Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Treatment of Samples
2.3. Particle Size and Zeta Potential Measurements
2.4. Fourier Transform Infrared (FTIR) Analysis
2.5. Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS–PAGE)
2.6. Determination of Protein Solubility and Heat Stability
2.7. Statistical Analysis
3. Results
3.1. Solubility and Heat Stability of Milk Protein Concentrations Subjected to Different Treatments
3.2. Average Particle Size and Zeta Potential Measurements of Milk Protein Concentrations Subjected to Different Treatments
3.3. Secondary Structural Modifications of Milk Protein Concentrations Subjected to Different Treatments
3.4. Partitioning of Proteins in Milk Protein Concentrate Subjected to Different Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Havea, P. Protein Interactions in Milk Protein Concentrate Powders. Int. Dairy J. 2006, 16, 415–422. [Google Scholar] [CrossRef]
- Tong, P.S.; Smithers, G.W. The Future of Dairy Ingredients: Critical Considerations That Will Underpin Future Success. Adv. Dairy Ingred. 2012, 313, 313–317. [Google Scholar]
- Agarwal, S.; Beausire, R.L.; Patel, S.; Patel, H. Innovative Uses of Milk Protein Concentrates in Product Development. J. Food Sci. 2015, 80, A23–A29. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Prakash, S.; Bhandari, B.; Bansal, N. Comparison of Ultra High Temperature (UHT) Stability of High Protein Milk Dispersions Prepared from Milk Protein Concentrate (MPC) and Conventional Low Heat Skimmed Milk Powder (SMP). J. Food Eng. 2019, 246, 86–94. [Google Scholar] [CrossRef]
- Alvarez, V.B.; Wolters, C.L.; Vodovotz, Y.; Ji, T. Physical Properties of Ice Cream Containing Milk Protein Concentrates. J. Dairy Sci. 2005, 88, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Rogers, S.; Selomulya, C.; Chen, X.D. Functionality of Milk Protein Concentrate: Effect of Spray Drying Temperature. Biochem. Eng. J. 2012, 62, 101–105. [Google Scholar] [CrossRef]
- Guiziou, G.G. Concentrated Milk and Powders. In Membrane Processing: Dairy and Beverage Applications; Tamime, A.Y., Ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 128–140. [Google Scholar]
- McCarthy, N.A.; Kelly, P.M.; Maher, P.G.; Fenelon, M.A. Dissolution of Milk Protein Concentrate (MPC) Powders by Ultrasonication. J. Food Eng. 2014, 126, 142–148. [Google Scholar] [CrossRef]
- Yanjun, S.; Jianhang, C.; Shuwen, Z.; Hongjuan, L.; Jing, L.; Lu, L.; Uluko, H.; Yanling, S.; Wenming, C.; Wupeng, G.; et al. Effect of Power Ultrasound Pre-treatment on the Physical and Functional Properties of Reconstituted Milk Protein Concentrate. J. Food Eng. 2014, 124, 11–18. [Google Scholar] [CrossRef]
- Ho, Q.T.; Murphy, K.M.; Drapala, K.P.; Fenelon, M.A.; O’Mahony, J.A.; Tobin, J.T.; McCarthy, N.A. Modelling the Changes in Viscosity during Thermal Treatment of Milk Protein Concentrate Using Kinetic Data. J. Food Eng. 2019, 246, 179–191. [Google Scholar] [CrossRef]
- Aydogdu, T.; Ho, Q.T.; Ahrné, L.; O’Mahony, J.A.; McCarthy, N.A. The Influence of Milk Minerals and Lactose on Heat Stability and Age-Thickening of Milk Protein Concentrate Systems. Int. Dairy J. 2021, 118, 105037. [Google Scholar] [CrossRef]
- Nunes, L.; Tavares, G.M. Thermal Treatments and Emerging Technologies: Impacts on the Structure and Techno-Functional Properties of Milk Proteins. Trends Food Sci. Technol. 2019, 90, 88–99. [Google Scholar] [CrossRef]
- Corredig, M.; Nair, P.K.; Li, Y.; Eshpari, H.; Zhao, Z. Understanding the Behavior of Caseins in Milk Concentrates. J. Dairy Sci. 2019, 102, 4772–4782. [Google Scholar] [CrossRef] [PubMed]
- Mistry, V.V.; Pulgar, J.B. Physical and Storage Properties of High Milk Protein Powder. Int. Dairy J. 1996, 6, 195–203. [Google Scholar] [CrossRef]
- McKenna, A.B. Effect of Processing and Storage on the Reconstitution Properties of Whole Milk and Ultrafiltered Skim Milk Powders: Thesis Presented in Partial Fulfilment of the Requirement for the Degree of Doctor of Philosophy in Food Technology. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2000. [Google Scholar]
- Anema, S.G.; Pinder, D.N.; Hunter, R.J.; Hemar, Y. Effects of Storage Temperature on the Solubility of Milk Protein Concentrate (MPC85). Food Hydrocolloid. 2006, 20, 386–393. [Google Scholar] [CrossRef]
- Meena, G.S.; Singh, A.K.; Panjagari, N.R.; Arora, S. Milk Protein Concentrates: Opportunities and Challenges. J. Food Sci. Technol. 2017, 54, 3010–3024. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.J.; Truong, G.N.T. Development of Insolubility in Dehydration of Dairy Milk Powders. Food Bioprod. Process. 2007, 85, 202–208. [Google Scholar] [CrossRef]
- Mimouni, A.; Deeth, H.C.; Whittaker, A.K.; Gidley, M.J.; Bhandari, B.R. Investigation of the Microstructure of Milk Protein Concentrate Powders during Rehydration: Alterations during Storage. J. Dairy Sci. 2010, 93, 463–472. [Google Scholar] [CrossRef]
- Sikand, V.; Tong, P.S.; Roy, S.; Rodriguez-Saona, L.E.; Murray, B.A. Solubility of Commercial Milk Protein Concentrates and Milk Protein Isolates. J. Dairy Sci. 2011, 94, 6194–6202. [Google Scholar] [CrossRef]
- Lucey, J.A.; Otter, D.; Horne, D.S. A 100-Year Review: Progress on the Chemistry of Milk and Its Components. J. Dairy Sci. 2017, 100, 9916–9932. [Google Scholar] [CrossRef]
- Singh, H. Protein Interactions and Functionality of Milk Protein Products. In Dairy-Derived Ingredients; Woodhead Publishing: Sawston, UK, 2009; pp. 644–674. [Google Scholar]
- Khalesi, M.; FitzGerald, R.J. Insolubility in Milk Protein Concentrates: Potential Causes and Strategies to Minimize Its Occurrence. Crit. Rev. Food Sci. Nutr. 2022, 62, 6973–6989. [Google Scholar] [CrossRef]
- Eshpari, H.; Jimenez-Flores, R.; Tong, P.S.; Corredig, M. Thermal Stability of Reconstituted Milk Protein Concentrates: Effect of Partial Calcium Depletion during Membrane Filtration. Food Res. Int. 2017, 102, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, D.J.; Singh, H.; Taylor, M.W.; Pearce, K.N. Heat-Induced Interactions of β-Lactoglobulin and α-Lactalbumin with the Casein Micelle in pH-Adjusted Skim Milk. Int. Dairy J. 2000, 10, 509–518. [Google Scholar] [CrossRef]
- Rose, D. Factors Affecting the Heat Stability of Milk. J. Dairy Sci. 1962, 45, 1305–1311. [Google Scholar] [CrossRef]
- Di Stasio, E.; De Cristofaro, R. The Effect of Shear Stress on Protein Conformation: Physical Forces Operating on Biochemical Systems: The Case of von Willebrand Factor. Biophys. Chem. 2010, 153, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P. Physical Chemistry of Foods; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Bekard, I.B.; Asimakis, P.; Bertolini, J.; Dunstan, D.E. The effects of shear flow on protein structure and function. Biopolymers 2011, 95, 733–745. [Google Scholar] [CrossRef]
- Bekard, I.B.; Barnham, K.J.; White, L.R.; Dunstan, D.E. α-Helix unfolding in simple shear flow. Soft Matter 2011, 7, 203–210. [Google Scholar] [CrossRef]
- Mediwaththe, A.T.M. Impact of Heating and Shearing on Native Milk Proteins in Raw Milk. Master’s Thesis, Victoria University, Melbourne, Australia, 2017. [Google Scholar]
- Mediwaththe, A.; Huppertz, T.; Chandrapala, J.; Vasiljevic, T. Heat-Induced Changes in κ-Carrageenan-Containing Chocolate-Flavoured Milk Protein Concentrate Suspensions under Controlled Shearing. Foods 2023, 12, 4404. [Google Scholar] [CrossRef]
- Morr, C.V. Functionality of Heated Milk Proteins in Dairy and Related Foods. J. Dairy Sci. 1985, 68, 2773–2781. [Google Scholar] [CrossRef]
- Dissanayake, M.; Vasiljevic, T. Functional Properties of Whey Proteins Affected by Heat Treatment and Hydrodynamic High-Pressure Shearing. J. Dairy Sci. 2009, 92, 1387–1397. [Google Scholar] [CrossRef]
- Dissanayake, M.; Liyanaarachchi, S.; Vasiljevic, T. Functional properties of whey proteins microparticulated at low pH. J. Dairy Sci. 2012, 95, 1667–1679. [Google Scholar] [CrossRef]
- Lefèvre, T.; Subirade, M. Structural and Interaction Properties of β-Lactoglobulin as Studied by FTIR Spectroscopy. Int. J. Food Sci. Technol. 1999, 34, 419–428. [Google Scholar] [CrossRef]
- Anema, S.G. The Turbidity of Heated Milk in Relation to Particle Size and Protein Distributions Between the Casein Micelles and the Serum Phase. Int. Dairy J. 2023, 147, 105771. [Google Scholar] [CrossRef]
- Kessler, H.G.; Beyer, H.J. Thermal Denaturation of Whey Proteins and Its Effect in Dairy Technology. Int. J. Biol. Macromol. 1991, 13, 165–173. [Google Scholar] [CrossRef]
- Anema, S.G.; McKenna, A.B. Reaction Kinetics of Thermal Denaturation of Whey Proteins in Heated Reconstituted Whole Milk. J. Agric. Food Chem. 1996, 44, 422–428. [Google Scholar] [CrossRef]
- Hillier, R.M.; Lyster, R.L.; Cheeseman, G.C. Thermal Denaturation of α-Lactalbumin and β-Lactoglobulin in Cheese Whey: Effect of Total Solids Concentration and pH. J. Dairy Res. 1979, 46, 103–111. [Google Scholar] [CrossRef]
- Kim, J.; Kramer, T.A. Improved Orthokinetic Coagulation Model for Fractal Colloids: Aggregation and Breakup. Chem. Eng. Sci. 2006, 61, 45–53. [Google Scholar] [CrossRef]
- Janahar, J.J.; Marciniak, A.; Balasubramaniam, V.M.; Jimenez-Flores, R.; Ting, E. Effects of Pressure, Shear, Temperature, and Their Interactions on Selected Milk Quality Attributes. J. Dairy Sci. 2021, 104, 1531–1547. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Tu, M.; Wang, Z.; Wu, C.; Yu, C.; Battino, M.; El-Seedi, H.R.; Du, M. Biological and Conventional Food Processing Modifications on Food Proteins: Structure, Functionality, and Bioactivity. Biotechnol. Adv. 2020, 40, 107491. [Google Scholar] [CrossRef]
- Weiss, J.; Salminen, H.; Moll, P.; Schmitt, C. Use of Molecular Interactions and Mesoscopic Scale Transitions to Modulate Protein-Polysaccharide Structures. Adv. Colloid Interface Sci. 2019, 271, 101987. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Xu, S.; Villalobos-Santeli, J.A.; Huang, J.Y. Fouling Characterization of Camel Milk with Comparison to Bovine Milk. J. Food Eng. 2020, 285, 110085. [Google Scholar] [CrossRef]
- Steventon, A.J.; Donald, A.M.; Gladden, L.F. Thermal Aggregation of Whey Protein Concentrates under Fluid Shear Conditions. In Biochemistry of Milk Products; Woodhead Publishing: Sawston, UK, 2005; pp. 133–142. [Google Scholar]
- Taylor, S.M.; Fryer, P.J. The Effect of Temperature/Shear History on the Thermal Gelation of Whey Protein Concentrates. Food Hydrocoll. 1994, 8, 45–61. [Google Scholar] [CrossRef]
- Olivares, M.L.; Berli, C.L.A.; Zorrilla, S.E. Rheological modelling of dispersions of casein micelles considered as microgel particles. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 337–342. [Google Scholar] [CrossRef]
- Zhou, B.; Tobin, J.T.; Drusch, S.; Hogan, S.A. Interfacial Properties of Milk Proteins: A Review. Adv. Colloid Interface Sci. 2021, 295, 102347. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.K.; Teo, A.; Sarkar, A.; Singh, H. Milk Protein-Polysaccharide Interactions. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2020; pp. 499–535. [Google Scholar]
- Bubakova, P.; Pivokonsky, M.; Filip, P. Effect of Shear Rate on Aggregate Size and Structure in the Process of Aggregation and at Steady State. Powder Technol. 2013, 235, 540–549. [Google Scholar] [CrossRef]
- Sonntag, R.C.; Russel, W.B. Structure and Breakup of Flocs Subjected to Fluid Stresses: I. Shear Experiments. J. Colloid Interface Sci. 1986, 113, 399–413. [Google Scholar] [CrossRef]
- Simmons, M.J.H.; Jayaraman, P.; Fryer, P.J. The Effect of Temperature and Shear Rate upon the Aggregation of Whey Protein and Its Implications for Milk Fouling. J. Food Eng. 2007, 79, 517–528. [Google Scholar] [CrossRef]
- Arp, P.A.; Mason, S.G. Particle Behaviour in Shear and Electric Fields: VIII.: Interactions of Pairs of Conducting Spheres (Theoretical). Colloid Polym. Sci. 1977, 255, 566–584. [Google Scholar] [CrossRef]
- Bekard, I.B.; Dunstan, D.E. Shear-Induced Deformation of Bovine Insulin in Couette Flow. J. Phys. Chem. B 2009, 113, 8453–8457. [Google Scholar] [CrossRef]
- Schorsch, C.; Carrie, H.; Norton, I.T. Cross-linking Casein Micelles by a Microbial Transglutaminase: Influence of Cross-links in Acid-induced Gelation. Int. Dairy J. 2000, 10, 529–539. [Google Scholar] [CrossRef]
- Smoluchowski, M. Attempt at a mathematical theory of the coagulation kinetics of colloidal solutions. Z. Phys. Chem. 1917, 92, 129–168. [Google Scholar]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Wolz, M.; Mersch, E.; Kulozik, U. Thermal Aggregation of Whey Proteins under Shear Stress. Food Hydrocoll. 2016, 56, 396–404. [Google Scholar] [CrossRef]
- Steventon, A.J. Thermal Aggregation of Whey Proteins. Ph.D. Dissertation, University of Cambridge, Cambridge, UK, 1993. [Google Scholar]
- Randolph, A.D.; Larson, M.A. Theory of Particulate Processes; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Bista, A.; McCarthy, N.; O’Donnell, C.P.; O’Shea, N. Key Parameters and Strategies to Control Milk Concentrate Viscosity in Milk Powder Manufacture. Int. Dairy J. 2021, 121, 105120. [Google Scholar] [CrossRef]
Protein (%) | Shear Rate (s−1) | Average Particle Size (nm) | Zeta Potential (mV) | Solubility % | Heat Stability % | |||||
---|---|---|---|---|---|---|---|---|---|---|
25 °C | 90 °C | 121 °C | 25 °C | 90 °C | 121 °C | 90 °C | 121 °C | |||
4 | 0 | 190 ± 2 Ba | 174 ± 1 Bb | 177 ± 1 Ab | −21.1 ± 0.1 Ba | −22.7 ± 0.6 Aa | −21.7 ± 0.5 Ca | 98.7 ± 0.1 A | 85.5 ± 0.1 Aa | 75.0 ± 0.9 ABb |
100 | 177 ± 1 ABa | 176 ± 2 Aa | −22.0 ± 0.4 Aa | −22.7 ± 0.5 Ca | 80.1 ± 0.6 BCa | 74.6 ± 1.0 ABb | ||||
1000 | 177 ± 2 ABa | 175 ± 2 Aa | −22.6 ± 0.5 Ab | −24.2 ± 0.1 Ba | 81.6 ± 0.3 BCa | 78.2 ± 0.9 Aa | ||||
1500 | 178 ± 2 ABa | 175 ± 1 Aa | −21.3 ± 0.8 Ab | −25.9 ± 0.2 Aa | 83.1 ± 0.1 ABa | 80.1 ± 3.1 Aa | ||||
8 | 0 | 195 ± 1 Aa | 178 ± 2 ABb | 176 ± 2 Ab | −23.7 ± 0.2 Ab | −22.6 ± 0.5 Aa | −22.7 ± 0.5 Ca | 95.4 ± 0.3 B | 79.0 ± 1.1 Ca | 75.0 ± 0.8 ABb |
100 | 178 ± 2 ABa | 175 ± 1 Aa | −21.7 ± 0.5 Aa | −22.1 ± 0.4 Ca | 75.3 ± 0.3 Da | 70.2 ± 0.6 BCb | ||||
1000 | 177 ± 1 ABa | 175 ± 1 Aa | −21.6 ± 0.6 Aa | −22.8 ± 0.6 Ca | 70.3 ± 0.5 Ea | 65.6 ± 0.4 CDb | ||||
1500 | 179 ± 1 Aa | 176 ± 2 Aa | −21.5 ± 0.6 Aa | −22.5 ± 0.5 Ca | 65.4 ± 0.1 Fa | 60.0 ± 0.4 Db |
Protein (%) | Temp. (°C) | Shear Rate (s−1) | α-Helix (1646–1664 cm−1) | Total β-Sheet (1615–1637/1682–1700 cm−1) | Total β-Turns (1665–1681 cm−1) | Random (1638–1645 cm−1) |
---|---|---|---|---|---|---|
4 | 25 | 0 | 5.4 ± 0.2 e | 43.1 ± 0.1 n | 8.9 ± 0.1 j | 42.6 ± 0.3 b |
90 | 0 | 4.1 ± 0.1 h | 47.2 ± 0.3 l | 7.4 ± 0.4 k | 41.3 ± 0.1 c | |
100 | 2.0 ± 0.3 l | 52.7 ± 0.4 i | 6.4 ± 0.1 m | 38.9 ± 0.2 d | ||
1000 | 3.8 ± 0.5 i | 46.8 ± 0.2 m | 12.0 ± 0.1 e | 37.4 ± 0.1 e | ||
1500 | 7.7 ± 0.1 b | 48.8 ± 0.2 k | 12.2 ± 0.1 e | 31.3 ± 0.4 f | ||
121 | 0 | 3.2 ± 0.1 j | 69.9 ± 0.3 b | 15.8 ± 0.4 b | 11.1 ± 0.3 p | |
100 | 5.4 ± 0.4 e | 67.4 ± 0.1 d | 13.3 ± 0.2 d | 13.9 ± 0.5 n | ||
1000 | 4.8 ± 0.1 f | 70.9 ± 0.4 a | 11.2 ± 0.7 f | 13.1 ± 0.1 o | ||
1500 | 4.7 ± 0.2 fg | 68.5 ± 0.1 c | 10.2 ± 0.1 h | 16.6 ± 0.7 m | ||
8 | 25 | 0 | 8.0 ± 0.4 b | 35.8 ± 0.1 o | 6.8 ± 0.5 l | 49.4 ± 0.1 a |
90 | 0 | 6.2 ± 0.1 d | 50.4 ± 0.2 j | 15.2 ± 0.1 c | 28.2 ± 0.4 g | |
100 | 10.0 ± 0.7 a | 57.8 ± 0.2 h | 10.4 ± 0.3 h | 21.8 ± 0.3 j | ||
1000 | 7.2 ± 0.1 c | 61.8 ± 0.2 f | 10.0 ± 0.3 i | 21.0 ± 0.1 k | ||
1500 | 7.1 ± 0.8 c | 66.4 ± 0.5 e | 7.1 ± 0.1 kl | 19.4 ± 0.3 l | ||
121 | 0 | 2.6 ± 0.1 k | 59.7 ± 0.2 g | 17.9 ± 0.2 a | 19.8 ± 0.2 l | |
100 | 2.8 ± 0.3 jk | 57.6 ± 0.2 h | 16.0 ± 0.1 b | 23.6 ± 0.1 i | ||
1000 | 4.4 ± 0.2 fgh | 61.2 ± 0.1 f | 10.8 ± 0.3 g | 23.6 ± 0.3 i | ||
1500 | 4.3 ± 0.1 gh | 67.2 ± 0.2 d | 3.9 ± 0.1 n | 24.6 ± 0.1 h |
Protein (%) | Temp. (°C) | Shear Rate (s−1) | αs-CN | β-CN | κ-CN | β-LG | α-LA |
---|---|---|---|---|---|---|---|
4 | 25 | 0 | 7.5 ± 0.1 h | 9.8 ± 0.4 f | 28.7 ± 1.2 i | 99.3 ± 0.6 a | 99.7 ± 0.1 a |
90 | 0 | 8.1 ± 0.3 f | 10.3 ± 0.1 e | 31.3 ± 0.9 h | 55.1 ± 0.8 f | 63.8 ± 0.9 f | |
100 | 8.8 ± 0.2 d | 9.7 ± 0.7 f | 38.2 ± 0.4 e | 56.2 ± 0.3 f | 64.2 ± 0.7 f | ||
1000 | 8.3 ± 0.1 e | 9.2 ± 0.6 g | 45.2 ± 0.7 d | 67.8 ± 0.4 d | 71.3 ± 0.4 d | ||
1500 | 7.8 ± 0.4 g | 8.9 ± 0.2 h | 48.5 ± 0.5 c | 75.0 ± 0.2 b | 78.3 ± 0.5 c | ||
121 | 0 | 10.4 ± 0.2 b | 12.5 ± 0.1 a | 35.3 ± 0.2 f | 50.4 ± 0.9 g | 59.3 ± 0.2 h | |
100 | 11.3 ± 0.7 a | 11.8 ± 0.9 b | 37.8 ± 0.4 e | 51.5 ± 1.1 g | 61.5 ± 0.5 g | ||
1000 | 10.5 ± 0.9 b | 10.9 ± 1.1 c | 51.3 ± 0.5 b | 70.3 ± 0.7 b | 79.8 ± 0.2 c | ||
1500 | 9.8 ± 0.2 c | 10.6 ± 0.5 d | 58.2 ± 0.1 a | 73.8 ± 0.5 b | 81.3 ± 0.4 b | ||
8 | 25 | 0 | 6.8 ± 0.2 k | 8.1 ± 0.5 i | 20.3 ± 0.5 k | 98.7 ± 0.2 a | 99.1 ± 0.6 a |
90 | 0 | 7.2 ± 0.1 i | 9.3 ± 0.3 g | 23.4 ± 0.1 j | 58.3 ± 0.9 e | 65.1 ± 0.5 f | |
100 | 7.0 ± 0.5 j | 7.3 ± 0.2 j | 29.7 ± 0.9 i | 57.5 ± 0.7 ef | 63.8 ± 0.3 f | ||
1000 | 5.3 ± 0.3 m | 6.5 ± 0.7 l | 32.5 ± 0.7 g | 59.1 ± 0.4 e | 68.1 ± 0.4 e | ||
1500 | 4.9 ± 0.4 n | 5.9 ± 0.2 m | 33.8 ± 0.8 g | 68.5 ± 0.5 cd | 73.2 ± 0.9 d | ||
121 | 0 | 10.5 ± 0.8 b | 10.3 ± 0.7 e | 30.8 ± 0.5 hi | 47.3 ± 0.3 h | 58.5 ± 0.4 h | |
100 | 9.8 ± 0.5 c | 10.2 ± 0.2 e | 31.3 ± 0.4 h | 45.8 ± 0.2 h | 56.3 ± 0.1 i | ||
1000 | 7.5 ± 0.3 h | 6.8 ± 0.7 k | 35.7 ± 0.2 f | 52.3 ± 1.3 g | 58.5 ± 1.3 h | ||
1500 | 6.1 ± 0.2 l | 5.3 ± 0.3 n | 37.2 ± 0.5 e | 55.8 ± 0.9 f | 61.8 ± 0.4 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mediwaththe, A.; Huppertz, T.; Chandrapala, J.; Vasiljevic, T. Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing. Foods 2024, 13, 263. https://doi.org/10.3390/foods13020263
Mediwaththe A, Huppertz T, Chandrapala J, Vasiljevic T. Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing. Foods. 2024; 13(2):263. https://doi.org/10.3390/foods13020263
Chicago/Turabian StyleMediwaththe, Anushka, Thom Huppertz, Jayani Chandrapala, and Todor Vasiljevic. 2024. "Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing" Foods 13, no. 2: 263. https://doi.org/10.3390/foods13020263
APA StyleMediwaththe, A., Huppertz, T., Chandrapala, J., & Vasiljevic, T. (2024). Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing. Foods, 13(2), 263. https://doi.org/10.3390/foods13020263