A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction and Purification of Active Polysaccharide
2.2. Structural Characterization of the PAP
2.3. Animals and Study Design
2.4. Morris Water Maze and Y-Maze Test
2.5. Microbiome Sequencing and Data Analysis
2.6. Fecal Microbiota Transplant
2.7. qPCR Analysis
2.8. Western Blotting
2.9. Statistical Analysis
3. Results
3.1. The Purified PAP Is a New Polysaccharide with β-Anomeric Carbon
3.2. The PAP Shows Neuroregulatory Effect by Attenuating the Memory Deficit
3.3. The PAP Reprograms the Gut Dysbiosis Accompanied by Memory Loss
3.4. IL-6 Is Implicated in the PAP-Triggered Gut–Brain Communication
3.5. H3K27me3 Is Responsive to the Studied Gut–Brain Axis Evoked by the PAP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, P.; Feng, J.; Sun, P.; Xiang, N.; Lu, B.; Qiu, D. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res. Int. 2020, 137, 109376. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-C.; Lin, H.-S.; Chen, H.-X.; Wang, P.-K.; Zheng, B.-D.; Huang, Y.-Y.; Zhang, N.; Zhang, X.-Q.; Ye, J.; Xiao, M.-T. Plant polysaccharide-derived edible film packaging for instant food: Rapid dissolution in hot water coupled with exceptional mechanical and barrier characteristics. Int. J. Biol. Macromol. 2024, 270 Pt 1, 132066. [Google Scholar] [CrossRef] [PubMed]
- Marzorati, M.; Verhelst, A.; Luta, G.; Sinnott, R.; Verstraete, W.; Van de Wiele, T.; Possemiers, S. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int. J. Food Microbiol. 2010, 139, 168–176. [Google Scholar] [CrossRef]
- Hay, W.T.; Vaughn, S.F.; Byars, J.A.; Selling, G.W.; Holthaus, D.M.; Price, N.P.J. Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from Vitis riparia Michx. J. Agric. Food Chem. 2017, 65, 8754–8762. [Google Scholar] [CrossRef]
- Sun, Q.; Cheng, L.; Zeng, X.; Zhang, X.; Wu, Z.; Weng, P. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. Int. J. Biol. Macromol. 2020, 164, 1484–1492. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Y.; Wang, W.; Liu, N.; Zhang, H.; Zhu, Z.; Liu, A. Polysaccharides from Lycium barbarum leaves: Isolation, characterization and splenocyte proliferation activity. Int. J. Biol. Macromol. 2012, 51, 417–422. [Google Scholar] [CrossRef]
- Wen, H.; Kuang, Y.; Lian, X.; Li, H.; Zhou, M.; Tan, Y.; Zhang, X.; Pan, Y.; Zhang, J.; Xu, J. Physicochemical Characterization, Antioxidant and Anticancer Activity Evaluation of an Acidic Polysaccharide from Alpinia officinarum Hance. Molecules 2024, 29, 1810. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Ma, L.; Zhang, J.; Zhang, W.; Song, X. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus. Carbohydr. Polym. 2016, 135, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-K.; Wang, Y.-Y.; Wang, Z.-B.; Ma, H.-L.; Pei, J.-J.; Wu, J.-Y. Structure and antioxidative property of a polysaccharide from an ammonium oxalate extract of Phellinus linteus. Int. J. Biol. Macromol. 2016, 91, 92–99. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, T.; Yuan, M.; Li, Y.; Wang, F. A Novel Polysaccharide DSPP-1 from Durian Seed: Structure Characterization and Its Protective Effects Against Alzheimer’s Disease in a Transgenic Caenorhabditis elegans Model. Plant Foods Hum. Nutr. 2023, 78, 329–335. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, H.; Zhao, C.; Lv, F.; Li, G.; Wang, G.; Zhou, W.; Li, Z.; Zhao, Z.; Zhang, L.; et al. Diterpenes from oriental tobacco Nicotiana tabacum ‘YNOTBS1’ and their bioactivities. Nat. Prod. Res. 2023, 37, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.; Moreno, M.A.; Albornoz, P.L.; Mercado, M.I.; Zampini, I.C.; Isla, M.I. Nicotiana tabacum Leaf Waste: Morphological Characterization and Chemical-Functional Analysis of Extracts Obtained from Powder Leaves by Using Green Solvents. Molecules 2023, 28, 1396. [Google Scholar] [CrossRef]
- Day, J.J.; Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron 2011, 70, 813–829. [Google Scholar] [CrossRef]
- Zou, X.; Bk, A.; Rauf, A.; Saeed, M.; Al-Awthan, Y.S.; Al-Duais, M.A.; Bahattab, O.; Hamayoon Khan, M.; Suleria, H.A.R. Screening of Polyphenols in Tobacco (Nicotiana tabacum) and Determination of Their Antioxidant Activity in Different Tobacco Varieties. ACS Omega 2021, 6, 25361–25371. [Google Scholar] [CrossRef]
- Mhlongo, M.I.; Steenkamp, P.A.; Piater, L.A.; Madala, N.E.; Dubery, I.A. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents. Front. Plant Sci. 2016, 7, 1527. [Google Scholar] [CrossRef]
- Wright, H.E., Jr.; Burton, W.W.; Berry, R.C., Jr. Carotenoids and related colorless polyenes of aged Burley tobacco. Arch. Biochem. Biophys. 1959, 82, 107–116. [Google Scholar] [CrossRef]
- Xu, C.; Yang, C.; Mao, D. Fraction and chemical analysis of antioxidant active polysaccharide isolated from flue-cured tobacco leaves. Pharmacogn. Mag. 2014, 10, 66–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Liu, J.; Zheng, Z.; Li, Q.; Wang, H.; Chen, Z.; Wang, K. Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis. Food Res. Int. 2020, 137, 109641. [Google Scholar] [CrossRef]
- Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308. [Google Scholar] [CrossRef]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef]
- Yan, T.; Wang, N.; Liu, B.; Wu, B.; Xiao, F.; He, B.; Jia, Y. Schisandra chinensis ameliorates depressive-like behaviors by regulating microbiota-gut-brain axis via its anti-inflammation activity. Phytother. Res. 2021, 35, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Salonen, A.; Lahti, L.; Salojärvi, J.; Holtrop, G.; Korpela, K.; Duncan, S.H.; Date, P.; Farquharson, F.; Johnstone, A.M.; Lobley, G.E.; et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014, 8, 2218–2230. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef]
- Li, F.; Cui, S.-H.; Zha, X.-Q.; Bansal, V.; Jiang, Y.-L.; Asghar, M.-N.; Wang, J.-H.; Pan, L.-H.; Xu, B.-F.; Luo, J.-P. Structure and bioactivity of a polysaccharide extracted from protocorm-like bodies of Dendrobium huoshanense. Int. J. Biol. Macromol. 2015, 72, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, T.; Xu, Y.; Gu, X.; Li, D.; Niu, K.; Wang, T.; Zhao, J.; Zhou, R.; Wang, H.L. Long-term probiotic intervention mitigates memory dysfunction through a novel H3K27me3-based mechanism in lead-exposed rats. Transl. Psychiatry 2020, 10, 25. [Google Scholar] [CrossRef]
- Joo, H.; Choi, J.H.; Burm, E.; Park, H.; Hong, Y.-C.; Kim, Y.; Ha, E.-H.; Kim, Y.; Kim, B.-N.; Ha, M. Gender difference in the effects of lead exposure at different time windows on neurobehavioral development in 5-year-old children. Sci. Total Environ. 2018, 615, 1086–1092. [Google Scholar] [CrossRef]
- Meira, D.; Almeida, R.; Barbosa, A.; De Souza, L.; Olivo, T.; Henriques, R.; Golim, M.; Araujo, J.; Nagoshi, L.; Orikaza, C.; et al. Assessment of cytokine values in serum by RT-PCR in HIV-1 infected individuals with and without highly active anti-retroviral therapy (HAART). J. Venom. Anim. Toxins Incl. Trop. Dis. 2008, 14, 685–702. [Google Scholar] [CrossRef]
- Gu, X.; Bi, N.; Wang, T.; Huang, C.; Wang, R.; Xu, Y.; Wang, H.-L. Probiotic Lactobacillus rhamnosus GR-1 supplementation attenuates Pb-induced learning and memory deficits by reshaping the gut microbiota. Front. Nutr. 2022, 9, 934118. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Xue, W.Z.; Zou, R.X.; Xu, Y.; Du, Y.; Wang, S.; Xu, L.; Chen, Y.Z.; Wang, H.L.; Chen, X.T. beta-Asarone Rescues Pb-Induced Impairments of Spatial Memory and Synaptogenesis in Rats. PLoS ONE 2016, 11, e0167401. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Zou, N.; Zhang, L.; Wang, Y.; Zhang, M.; Wang, C.; Yang, L. Pathogenesis from the microbial-gut-brain axis in white matter injury in preterm infants: A review. Front. Integr. Neurosci. 2023, 17, 1051689. [Google Scholar] [CrossRef]
- Dong, N.; Li, X.; Xue, C.; Wang, C.; Xu, X.; Bi, C.; Shan, A.; Li, D. Astragalus polysaccharides attenuated inflammation and balanced the gut microflora in mice challenged with Salmonella typhimurium. Int. Immunopharmacol. 2019, 74, 105681. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, J.; Zhou, Y.; Zhang, N.; Liu, J. Effect of stigma maydis polysaccharide on the gut microbiota and transcriptome of VPA induced autism model rats. Front. Microbiol. 2022, 13, 1009502. [Google Scholar] [CrossRef] [PubMed]
- Best, T.; Howe, P.; Bryan, J.; Buckley, J.; Scholey, A. Acute effects of a dietary non-starch polysaccharide supplement on cognitive performance in healthy middle-aged adults. Nutr. Neurosci. 2015, 18, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.S.; Youn, G.S.; Choi, J.; Kim, C.-H.; Kim, B.Y.; Yang, S.-J.; Lee, J.H.; Park, T.-S.; Kim, B.K.; Kim, Y.B.; et al. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin. Transl. Med. 2021, 11, e634. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Yamano, M.; Masujima, Y.; Ohue-Kitano, R.; Kimura, I. Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice. Biochem. Biophys. Rep. 2021, 27, 101095. [Google Scholar] [CrossRef]
- Gu, X.; Xu, Y.; Xue, W.Z.; Wu, Y.; Ye, Z.; Xiao, G.; Wang, H.L. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis. 2019, 10, 671. [Google Scholar] [CrossRef]
Primer | Sequence | Gene |
---|---|---|
IL-6 477F | AAGCCAGAGTCATTCAGAGCAA | IL-6 |
IL-6 635R | GGATGGTCTTGGTCCTTAGCC | |
IFN-γ 377F | ACAACCCACAGATCCAGCACAA | IFN-γ |
IFN-γ 482R | AATCAGCACCGACTCCTTTTCC | |
GCSF 805F | TGGAGGGCAGGGAAGGAGATA | GCSF |
GCSF 1063R | CGGGGTCAGGAAAACCTACAAC | |
IL-1b 54F | GCTATGGCAACTGTCCCTGAAC | IL-1β |
IL-1b 225R | CGAGATGCTGCTGTGAGATTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Zhu, F.; Mo, W.; Li, H.; Zhu, D.; He, Z.; Ma, X. A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6. Foods 2024, 13, 3177. https://doi.org/10.3390/foods13193177
Yang R, Zhu F, Mo W, Li H, Zhu D, He Z, Ma X. A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6. Foods. 2024; 13(19):3177. https://doi.org/10.3390/foods13193177
Chicago/Turabian StyleYang, Ruili, Feng Zhu, Wanying Mo, Huailong Li, Dongliang Zhu, Zengyang He, and Xiaojing Ma. 2024. "A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6" Foods 13, no. 19: 3177. https://doi.org/10.3390/foods13193177
APA StyleYang, R., Zhu, F., Mo, W., Li, H., Zhu, D., He, Z., & Ma, X. (2024). A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6. Foods, 13(19), 3177. https://doi.org/10.3390/foods13193177