Effects of High-Pressure Homogenization on the Structure and Functional Properties of Solenaia oleivora Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Protein Extraction
2.3. High-Pressure Homogenization Treatment
2.4. Structural Measurement
2.4.1. Circular Dichroism (CD)
2.4.2. Fluorescence Spectra
2.4.3. Free Sulfhydryl Group
2.4.4. Surface Hydrophobicity (H0)
2.4.5. Particle Size and ζ-Potential
2.5. Solubility and Turbidity Measurement
2.5.1. Solubility Measurement
2.5.2. Determination of Turbidity
2.6. Functional Properties Analysis
2.6.1. Emulsifying Properties
2.6.2. Foaming Properties
2.6.3. Determination of In Vitro Digestibility
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction of Solenaia oleivora Protein
3.2. Effects of Homogeneous Pressure on the Structural of Solenaia oleivora Protein
3.2.1. Secondary Structure Analysis
3.2.2. Fluorescence Spectra Analysis
3.2.3. Sulfhydryl Content Analysis
3.2.4. Surface Hydrophobicity Analysis
3.2.5. Particle Size and ζ-Potential Analysis
3.3. Solubility and Turbidity Analysis
3.4. Emulsification and Foaming Characteristics
3.5. In Vitro Digestibility Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.; Zou, B.; Zhang, J.; Cai, W.; Na, X.; Du, M.; Zhu, B.; Wu, C. Recent advances of ultrasound-assisted technology on aquatic protein processing: Extraction, modification, and freezing/thawing-induced oxidation. Trends Food Sci. Technol. 2024, 144, 104309. [Google Scholar] [CrossRef]
- Yu, C.; Wu, F.; Cha, Y.; Zou, H.; Bao, J.; Xu, R.; Du, M. Effects of high-pressure homogenization on functional properties and structure of mussel (Mytilus edulis) myofibrillar proteins. Int. J. Biol. Macromol. 2018, 118, 741–746. [Google Scholar] [CrossRef]
- Chen, W.; Ma, X.; Jin, W.; Wen, H.; Cheng, H. Mussel meat protein: Extraction, processing, nutrition value, and application in food products. Food Health 2023, 5, 20. [Google Scholar]
- Wen, L.; Ma, X.; Geng, K.; Lv, G.; Jin, W.; Chen, W.; Xu, D.; Shen, H.; Wen, H. An investigation into the wound-healing mechanism in gill injuries of varying severity in the freshwater mussel Solenaia oleivora (Heude, 1877). Aquaculture 2024, 590, 740972. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, X.; Wen, H.; Xu, D.; Jin, W.; Zhou, Y. Full-length transcriptome analysis provides new insights into the diversity of immune-related genes in the threatened freshwater shellfish Solenaia oleivora. Fish Shellfish. Immunol. 2023, 140, 108964. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Wen, H.; Ma, X.; Xu, D. Integrated analysis of physiological, transcriptome, and metabolome analyses of the gills in Solenaia oleivora under ammonia exposure. Ecotoxicol. Environ. Saf. 2024, 271, 115949. [Google Scholar] [CrossRef]
- Ma, X.; Jin, W.; Lv, G.; Chen, W.; Xu, D.; Xu, P.; Hua, D.; Wen, H. In vitro culture of glochidia and morphological changes in juveniles of the endangered freshwater mussel Solenaia oleivora. Fishes 2024, 9, 49. [Google Scholar] [CrossRef]
- Ma, X.; Sun, G.; Wang, L.; Xu, D.; Jin, W.; Lv, G.; Xu, P.; Ding, T.; Wen, H.; Gu, R. Nutrients and mineral elements in Solenaia oleivora from Huaihe River: Seasonal variations. J. Agric. 2020, 10, 90–94. [Google Scholar]
- Chen, X.; Liang, L.; Xu, X. Advances in converting of meat protein into functional ingredient via engineering modification of high pressure homogenization. Trends Food Sci. Technol. 2020, 106, 12–29. [Google Scholar] [CrossRef]
- Martinez-Monteagudo, S.I.; Yan, B.; Balasubramaniam, V.M. Engineering process characterization of high-pressure homogenization-from laboratory to industrial scale. Food Eng. Rev. 2017, 9, 143–169. [Google Scholar] [CrossRef]
- Han, T.; Wang, M.; Wang, Y.; Tang, L. Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT-Food Sci. Technol. 2020, 130, 109560. [Google Scholar] [CrossRef]
- Wu, M.; He, X.; Feng, D.; Li, H.; Han, D.; Li, Q.; Zhao, B.; Li, N.; Liu, T.; Wang, J. The effect of high pressure homogenization on the structure of dual-protein and its emulsion functional properties. Foods 2023, 12, 3358. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.; Zhao, Y.; Zeng, M. Physicochemical and rheological changes of oyster (Crassostrea gigas) protein affected by high-pressure homogenization. LWT-Food Sci. Technol. 2020, 134, 110143. [Google Scholar] [CrossRef]
- Wu, F.; Shi, X.; Zou, H.; Zhang, T.; Dong, X.; Zhu, R.; Yu, C. Effects of high-pressure homogenization on physicochemical, rheological and emulsifying properties of myofibrillar protein. J. Food Eng. 2019, 263, 272–279. [Google Scholar] [CrossRef]
- Yu, C.; Cha, Y.; Wu, F.; Xu, X.; Qin, Y.; Li, X.; Du, M. Effects of high-pressure homogenisation on structural and functional properties of mussel (Mytilus edulis) protein isolate. Int. J. Food Sci. Technol. 2018, 53, 1157–1165. [Google Scholar] [CrossRef]
- Wu, F.; Cha, Y.; Zou, H.; Shi, X.; Zhang, T.; Du, M.; Yu, C. Structure and functionalities changes in high-pressure homogenized clam protein isolate. J. Food Process. Preserv. 2019, 43, e13860. [Google Scholar] [CrossRef]
- Wu, D.; Wu, C.; Wang, Z.; Fan, F.; Chen, H.; Ma, W.; Du, M. Effects of high pressure homogenize treatment on the physicochemical and emulsifying properties of proteins from scallop (Chlamys farreri). Food Hydrocoll. 2019, 94, 537–545. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Z.; Wu, D.; Fei, X.; Ei-Seedi, H.R.; Wang, C. High-pressure homogenization influences the functional properties of protein from oyster (Crassostrea gigas). LWT-Food Sci. Technol. 2021, 151, 112107. [Google Scholar] [CrossRef]
- Chang, L.; Lan, Y.; Bandillo, N.; Ohm, J.-B.; Chen, B.; Rao, J. Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocoll. 2022, 123, 107165. [Google Scholar] [CrossRef]
- Vareltzis, P.K.; Undeland, I. Protein isolation from blue mussels (Mytilus edulis) using an acid and alkaline solubilisation techniqueuprocess characteristics and functionality of the isolates. J. Sci. Food Agric. 2012, 92, 3055–3064. [Google Scholar] [CrossRef]
- Xue, G.; Zhang, K.; Zheng, Y.; Zheng, H.; Zhou, C.; Gao, J.; Qi, X.; Zhang, C. Extraction of three shellfish protein isolates by isoelectric solubilisation/precipitation and their composition and characteristics analysis. Food Ferment. Ind. 2018, 44, 145–151. [Google Scholar]
- Cheng, M.; Li, Y.n.; Luo, X.; Chen, Z.; Wang, R.; Wang, T.; Feng, W.; Zhang, H.; He, J.; Li, C. Effect of dynamic high-pressure microfluidization on physicochemical, structural, and functional properties of oat protein isolate. Innov. Food Sci. Emerg. Technol. 2022, 82, 103204. [Google Scholar] [CrossRef]
- Yildiz, G.; Yildiz, G. A new approach to enhance quinoa protein nano-aggregates: Combined pH shifting-High pressure homogenization. Food Chem. 2023, 415, 135800. [Google Scholar] [CrossRef]
- Yang, J.; Zamani, S.; Liang, L.; Chen, L. Extraction methods significantly impact pea protein composition, structure and gelling properties. Food Hydrocoll. 2021, 117, 106678. [Google Scholar] [CrossRef]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrason. Sonochemistry 2017, 39, 511–519. [Google Scholar] [CrossRef]
- Garvey, S.M.; Guice, J.L.; Hollins, M.D.; Best, C.H.; Tinker, K.M. Fungal digestive enzymes promote macronutrient hydrolysis in the INFOGEST static in vitro simulation of digestion. Food Chem. 2022, 386, 132777. [Google Scholar] [CrossRef]
- Nolsoe, H.; Undeland, I. The acid and alkaline solubilization process for the isolation of muscle proteins: State of the art. Food Bioprocess Technol. 2009, 2, 1–27. [Google Scholar] [CrossRef]
- Yu, C.; Wu, F.; Cha, Y.; Qin, Y.; Du, M. Effects of high-pressure homogenization at different pressures on structure and functional properties of oyster protein isolates. Int. J. Food Eng. 2018, 14, 20180009. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Han, M.; Zhou, G.; Chen, C.; Li, P. Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions. Food Res. Int. 2016, 85, 1–9. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, L.; Song, T.; Yu, H.; Wang, X.; Zhao, X.-h. Effects of high pressure homogenization on the structural and emulsifying properties of a vegetable protein: Cyperus esculentus L. LWT-Food Sci. Technol. 2022, 153, 112542. [Google Scholar] [CrossRef]
- Cheng, H.; Fang, Z.; Liu, T.; Gao, Y.; Liang, L. A study on ß-lactoglobulin-triligand-pectin complex particle: Formation, characterization and protection. Food Hydrocoll. 2018, 84, 93–103. [Google Scholar] [CrossRef]
- Shi, X.; Zou, H.; Sun, S.; Lu, Z.; Zhang, T.; Gao, J.; Yu, C. Application of high-pressure homogenization for improving the physicochemical, functional and rheological properties of myofibrillar protein. Int. J. Biol. Macromol. 2019, 138, 425–432. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems—A review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, G.; Wang, X.; Deng, W.; Mao, K.; Sang, Y. Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). Ultrason. Sonochemistry 2021, 79, 105770. [Google Scholar] [CrossRef]
- Wang, X.-S.; Tang, C.-H.; Li, B.-S.; Yang, X.-Q.; Li, L.; Ma, C.-Y. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocoll. 2008, 22, 560–567. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; He, J.; Xu, Y.; Guo, X. Effects of high-pressure homogenization on the physicochemical, foaming, and emulsifying properties of chickpea protein. Food Res. Int. 2023, 170, 112986. [Google Scholar] [CrossRef]
- Hu, Y.; He, C.; Woo, M.W.; Xiong, H.; Hu, J.; Zhao, Q. Formation of fibrils derived from whey protein isolate: Structural characteristics and protease resistance. Food Funct. 2019, 10, 8106–8115. [Google Scholar] [CrossRef]
Liquid/Solid Ratio | pH | Protein Purity (%) | Protein Yield (%) |
---|---|---|---|
4:1 | 4.5 | 83.44 ± 0.93 bc | 72.58 ± 1.49 a |
5.0 | 85.44 ± 1.83 cd | 76.61 ± 1.27 b | |
5.5 | 92.44 ± 2.24 e | 81.24 ± 1.71 c | |
6:1 | 4.5 | 82.13 ± 0.92 b | 75.29 ± 1.36 b |
5.0 | 86.86 ± 1.11 d | 80.32 ± 1.56 c | |
5.5 | 95.44 ± 1.26 f | 88.92 ± 1.43 e | |
8:1 | 4.5 | 79.39 ± 2.14 a | 79.13 ± 0.92 c |
5.0 | 83.19 ± 2.08 bc | 84.87 ± 0.73 d | |
5.5 | 87.58 ± 0.87 d | 93.92 ± 0.98 f |
Homogeneous Pressure (MPa) | α-Helix (%) | β-Sheet (%) | β-Tum (%) | Random Coil (%) |
---|---|---|---|---|
0 | 31.3 ± 2.6 a | 15.7 ± 1.4 a | 13.5 ± 1.6 a | 39.5 ± 0.9 a |
20 | 28.7 ± 1.6 ab | 16.8 ± 0.8 a | 14.4 ± 0.6 a | 40.1 ± 1.5 a |
40 | 26.1 ± 1.3 b | 15.9 ± 1.8 a | 17.1 ± 0.5 b | 40.9 ± 1.0 a |
60 | 22.1 ± 1.5 c | 16.7 ± 1.0 a | 18.6 ± 0.6 bc | 42.6 ± 0.2 b |
80 | 20.9 ± 1.2 c | 16.5 ± 0.7 a | 19.7 ± 0.6 cd | 42.9 ± 0.8 b |
100 | 19.1 ± 1.1 c | 16.6 ± 1.0 a | 21.2 ± 1.4 d | 43.1 ± 0.8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Ma, X.; Jin, W.; Wen, H.; Xu, G.; Xu, P.; Cheng, H. Effects of High-Pressure Homogenization on the Structure and Functional Properties of Solenaia oleivora Proteins. Foods 2024, 13, 2958. https://doi.org/10.3390/foods13182958
Chen W, Ma X, Jin W, Wen H, Xu G, Xu P, Cheng H. Effects of High-Pressure Homogenization on the Structure and Functional Properties of Solenaia oleivora Proteins. Foods. 2024; 13(18):2958. https://doi.org/10.3390/foods13182958
Chicago/Turabian StyleChen, Wanwen, Xueyan Ma, Wu Jin, Haibo Wen, Gangchun Xu, Pao Xu, and Hao Cheng. 2024. "Effects of High-Pressure Homogenization on the Structure and Functional Properties of Solenaia oleivora Proteins" Foods 13, no. 18: 2958. https://doi.org/10.3390/foods13182958