Aggregative Swab Sampling Method for Romaine Lettuce Show Similar Quality and Safety Indicators and Microbial Profiles Compared to Composite Produce Leaf Samples in a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Commercial Field Set Up and Inoculation
2.2. Commercial Field Sample Collection
2.3. Inoculation and Sampling of Store-Bought Romaine as an Outgroup for Analysis
2.4. Sample Processing
2.5. Aerobic Plate Counts, Coliform Counts, and E. coli
2.6. DNA Extraction
2.7. DNA Quality Assessment
2.8. DNA Quantification
2.9. DNA Submission
2.10. Library Preparation and Sequencing
2.11. Filtering, Trimming, and Obtaining Amplicon Sequence Variants (ASVs)
2.12. Assigning Taxonomy
2.13. Rarefication of Reads
2.14. Determining Alpha and Beta Diversity
2.15. Obtaining Top Taxa
2.16. Differential Abundance Analysis
2.17. Statistical Tests
3. Results
3.1. Results Overview
3.2. Swabs and Produce Leaves Recovered Similar Aerobic Plate Counts from Field Romaine
3.3. Swabs and Produce Leaves Recovered Similar Coliform Counts from Field Romaine
3.4. Swabs Detected E. coli More Often Than Produce Leaf Samples
3.5. Swabs and Field Produce Leaves Had Similar Alpha Diversities
3.6. Swabs and Produce Leaves Had Different Beta Diversities
3.7. Swabs and Produce Leaves Had Some of the Most Abundant Taxa in Common
3.8. Enterobacteriaceae Family Was Not Prominent in Swabs and Produce Leaves Regardless of Inoculation
3.9. Differential Abundance Analysis Showed Some Families Are Differently Expressed among Sample Types
4. Discussion
4.1. Microbial Enumeration and Community Analysis Suggest Aggregative Swabs Are No Less Representative than Produce Leaf Samples
4.2. Plate Counts Are High but Comparable to Some Other Studies
4.3. Most Abundant Taxa from Swabs and Produce Leaves Were Similar
4.4. Pseudomonas Genus Was Highly Abundant
4.5. Some Beneficial Bacteria Were Present in Samples
4.6. Some Families Were Differentially Abundant between Sample Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for Foodborne Disease Outbreaks-United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Scharff, R. Foodborne Illnesses from Leafy Greens in the United States: Attribution, Burden, and Cost. J. Food Prot. 2024, 87, 100275. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Benjamin, L.A.; Jay-Russell, M.T.; Atwill, E.R.; Cooley, M.B.; Carychao, D.; Larsen, R.E.; Mandrell, R.E. Risk factors for Escherichia coli O157 on beef cattle ranches located near a major produce production region. Epidemiol. Infect. 2015, 143, 81–93. [Google Scholar] [CrossRef]
- Berry, E.D.; Wells, J.E.; Bono, J.L.; Woodbury, B.L.; Kalchayanand, N.; Norman, K.N.; Suslow, T.V.; López-Velasco, G.; Millner, P.D. Effect of proximity to a cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens and evaluation of the potential for airborne transmission. Appl. Environ. Microbiol. 2015, 81, 1101–1110. [Google Scholar] [CrossRef]
- Yanamala, S.; Miller, M.F.; Loneragan, G.H.; Gragg, S.E.; Brashears, M.M. Potential for microbial contamination of spinach through feedyard air/dust growing in close proximity to cattle feedyard operations. J. Food Saf. 2011, 31, 525–529. [Google Scholar] [CrossRef]
- Persad, A.K.; LeJeune, J.T. Animal reservoirs of shiga toxin-producing Escherichia coli. Microbiol. Spectr. 2014, 2, Ehec-0027-2014. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC). National Outbreak Reporting System. Available online: https://www.cdc.gov/ncezid/dfwed/beam-dashboard.html (accessed on 25 July 2022).
- Marshall, K.E.; Hexemer, A.; Seelman, S.L.; Fatica, M.K.; Blessington, T.; Hajmeer, M.; Kisselburgh, H.; Atkinson, R.; Hill, K.; Sharma, D.; et al. Lessons learned from a decade of investigations of shiga toxin-producing Escherichia coli outbreaks linked to leafy greens, United States and Canada. Emerg. Infect. Dis. 2020, 26, 2319–2328. [Google Scholar] [CrossRef]
- US Food and Drug Administration (FDA). Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. Available online: https://www.regulations.gov/document/FDA-2011-N-0921-18558 (accessed on 25 July 2022).
- Quintanilla Portillo, J.; Cheng, X.; Belias Alexandra, M.; Weller Daniel, L.; Wiedmann, M.; Stasiewicz Matthew, J. A Validated Preharvest Sampling Simulation Shows that Sampling Plans with a Larger Number of Randomly Located Samples Perform Better than Typical Sampling Plans in Detecting Representative Point-Source and Widespread Hazards in Leafy Green Fields. Appl. Environ. Microbiol. 2022, 88, e01015-22. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Buchanan, R.L. Evaluation of sampling methods for the detection of pathogenic bacteria on pre-harvest leafy greens. Food Microbiol. 2019, 77, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; Ross, T.; Gorris, L.G.M. Food Safety Assurance Systems: Microbiological Testing, Sampling Plans, and Microbiological Criteria. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 244–253. [Google Scholar]
- Jongenburger, I.; den Besten, H.M.; Zwietering, M.H. Statistical aspects of food safety sampling. Annu. Rev. Food Sci. Technol. 2015, 6, 479–503. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Microbiological Specifications for Foods (ICMSF). Sampling Plans. In Microorganisms in Foods 7: Microbiological Testing in Food Safety Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 145–163. [Google Scholar]
- International Commission on Microbiological Specifications for Foods (ICMSF). Microbiological Sampling Plans Is A Tool to Explore ICMSF Recommendations. Available online: https://www.icmsf.org/publications/software/ (accessed on 28 September 2022).
- Wheeler, T.L.; Arthur, T.M. Novel Continuous and Manual Sampling Methods for Beef Trim Microbiological Testing. J. Food Prot. 2018, 81, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Arthur, T.M.; Wheeler, T.L. Validation of additional approaches and applications for using the continuous and manual sampling devices for raw beef trim. J. Food Prot. 2020, 84, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Shaw, W.K. FSIS Letter of No Objection for Utilizing a Continuous Sampling Device (CSD) or a Manual Sampling Device (MSD) as a Sampling Methodology Use for the Detection of Salmonella and/or Shiga Toxin Producing E. coli (STEC) or Other Indicator Organisms on Beef Trimmings. Food Safety and Inspection Service Office of Policy and Program Development. 2017. Available online: https://microtally.com/wp-content/uploads/2023/07/MicroTally%C2%AESwab-BasePlate-Cartridge_MSD-CSD__Letter-of-No-Objection.pdf (accessed on 24 September 2024).
- Wu, J.; Gathman, R.J.; Quintanilla Portillo, J.; Gaulke, C.; Kim, M.; Stasiewicz, M.J. Aggregative Soil Sampling Using Boot Covers Compared to Soil Grabs from Commercial Romaine Fields Shows Similar Indicator Organism and Microbial Community Recoveries. J. Food Prot. 2023, 86, 100177. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Callejas, A.; López-Velasco, G.; Camacho, A.B.; Artés, F.; Artés-Hernández, F.; Suslow, T.V. Survival and distribution of Escherichia coli on diverse fresh-cut baby leafy greens under preharvest through postharvest conditions. Int. J. Food Microbiol. 2011, 151, 216–222. [Google Scholar] [CrossRef]
- Callahan, B.J.; Wong, J.; Heiner, C.; Oh, S.; Theriot, C.M.; Gulati, A.S.; McGill, S.K.; Dougherty, M.K. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019, 47, e103. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.D.; Macklaim, J.M.; Linn, T.G.; Reid, G.; Gloor, G.B. ANOVA-Like Differential Expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 2013, 8, e67019. [Google Scholar] [CrossRef] [PubMed]
- Weller, D.L.; Kovac, J.; Roof, S.; Kent, D.J.; Tokman, J.I.; Kowalcyk, B.; Oryang, D.; Ivanek, R.; Aceituno, A.; Sroka, C.; et al. Survival of Escherichia coli on lettuce under field conditions encountered in the Northeastern United States. J. Food Prot. 2017, 80, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, G.; Sbodio, A.; Tech, J.J.; Suslow, T.V.; Coaker, G.L.; Leveau, J.H.J. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012, 6, 1812–1822. [Google Scholar] [CrossRef]
- Rosberg, A.K.; Darlison, J.; Mogren, L.; Alsanius, B.W. Commercial wash of leafy vegetables do not significantly decrease bacterial load but leads to shifts in bacterial species composition. Food Microbiol. 2021, 94, 103667. [Google Scholar] [CrossRef]
- Williams, T.R.; Moyne, A.-L.; Harris, L.J.; Marco, M.L. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS ONE 2013, 8, e68642. [Google Scholar] [CrossRef]
- Oliveira, M.A.d.; Maciel de Souza, V.; Morato Bergamini, A.M.; De Martinis, E.C.P. Microbiological quality of ready-to-eat minimally processed vegetables consumed in Brazil. Food Control 2011, 22, 1400–1403. [Google Scholar] [CrossRef]
- Quansah, J.K.; Kunadu, A.P.H.; Saalia, F.K.; Díaz-Pérez, J.; Chen, J. Microbial quality of leafy green vegetables grown or sold in Accra metropolis, Ghana. Food Control 2018, 86, 302–309. [Google Scholar] [CrossRef]
- Korir, R.C.; Parveen, S.; Hashem, F.; Bowers, J. Microbiological quality of fresh produce obtained from retail stores on the Eastern Shore of Maryland, United States of America. Food Microbiol. 2016, 56, 29–34. [Google Scholar] [CrossRef]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Uyttendaele, M. Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. Int. J. Food Microbiol. 2014, 171, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hofstra, N.; Franz, E. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. Int. J. Food Microbiol. 2013, 163, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, K.G.; White, J.R.; Grim, C.J.; Ewing, L.; Ottesen, A.R.; Beaubrun, J.J.-G.; Pettengill, J.B.; Brown, E.; Hanes, D.E. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol. 2015, 15, 160. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.R.; Marco, M.L.; Lindow, S. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. mBio 2014, 5, e01564-01514. [Google Scholar] [CrossRef] [PubMed]
- Dees, M.W.; Lysøe, E.; Nordskog, B.; Brurberg, M.B.; Goodrich-Blair, H. Bacterial communities associated with surfaces of leafy greens: Shift in composition and decrease in richness over time. Appl. Environ. Microbiol. 2015, 81, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Mulaosmanovic, E.; Lindblom, T.U.T.; Windstam, S.T.; Bengtsson, M.; Rosberg, A.K.; Mogren, L.; Alsanius, B.W. Processing of leafy vegetables matters: Damage and microbial community structure from field to bag. Food Control 2021, 125, 107894. [Google Scholar] [CrossRef]
- Lopez-Velasco, G.; Welbaum, G.E.; Boyer, R.R.; Mane, S.P.; Ponder, M.A. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J. Appl. Microbiol. 2011, 110, 1203–1214. [Google Scholar] [CrossRef]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef]
- Berman, J.J. Chapter 3-Bacteria. In Taxonomic Guide to Infectious Diseases, 2nd ed.; Berman, J.J., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 39–119. [Google Scholar]
- Figueiredo, G.; Gomes, M.; Covas, C.; Mendo, S.; Caetano, T. The unexplored wealth of microbial secondary metabolites: The Sphingobacteriaceae case study. Microb. Ecol. 2022, 83, 470–481. [Google Scholar] [CrossRef]
- Pini, F.; Frascella, A.; Santopolo, L.; Bazzicalupo, M.; Biondi, E.G.; Scotti, C.; Mengoni, A. Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiol. 2012, 12, 78. [Google Scholar] [CrossRef]
- Gavriilidou, A.; Gutleben, J.; Versluis, D.; Forgiarini, F.; van Passel, M.W.J.; Ingham, C.J.; Smidt, H.; Sipkema, D. Comparative genomic analysis of Flavobacteriaceae: Insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genom. 2020, 21, 569. [Google Scholar] [CrossRef]
- López-Pérez, M.; Rodriguez-Valera, F. The Family Alteromonadaceae. In The Prokaryotes: Gammaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 69–92. [Google Scholar]
- Ravva, S.V.; Sarreal, C.Z.; Mandrell, R.E. Bacterial communities in aerosols and manure samples from two different dairies in central and Sonoma Valleys of California. PLoS ONE 2011, 6, e17281. [Google Scholar] [CrossRef] [PubMed]
- Federico, B.; Pinto, L.; Quintieri, L.; Carito, A.; Calabrese, N.; Caputo, L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol. 2015, 215, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Andreani, N.A.; Fasolato, L. Chapter 2-Pseudomonas and related genera. In The Microbiological Quality of Food; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 25–59. [Google Scholar]
- Kwon, S.W.; Kim, J.S.; Park, I.C.; Yoon, S.H.; Park, D.H.; Lim, C.K.; Go, S.J. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. Int. J. Syst. Evol. Microbiol. 2003, 53, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, J.-B.; Kim, M.; Roh, E.; Jung, K.; Choi, M.; Oh, C.; Choi, J.; Yun, J.; Heu, S. Microbiota on spoiled vegetables and their characterization. J. Food Prot. 2013, 76, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Goumans, D.E.; Chatzaki, A.K. Characterization and host range evaluation of Pseudomonas viridiflava from melon, blite, tomato, chrysanthemum and eggplant. Eur. J. Plant Pathol. 1998, 104, 181–188. [Google Scholar] [CrossRef]
- Kahala, M.; Blasco, L.; Joutsjoki, V. Molecular characterization of spoilage bacteria as a means to observe the microbiological quality of carrot. J. Food Prot. 2012, 75, 523–532. [Google Scholar] [CrossRef]
- Nübling, S.; Schmidt, H.; Weiss, A. Variation of the Pseudomonas community structure on oak leaf lettuce during storage detected by culture-dependent and -independent methods. Int. J. Food Microbiol. 2016, 216, 95–103. [Google Scholar] [CrossRef]
- Hartmann, R.; Fricke, A.; Stützel, H.; Mansourian, S.; Dekker, T.; Wohanka, W.; Alsanius, B. Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Lett. Appl. Microbiol. 2017, 65, 35–41. [Google Scholar] [CrossRef]
- Deering, A.J.; Mauer, L.J.; Pruitt, R.E. Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Res. Int. 2012, 45, 567–575. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef]
- Trias, R.; Bañeras, L.; Badosa, E.; Montesinos, E. Bioprotection of golden delicious apples and iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. Int. J. Food Microbiol. 2008, 123, 50–60. [Google Scholar] [CrossRef]
- Cardinale, M.; Grube, M.; Erlacher, A.; Quehenberger, J.; Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 2015, 17, 239–252. [Google Scholar] [CrossRef]
- Atwill, E.R.; Chase, J.A.; Oryang, D.; Bond, R.F.; Koike, S.T.; Cahn, M.D.; Anderson, M.; Mokhtari, A.; Dennis, S. Transfer of Escherichia coli O157:H7 from simulated wildlife scat onto romaine lettuce during foliar irrigation. J. Food Prot. 2015, 78, 240–247. [Google Scholar] [CrossRef]
- Oliveira, M.; Viñas, I.; Usall, J.; Anguera, M.; Abadias, M. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int. J. Food Microbiol. 2012, 156, 133–140. [Google Scholar] [CrossRef]
- Shenoy, A.G.; Oliver, H.F.; Deering, A.J. Listeria monocytogenes internalizes in romaine lettuce grown in greenhouse conditions. J. Food Prot. 2017, 80, 573–581. [Google Scholar] [CrossRef]
- Golberg, D.; Kroupitski, Y.; Belausov, E.; Pinto, R.; Sela, S. Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs. Int. J. Food Microbiol. 2011, 145, 250–257. [Google Scholar] [CrossRef]
- Hou, Z.; Fink, R.C.; Radtke, C.; Sadowsky, M.J.; Diez-Gonzalez, F. Incidence of naturally internalized bacteria in lettuce leaves. Int. J. Food Microbiol. 2013, 162, 260–265. [Google Scholar] [CrossRef]
- Erickson, M.C.; Webb, C.C.; Diaz-Perez, J.C.; Phatak, S.C.; Silvoy, J.J.; Davey, L.; Payton, A.S.; Liao, J.; Ma, L.; Doyle, M.P. Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water. J. Food Prot. 2010, 73, 1023–1029. [Google Scholar] [CrossRef]
- Yu, S.L.; Cooke, P.H.; Tu, S.I. Effects of chilling on sampling of bacteria attached to swine carcasses. Lett. Appl. Microbiol. 2001, 32, 205–210. [Google Scholar] [CrossRef]
- Singh, P.; Lee, H.C.; Chin, K.B.; Ha, S.D.; Kang, I. Quantification of loosely associated and tightly associated bacteria on broiler carcass skin using swabbing, stomaching, and grinding methods. Poult. Sci. 2015, 94, 3034–3039. [Google Scholar] [CrossRef]
Sample Type | Inoculation Status | E. coli Positive | E. coli Negative | Total |
---|---|---|---|---|
Swabs | Inoculated | 4 | 2 | 6 |
Uninoculated | 4 | 2 | 6 | |
Produce leaf | Inoculated | 3 | 5 | 8 |
Uninoculated | 0 | 6 | 6 | |
Total | 11 | 15 | 26 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gathman, R.J.; Quintanilla Portillo, J.; Reyes, G.A.; Sullivan, G.; Stasiewicz, M.J. Aggregative Swab Sampling Method for Romaine Lettuce Show Similar Quality and Safety Indicators and Microbial Profiles Compared to Composite Produce Leaf Samples in a Pilot Study. Foods 2024, 13, 3080. https://doi.org/10.3390/foods13193080
Gathman RJ, Quintanilla Portillo J, Reyes GA, Sullivan G, Stasiewicz MJ. Aggregative Swab Sampling Method for Romaine Lettuce Show Similar Quality and Safety Indicators and Microbial Profiles Compared to Composite Produce Leaf Samples in a Pilot Study. Foods. 2024; 13(19):3080. https://doi.org/10.3390/foods13193080
Chicago/Turabian StyleGathman, Rachel J., Jorge Quintanilla Portillo, Gustavo A. Reyes, Genevieve Sullivan, and Matthew J. Stasiewicz. 2024. "Aggregative Swab Sampling Method for Romaine Lettuce Show Similar Quality and Safety Indicators and Microbial Profiles Compared to Composite Produce Leaf Samples in a Pilot Study" Foods 13, no. 19: 3080. https://doi.org/10.3390/foods13193080
APA StyleGathman, R. J., Quintanilla Portillo, J., Reyes, G. A., Sullivan, G., & Stasiewicz, M. J. (2024). Aggregative Swab Sampling Method for Romaine Lettuce Show Similar Quality and Safety Indicators and Microbial Profiles Compared to Composite Produce Leaf Samples in a Pilot Study. Foods, 13(19), 3080. https://doi.org/10.3390/foods13193080