration for moderate anxiety in adults aged between 18 and 65 years. | https://clinicaltrials.gov/study/NCT05562739?intr=Postbiotic&limit=25&page=1&rank=1 (accessed on 28 August 2024) https://clinicaltrials.gov/study/NCT05562752?intr=Postbiotic&limit=25&page=1&rank=12 (accessed on 28 August 2024) |
Stress | Evaluates the effects of colonic delivery of a postbiotic on stress response, mood state, sleep, and cognition in healthy young subjects aged between 21 and 30 years. | https://clinicaltrials.gov/study/NCT06097182?intr=Postbiotic&limit=25&page=1&rank=2 (accessed on 28 August 2024) |
Weight | Evaluate the efficacy of a postbiotic supplement on weight management and metabolic health in individuals aged 18 and above with a BMI ranging between 25 and 32. | https://clinicaltrials.gov/study/NCT05912699?intr=Postbiotic&limit=25&page=1&rank=3 (accessed on 28 August 2024) https://clinicaltrials.gov/study/NCT05428137?intr=Postbiotic&limit=25&page=1&rank=5 (accessed on 28 August 2024) |
Obesity | Investigate the effect of a postbiotic on obesity in individuals aged 18 to 65 years with a BMI greater than 25 | https://clinicaltrials.gov/study/NCT05440630?intr=Postbiotic&limit=25&page=1&rank=4 (accessed on 28 August 2024) https://clinicaltrials.gov/study/NCT04151823?intr=Postbiotic&limit=25&page=1&rank=16 (accessed on 28 August 2024) |
NAFLD | Assesses the short-term efficacy and safety of postbiotics in patients with NAFLD aged 18 to 70 years. | https://clinicaltrials.gov/study/NCT05804422?intr=Postbiotic&limit=25&page=1&rank=6 (accessed on 28 August 2024) |
Type2 Diabetes | Assess the short-term efficacy and safety of postbiotics as an adjunct to standard anti-diabetic therapy in type 2 diabetic patients aged 18 to 70 years with HbA1c levels between 6.5 and 10. | https://clinicaltrials.gov/study/NCT05770076?intr=Postbiotic&limit=25&page=1&rank=7 (accessed on 28 August 2024) https://clinicaltrials.gov/study/NCT04639492?intr=Postbiotic&limit=25&page=1&rank=10 (accessed on 28 August 2024) |
IBS | Investigates the beneficial effects of postbiotics on intestinal epithelial barrier function in patients with IBS. | https://clinicaltrials.gov/study/NCT05475314?intr=Postbiotic&limit=25&page=1&rank=8 (accessed on 28 August 2024) |
Intranasal safety | Safety evaluation of intranasal postbiotic use in healthy volunteers aged 18 years and older. | https://clinicaltrials.gov/study/NCT05984004?intr=Postbiotic&limit=25&page=1&rank=9 (accessed on 28 August 2024) |
Infant formula | Evaluates the effect of infant formula supplemented with postbiotics on the metabolome profiles of late preterm infants. | https://clinicaltrials.gov/study/NCT06052592?intr=Postbiotic&limit=25&page=1&rank=11 (accessed on 28 August 2024) |
Mental health | Evaluate the effect of postbiotics on cognitive skills in healthy individuals aged 18 to 32 years. | https://clinicaltrials.gov/study/NCT04324749?intr=Postbiotic&limit=25&page=1&rank=13 (accessed on 28 August 2024) https://clinicaltrials.gov/study/NCT05738746?intr=Postbiotic&limit=25&page=1&rank=14 (accessed on 28 August 2024) |
Muscle strength | Evaluates the efficacy and safety of postbiotic supplementation in patients aged 50 years and older with macular degeneration. | https://clinicaltrials.gov/study/NCT05056025?intr=Postbiotic&limit=25&page=1&rank=15 (accessed on 28 August 2024) |
Aging | Assesses the efficacy and tolerance of postbiotics in an anti-aging daily serum for individuals aged 34 to 60 years. | https://clinicaltrials.gov/study/NCT05514782?intr=Postbiotic&limit=25&page=1&rank=17 (accessed on 28 August 2024) |
Immunomodulation | Evaluates the immune-modulating effect of postbiotics in healthy individuals aged 18 to 30 years. | https://clinicaltrials.gov/study/NCT05819424?intr=Postbiotic&limit=25&page=1&rank=18 (accessed on 28 August 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Green, K.M.; Rawat, M. A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods 2024, 13, 2937. https://doi.org/10.3390/foods13182937
Kumar A, Green KM, Rawat M. A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods. 2024; 13(18):2937. https://doi.org/10.3390/foods13182937
Chicago/Turabian StyleKumar, Anand, Katelyn M. Green, and Manmeet Rawat. 2024. "A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications" Foods 13, no. 18: 2937. https://doi.org/10.3390/foods13182937
APA StyleKumar, A., Green, K. M., & Rawat, M. (2024). A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods, 13(18), 2937. https://doi.org/10.3390/foods13182937